Search results for: extreme heat
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3717

Search results for: extreme heat

3657 Changes in Temperature and Precipitation Extremes in Northern Thailand

Authors: Chakrit Chotamonsak

Abstract:

This study was analyzed changes in temperature and precipitation extremes in northern Thailand for the period 1981-2011.The study includes an analysis of the average and trends of changes in temperature and precipitation using 22 climate indices, related to the intensity, frequency and duration of extreme climate events. The results showed that the averaged trend of maximum, minimum and mean temperature is likely to increase over the study area in rate of 0.5, 0.9 and 0.7 °C in last 30 years. Changes in temperature at nighttime, then rising at a rate higher daytime is resulting to decline of diurnal temperature range throughout the area. Trend of changes in average precipitation during the year 1981-2011 is expected to increase at an average rate of 21%. The intensity of extreme temperature events is increasing almost all station. In particular, the changes of the night were unusually hot has intensified throughout the region. In some provinces such as Chiang Mai and Lampang are likely be faced with the severity of hot days and hot nights in increasing rate. Frequency of extreme temperature events are likely to increase each station, especially hot days, and hot nights are increasing at a rate of 2.38 and 3.58 days per decade. Changes in the cold days and cold nights are declining at a rate of 0.82 and 3.03 days per decade. The duration of extreme temperature events is expected to increase the events hot in every station. An average of 17.8 days per decade for the number of consecutive cold winter nights likely shortens the rate of 2.90 days per decade. The analysis of the precipitation indices reveals the intensity of extreme precipitation is increasing almost across the region. The intensify expressed the heavy rain in one day (Rx1day) and very heavy rain accumulated in 5 days (RX5day) which is likely to increase, and very heavy rainfall is likely to increase in intensity. Frequency of extreme precipitation events is likely to increase over the station. The average frequency of heavy precipitation events increased xxx days per decade. The duration of extreme precipitation events, such as the consecutive dry days are likely to reduce the numbers almost all station while the consecutive wet days tends to increase and decrease at different numbers in different areas.

Keywords: climate extreme, temperature extreme, precipitation extreme, Northern Thailand

Procedia PDF Downloads 249
3656 Heat Setting of Polyester: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Heat setting is a commonly used technique in textile industry for treating synthetic fibers. In this study, we examined the effect of heat-setting process on the dyeing properties of polyester fabric. The heat setting conditions were varied, and these conditions would affect the dyeing results. The aim of this study is to illustrate the proper application method of heat setting process to polyester fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, heat setting, polyester, dyeing

Procedia PDF Downloads 220
3655 Multilayer Thermal Screens for Greenhouse Insulation

Authors: Clara Shenderey, Helena Vitoshkin, Mordechai Barak, Avraham Arbel

Abstract:

Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or U-value, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the U-value reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the U-value by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse.

Keywords: energy-saving thermal screen, greenhouse cover material, heat transfer coefficient, hot box

Procedia PDF Downloads 117
3654 Fouling Mitigation Using Helical Baffle Heat Exchangers and Comparative Analysis Using HTRI Xchanger Suite® Educational Software

Authors: Kiran P. Chadayamuri, Saransh Bagdi

Abstract:

Heat exchangers are devices used to transfer heat from one fluid to another via convection and conduction. The need for effective heat transfer has made their presence vital in hundreds of industries including petroleum refineries, petrochemical plants, fertiliser plants and pharmaceutical companies. Fouling has been one of the major problems hindering efficient transfer of thermal energy in heat exchangers. Several design changes have been coined for fighting fouling. A recent development involves using helical baffles in place of conventional segmented baffles in shell and tube heat exchangers. The aim of this paper is to understand the advantages of helical baffle exchangers, how they aid in fouling mitigation and its corresponding limitations. A comparative analysis was conducted between a helical baffle heat exchanger and a conventional segmented baffle heat exchanger using HTRI Xchanger Suite® Educational software and conclusions were drawn to study how the heat transfer process differs in the two cases.

Keywords: heat transfer, heat exchangers, fouling mitigation, helical baffles

Procedia PDF Downloads 284
3653 Damage Cost for Private Property by Extreme Wind over the past 10 Years in Korea

Authors: Gou-Moon Choi, Woo-Young Jung, Chan-Young Yune

Abstract:

Recently, the natural disaster has increased worldwide. In Korea, the damage to life and property caused by a typhoon, heavy rain, heavy snow, and an extreme wind also increases every year. Among natural disasters, the frequency and the strength of wind have increased because sea surface temperature has risen due to the increase of the average temperature of the Earth. In the case of extreme wind disaster, it is impossible to control or reduce the occurrence, and the recovery cost always exceeds the damage cost. Therefore, quantitative estimation of the damage cost for extreme wind needs to be established beforehand to install proactive countermeasures. In this study, the damage cost for private properties was analyzed based on the data for the past 10 years in Korea. The damage cost curve was also suggested for the metropolitan cities and provinces. The result shows the possibility for the regional application of the damage cost curve because the damage cost of the regional area is estimated based on the cost of cities and provinces.

Keywords: damage cost, extreme wind, natural disaster, private property

Procedia PDF Downloads 252
3652 Mixed Convective Heat Transfer of Flow around a Radial Heat Sink

Authors: Benkherbache Souad

Abstract:

This work presents the numerical results of the mixed convective heat transfer of a three-dimensional flow around a radial heat sink composed of horizontal circular base fitted with rectangular fins. The governing equations of mass, momentum, and energy equation are solved by the finite volume method using the commercially available CFD software Fluent 6.3.26. The circular base of the heat sink is subjected to uniform heat generation; the flow enters through the sides of the heat sink around the fins then the heat is transmitted from the base to the fins afterwards the fluid. In this study two fluids are utilized, in the first case, the air for the following Reynolds numbers Re=600,900,1200 and a Grashof number Gr=3.7x10⁶, in the second case a water based nano fluid for which two types of nano particles (Cu and Al₂O₃) are carried out for Re=25 and a Richardson number Ri=2.7(Ri=Gr/Re²). The effect of the number of the fins of the heat sink as well as the type and the volume fraction of nano particles of the nano fluid were investigated. Results have been presented for N=15 and N=20 fins. The effect of the nano particles concentrations and the number of fins on the temperature in the heat sink and the Nusselt number has been studied.

Keywords: heat sink, mixed convection, nano fluid, volumetric heat generation

Procedia PDF Downloads 149
3651 Effect of the Fluid Temperature on the Crude Oil Fouling in the Heat Exchangers of Algiers Refinery

Authors: Rima Harche, Abdelkader Mouheb

Abstract:

The Algiers refinery as all the other refineries always suffers from the problem of stopping of the tubes of heat exchanger. For that a study experimental of this phenomenon was undertaken in site on the cell of heat exchangers E101 (E101 CBA and E101 EDF) intended for the heating of the crude before its fractionation, which are exposed to the problem of the fouling on the side tubes exchangers. It is of tube-calenders type with head floating. Each cell is made up of three heat exchangers, laid out in series.

Keywords: fouling, fluid temperatue , oil, tubular heat exchanger, fouling resistance, modeling, heat transfer coefficient

Procedia PDF Downloads 396
3650 Experimental Study of Heat Transfer and Pressure Drop in Serpentine Channel Water Cooler Heat Sink

Authors: Hao Xiaohong, Wu Zongxiang, Chen Xuefeng

Abstract:

With the high power density and high integration of electronic devices, their heat flux has been increasing rapidly. Therefore, an effective cooling technology is essential for the reliability and efficient operation of electronic devices. Liquid cooling is studied increasingly widely for its higher heat transfer efficiency. Serpentine channels are superior in the augmentation of single-phase convective heat transfer because of their better channel velocity distribution. In this paper, eight different frame sizes water-cooled serpentine channel heat sinks are designed to study the heat transfer and pressure drop characteristics. With water as the working fluid, experiment setup is established and the results showed the effect of different channel width, fin thickness and number of channels on thermal resistance and pressure drop.

Keywords: heat transfer, experiment, serpentine heat sink, pressure drop

Procedia PDF Downloads 424
3649 Jet Impingement Heat Transfer on a Rib-Roughened Flat Plate

Authors: A. H. Alenezi

Abstract:

Cooling by impingement jet is known to have a significant high local and average heat transfer coefficient which make it widely used in industrial cooling systems. The heat transfer characteristics of an impinging jet on rib-roughened flat plate has been investigated numerically. This paper was set out to investigate the effect of rib height on the heat transfer rate. Since the flow needs to have enough spacing after passing the rib to allow reattachment especially for high Reynolds numbers, this study focuses on finding the optimum rib height which would be the best to maximize the heat transfer rate downstream the plate. This investigation employs a round nozzle with hydraulic diameter (Dh) of 13.5 mm, Jet-to-target distance of (H/D) of 4, rib location=1.5D and and finally jet angels of 45˚ and 90˚ under the influence of Re =10,000.

Keywords: jet impingement, CFD, turbulence model, heat transfer

Procedia PDF Downloads 314
3648 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach

Authors: Dhawal Ladani

Abstract:

Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.

Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube

Procedia PDF Downloads 279
3647 Experimental Study of Heat Transfer Enhancement Using Protruded Rectangular Fin

Authors: Tarique Jamil Khan, Swapnil Pande

Abstract:

The investigation deals with the study of heat transfer enhancement using protruded square fin. This study is enough to determine whether protrusion in forced convection is enough to enhance the rate of heat transfer. It includes the results after performing experiments by using a plane rectangular fin of aluminum material and the same dimension rectangular fin of the same material but having protruded circular shape extended normally. The fins made by a sand casting method. The results clearly mentioned that the protruded surface is effective enough to enhance the rate of heat transfer. This research investigates a modern fin topologies heat transfer characteristics that will clearly outdated the conventional fin to increase the rate of heat transfer. Protruded fins improve the rate of heat transfer compared to solid fin by varying shape of the protrusion in diameter and height.

Keywords: heat transfer enhancement, forced convection, protruted fin, rectangular fin

Procedia PDF Downloads 334
3646 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: heat pipe, annular fins, natural convection, condenser heat transfer coefficient, tilt angle

Procedia PDF Downloads 127
3645 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink

Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 364
3644 Extreme Value Modelling of Ghana Stock Exchange Indices

Authors: Kwabena Asare, Ezekiel N. N. Nortey, Felix O. Mettle

Abstract:

Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana Stock Exchange All-Shares indices (2000-2010) by applying the Extreme Value Theory to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before EVT method was applied. The Peak Over Threshold (POT) approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model’s goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the Value at Risk (VaR) and Expected Shortfall (ES) risk measures at some high quantiles, based on the fitted GPD model.

Keywords: extreme value theory, expected shortfall, generalized pareto distribution, peak over threshold, value at risk

Procedia PDF Downloads 513
3643 Determination of Forced Convection Heat Transfer Performance in Lattice Geometric Heat Sinks

Authors: Bayram Sahin, Baris Gezdirici, Murat Ceylan, Ibrahim Ates

Abstract:

In this experimental study, the effects of heat transfer and flow characteristics on lattice geometric heat sinks, where high rates of heat removal are required, were investigated. The design parameters were Reynolds number, the height of heat sink (H), horizontal (Sy) and vertical (Sx) distances between heat sinks. In the experiments, the Reynolds number ranged from 4000 to 20000; heat sink heights were (H) 20 mm and 40 mm; the distances (Sy) between the heat sinks in the flow direction were45 mm, 32 mm, 23.3 mm; the distances (Sx) between the heat sinks perpendicular to the flow direction were selected to be 23.3 mm, 12.5 mm and 6 mm. A total of 90 experiments were conducted and the maximum Nusselt number and minimum friction coefficient were targeted. Experimental results have shown that heat sinks in lattice geometry have a significant effect on heat transfer enhancement. Under the different experimental conditions, the highest increase in Nusselt number was 283% while the lowest increase was calculated as 66% as compared with the straight channel results. The lowest increase in the friction factor was also obtained as 173% according to the straight channel results. It is seen that the increase in heat sink height and flow velocity increased the level of turbulence in the channel, leading to higher Nusselt number and friction factor values.

Keywords: forced convection, heat transfer enhancement, lattice geometric heat sinks, pressure drop

Procedia PDF Downloads 168
3642 Effect of Solution Heat Treatment on Intergranular Corrosion Resistance of Welded Stainless Steel AISI 321

Authors: Amir Mahmoudi

Abstract:

In this investigation, AISI321 steel after welding by Shilded Metal Arc Welding (SMAW) was solution heat treated in various temperatures and times, and then was sensitizied. Results indicated, increasing of temperature in solution heat treatment raises the sensitization and creates the cavity structure in grain boundaries. Besides, in order to examine the effect of time on solution heat treatment, all samples were solution heat treated at different times and fixed temperature (1050°C). By increasing the time, more chrome carbides were created due to dissolution of delta ferrite phase and reproduce titanium carbides. Additionally, the best process for solution heat treatment for this steel was suggested.

Keywords: stainless steel, solution heat treatment, intergranular corrosion, DLEPR

Procedia PDF Downloads 494
3641 Experimental Investigation of Nanofluid Heat Transfer in a Plate Type Heat Exchanger

Authors: Eyuphan Manay

Abstract:

In this study, it was aimed to determine the convective heat transfer characteristics of water-based silicon dioxide nanofluids (SiO₂) with particle volume fractions of 0.2 and 0.4% vol. Nanofluids were tested in a plate type heat exchanger with six plates. Plate type heat exchanger was manufactured from stainless steel. Water was driven in the hot flow side, and nanofluids were driven in the cold flow side. The thermal energy of the hot water was taken by nanofluids. Effect of the inlet temperature of the hot water was investigated on heat transfer performance of the nanofluids while the inlet temperature of the nanofluids was fixed. In addition, the effects of the particle volume fraction and the cold flow rate on the performance of the system were tested. Results showed that increasing inlet temperature of the hot flow caused heat transfer to enhance. The suspended solid particles into the carrier fluid also remarkably enhanced heat transfer, and, an increase in the particle volume fraction resulted in an increase in heat transfer.

Keywords: heat transfer enhancement, SiO₂-water, nanofluid, plate heat exchanger

Procedia PDF Downloads 166
3640 Outstanding Lubricant Using Fluorographene as an Extreme Pressure Additive

Authors: Adriana Hernandez-Martinez, Edgar D. Ramon-Raygoza

Abstract:

Currently, there has been a great interest, during the last years, on graphene due to its lubricant properties on friction and antiwear processes. Likewise, fluorographene has also been gaining renown due to its excellent chemical and physical properties which have been mostly applied in the electronics industry. Nevertheless, its tribological properties haven’t been analyzed thoroughly. In this paper, fluorographene was examined as an extreme pressure additive and the nano lubricant made with a cutting fluid and fluorographene in the range of 0.01-0.5% wt, which proved to withstand 53.78% more pounds than the conventional product and 7.12% more than the nano lubricant with graphene in a range between 0.01-0.5% wt. Said extreme pressure test was carried out with a Pin and Vee Block Tribometer following an ASTM D3233A test. The fluorographene used has a low C/F ratio, which reflects a greater presence of atomic fluorine and its low oxygen percentage, supports the substitution of oxygen-containing groups by fluorine. XPS Spectra shows high atomic fluorine content of 56.12%, and SEM analysis details the formation of long and clear crystalline structures, in the fluorographene used.

Keywords: extreme pressure additive, fluorographene, nanofluids, nanolubricant

Procedia PDF Downloads 92
3639 Numerical Investigation of Natural Convection of Pine, Olive and Orange Leaves

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Behnam Amiri

Abstract:

Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and three-dimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves and pine leaves, respectively.

Keywords: computational fluid dynamic, heat flux, heat transfer, natural convection

Procedia PDF Downloads 323
3638 Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition

Authors: Young Min Kim, Jeong Lak Sohn, Eui Soo Yoon

Abstract:

This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source.

Keywords: exergy loss, gas turbine, optimization, supercritical CO2 power cycle, split cycle, waste heat recovery

Procedia PDF Downloads 321
3637 Heat Transfer Studies on CNT Nanofluids in a Turbulent Flow Heat Exchanger

Authors: W. Rashmi, M. Khalid, O. Seiksan, R. Saidur, A. F. Ismail

Abstract:

Nanofluids have received much more attention since its discovery. They are believed to be promising coolants in heat transfer applications due to their enhanced thermal conductivity and heat transfer characteristics. In this study, the enhancement in heat transfer of CNT-nanofluids under turbulent flow conditions is investigated experimentally. Carbon nanotube (CNTs) concentration was varied between 0.051-0.085 wt%. The nanofluid suspension was stabilized by gum arabic (GA) through a process of homogenisation and sonication. The flow rates of cold fluid (water) is varied from 1.7-3 L/min and flow rates of the hot fluid is varied between 2-3.5 L/min. Thermal conductivity, density and viscosity of the nanofluids were also measured as a function of temperature and CNT concentration. The experimental results are validated with theoretical correlations for turbulent flow available in the literature. Results showed an enhancement in heat transfer range between 9-67% as a function of temperature and CNT concentration.

Keywords: nanofluids, carbon nanotubes (CNT), heat transfer enhancement, heat transfer

Procedia PDF Downloads 468
3636 A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel

Authors: Gurjit Singh, Gurmail Singh

Abstract:

The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop.

Keywords: heat transfer, microchannel heat sink, pressure drop, chape of microchannel

Procedia PDF Downloads 53
3635 Climate Change, Global Warming and Future of Our Planet

Authors: Indu Gupta

Abstract:

Climate change and global warming is most burning issue for “our common future”. For this common global interest. Countries organize conferences of government and nongovernment type. Human being destroying the non-renewable resources and polluting the renewable resources of planet for economic growth. Air pollution is mainly responsible for global warming and climate change .Due to global warming ice glaciers are shrinking and melting. Forests are shrinking, deserts expanding and soil eroding. The depletion of stratospheric ozone layer is depleting and hole in ozone layer that protect us from harmful ultra violet radiation. Extreme high temperature in summer and extreme low temperature and smog in winters, floods in rainy season. These all are indication of climate change. The level of carbon dioxide and other heat trapping gases in the atmosphere is increasing at high speed. Nation’s are worried about environmental degradation.

Keywords: environmental degradation, global warming, soil eroding, ultra-Violate radiation

Procedia PDF Downloads 335
3634 Killed by the ‘Subhuman’: Jane Longhurst’s Murder and the Construction of the ‘Extreme Pornography’ Problem in the British National Press

Authors: Dimitrios Akrivos, Alexandros K. Antoniou

Abstract:

This paper looks at the crucial role of the British news media in the construction of extreme pornography as a social problem, suggesting that this paved the way for the subsequent criminalization of such material through the introduction of the Criminal Justice and Immigration Act 2008. Focusing on the high-profile case of Graham Coutts, it examines the British national press’ reaction to Jane Longhurst’s murder through a qualitative content analysis of 251 relevant news articles. Specifically, the paper documents the key arguments expressed in the corresponding claims-making process. It considers the different ways in which the consequent ‘trial by media’ presented this exceptional case as the ‘tip of the iceberg’ and eventually translated into policy. The analysis sheds light on the attempts to ‘piggyback’ the issue of extreme pornography on child sexual abuse images as well as the textual and visual mechanisms used to establish an ‘us versus them’ dichotomy in the pertinent media discourse. Finally, the paper assesses the severity of the actual risk posed by extreme pornography, concluding that its criminalization should not merely be dismissed as the outcome of an institutionalized media panic.

Keywords: criminalization, extreme pornography, social problem, trial by media

Procedia PDF Downloads 213
3633 Present and Future Climate Extreme Indices over Sinai Peninsula, Egypt

Authors: Mahmoud Roushdi, Hany Mostafa, Khaled Kheireldin

Abstract:

Sinai Peninsula and Suez Canal Corridor are promising and important economic regions in Egypt due to the unique location and development opportunities. Thus, the climate change impacts should be assessed over the mentioned area. Accordingly, this paper aims to assess the climate extreme indices in through the last 35 year over Sinai Peninsula and Suez Canal Corridor in addition to predict the climate extreme indices up to 2100. Present and future climate indices were analyzed with using different RCP scenarios 4.5 and 8.5 from 2010 until 2100 for Sinai Peninsula and Suez Canal Corridor. Furthermore, both CanESM and HadGEM2 global circulation models were used. The results indicate that the number of summer days is predicted to increase, on the other hand the frost days is predicted to decrease. Moreover, it is noted a slight positive trend for the percentile of wet and extremely days R95p and R99p for RCP4.5 and negative trend for RCP8.5.

Keywords: climate change, extreme indices, RCP, Sinai Peninsula

Procedia PDF Downloads 400
3632 Making Heat Pumps More Compatible with Environmental and Climatic Conditions

Authors: Erol Sahin, Nesrin Adiguzel

Abstract:

In this study, the effects of air temperature and relative humidity on the operation of the heat pump were examined experimentally. The results were analyzed in an energy and exergetic way. Two heat pumps were used in the experimental system established for experimental analysis. With the first heat pump, the relative humidity and temperature of atmospheric air are reduced. The air at low humidity and temperature is given heat and water vapor to the desired extent on the channel that reaches the other heat pump. Effects of the air reaching the desired humidity and temperature in the 2nd heat pump; temperature, humidity, pressure, flow, and current are detected by meters. The measured values and the exergy yield and thermodynamic favor ratios of the system and its components were determined. In this way, the effects of temperature and relative humidity change in the heat pump and components were tried to be revealed. Relative humidity in the air caused a significant increase in the loss of exergy in the evaporator. This has shown that cooling machines experience greater exergy in areas with high relative humidity. The highest COPSM values were determined to be at 30% and 40%, which is the least relative humidity values. The results showed that heat pump exergy efficiency was affected by increased temperature and relative humidity.

Keywords: relative humidity, effects of relative humidity on heat pumps, exergy analysis, exergy analysis in heat pumps, exergy efficiency

Procedia PDF Downloads 91
3631 Risks of Climate Change on Buildings

Authors: Yahya N. Alfraidi, Abdel Halim Boussabaine

Abstract:

Climate change risk impacts are one of the most challenging aspects that faces the built environment now and the near future. The impacts of climate change on buildings are considered in four different dimensions: physical, economic, social, and management. For each of these, the risks are discussed as they arise from various effects linked to climate change, including windstorms, precipitation, temperature change, flooding, and sea-level rise. For example, building assets in cities will be exposed to extreme hot summer days and nights due to the urban heat island effect and pollution. Buildings also could be vulnerable to water, electricity, gas, etc., scarcity. Building materials, fabric and systems could also be stressed by the emerging climate risks. More impotently the building users might experience extreme internal and extern comfort conditions leading to lower productivity, wellbeing and health problems. Thus, the main aim of this paper to document the emerging risks from climate change on building assets. An in-depth discussion on the consequences of these climate change risk is provided. It is expected that the outcome of this research will be a set of risk design indicators for developing and procuring resilient building assets.

Keywords: climate change, risks of climate change, risks on building from climate change, buildings

Procedia PDF Downloads 595
3630 Urban Heat Islands Analysis of Matera, Italy Based on the Change of Land Cover Using Satellite Landsat Images from 2000 to 2017

Authors: Giuseppina Anna Giorgio, Angela Lorusso, Maria Ragosta, Vito Telesca

Abstract:

Climate change is a major public health threat due to the effects of extreme weather events on human health and on quality of life in general. In this context, mean temperatures are increasing, in particular, extreme temperatures, with heat waves becoming more frequent, more intense, and longer lasting. In many cities, extreme heat waves have drastically increased, giving rise to so-called Urban Heat Island (UHI) phenomenon. In an urban centre, maximum temperatures may be up to 10° C warmer, due to different local atmospheric conditions. UHI occurs in the metropolitan areas as function of the population size and density of a city. It consists of a significant difference in temperature compared to the rural/suburban areas. Increasing industrialization and urbanization have increased this phenomenon and it has recently also been detected in small cities. Weather conditions and land use are one of the key parameters in the formation of UHI. In particular surface urban heat island is directly related to temperatures, to land surface types and surface modifications. The present study concern a UHI analysis of Matera city (Italy) based on the analysis of temperature, change in land use and land cover, using Corine Land Cover maps and satellite Landsat images. Matera, located in Southern Italy, has a typical Mediterranean climate with mild winters and hot and humid summers. Moreover, Matera has been awarded the international title of the 2019 European Capital of Culture. Matera represents a significant example of vernacular architecture. The structure of the city is articulated by a vertical succession of dug layers sometimes excavated or partly excavated and partly built, according to the original shape and height of the calcarenitic slope. In this study, two meteorological stations were selected: MTA (MaTera Alsia, in industrial zone) and MTCP (MaTera Civil Protection, suburban area located in a green zone). In order to evaluate the increase in temperatures (in terms of UHI occurrences) over time, and evaluating the effect of land use on weather conditions, the climate variability of temperatures for both stations was explored. Results show that UHI phenomena is growing in Matera city, with an increase of maximum temperature values at a local scale. Subsequently, spatial analysis was conducted by Landsat satellite images. Four years was selected in the summer period (27/08/2000, 27/07/2006, 11/07/2012, 02/08/2017). In Particular, Landsat 7 ETM+ for 2000, 2006 and 2012 years; Landsat 8 OLI/TIRS for 2017. In order to estimate the LST, Mono Window Algorithm was applied. Therefore, the increase of LST values spatial scale trend has been verified, in according to results obtained at local scale. Finally, the analysis of land use maps over the years by the LST and/or the maximum temperatures measured, show that the development of industrialized area produces a corresponding increase in temperatures and consequently a growth in UHI.

Keywords: climate variability, land surface temperature, LANDSAT images, urban heat island

Procedia PDF Downloads 93
3629 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe

Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati

Abstract:

This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).

Keywords: loop heat pipe, nanofluid, optimization, thermal resistance

Procedia PDF Downloads 428
3628 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves

Authors: Dmytro Zubov, Francesco Volponi

Abstract:

In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.

Keywords: heat wave, D-wave, forecast, Ising model, quantum computing

Procedia PDF Downloads 465