Search results for: effects of relative humidity on heat pumps
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14725

Search results for: effects of relative humidity on heat pumps

14725 Making Heat Pumps More Compatible with Environmental and Climatic Conditions

Authors: Erol Sahin, Nesrin Adiguzel

Abstract:

In this study, the effects of air temperature and relative humidity on the operation of the heat pump were examined experimentally. The results were analyzed in an energy and exergetic way. Two heat pumps were used in the experimental system established for experimental analysis. With the first heat pump, the relative humidity and temperature of atmospheric air are reduced. The air at low humidity and temperature is given heat and water vapor to the desired extent on the channel that reaches the other heat pump. Effects of the air reaching the desired humidity and temperature in the 2nd heat pump; temperature, humidity, pressure, flow, and current are detected by meters. The measured values and the exergy yield and thermodynamic favor ratios of the system and its components were determined. In this way, the effects of temperature and relative humidity change in the heat pump and components were tried to be revealed. Relative humidity in the air caused a significant increase in the loss of exergy in the evaporator. This has shown that cooling machines experience greater exergy in areas with high relative humidity. The highest COPSM values were determined to be at 30% and 40%, which is the least relative humidity values. The results showed that heat pump exergy efficiency was affected by increased temperature and relative humidity.

Keywords: relative humidity, effects of relative humidity on heat pumps, exergy analysis, exergy analysis in heat pumps, exergy efficiency

Procedia PDF Downloads 91
14724 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling

Authors: Ivan Tolj

Abstract:

Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.

Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management

Procedia PDF Downloads 240
14723 Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design

Authors: C. Patrascioiu

Abstract:

The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim® Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim® Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump.

Keywords: distillation, heat pump, simulation, unisim design

Procedia PDF Downloads 331
14722 Effect of Relative Humidity on Corrosion Behavior of SN-0.7Cu Solder under Polyvinyl Chloride Fire Smoke Atmosphere

Authors: Qian Li, Shouxiang Lu

Abstract:

With the rapid increase in electric power use, wire and cable fire occur more and more frequent. The fire smoke has a corrosive effect on the solders, which seriously affects the function of electronic equipment. In this research, the effect of environment relative humidity on corrosion behavior of Sn-0.7Cu solder has been researched under 140 g·m⁻³ polyvinyl chloride (PVC) fire smoke atmosphere. The mass loss of Sn-0.7Cu solder increased with the relative humidity. Furthermore, the microstructures and corrosion mechanism were analyzed by using SEM, EDS, XRD, and XPS. The result shows that Sn₂₁Cl₁₆(OH)₁₄O₆ is the main corrosion products and the corrosion process is an electrochemical reaction. The present work could provide guidance to the risk assessment for electronic equipment rescue after a fire.

Keywords: corrosion, fire smoke, relative humidity, Sn-0.7Cu solder

Procedia PDF Downloads 328
14721 Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis

Authors: Mustafa Jaradat

Abstract:

Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.

Keywords: air conditioning, dehumidification, desiccant, lithium chloride, tube bundle

Procedia PDF Downloads 114
14720 Numeric Modeling of Condensation of Water Vapor from Humid Air in a Room

Authors: Nguyen Van Que, Nguyen Huy The

Abstract:

This paper presents combined natural and forced convection of humid air flow. The film condensation of water vapour on a cold floor was investigated using ANSYS Fluent software. User-defined Functions(UDFs) were developed and added to address the issue of film condensation at the surface of the floor. Those UDFs were validated by analytical results on a flat plate. The film condensation model based on mass transfer was used to solve phase change. On the floor, condensation rate was obtained by mass fraction change near the floor. The study investigated effects of inlet velocity, inlet relative humidity and cold floor temperature on the condensation rate. The simulations were done in both 2D and 3D models to show the difference and need for 3D modeling of condensation.

Keywords: heat and mass transfer, convection, condensation, relative humidity, user-defined functions

Procedia PDF Downloads 287
14719 Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions

Authors: Abdenour Bourabaa, Malika Fekih, Mohamed Saighi

Abstract:

A numerical investigation of the fin efficiency and temperature distribution of an annular fin under dehumidification has been presented in this paper. The non-homogeneous second order differential equation that describes the temperature distribution from the fin base to the fin tip has been solved using the central finite difference method. The effects of variations in parameters including relative humidity, air temperature, air face velocity on temperature distribution and fin efficiency are investigated and compared with those under fully dry fin conditions. Also, the effect of fin pitch on the dimensionless temperature has been studied.

Keywords: annular fin, dehumidification, fin efficiency, heat and mass transfer, wet fin

Procedia PDF Downloads 452
14718 The Role of Heat Pumps in the Decarbonization of European Regions

Authors: Domenico M. Mongelli, Michele De Carli, Laura Carnieletto, Filippo Busato

Abstract:

Europe's dependence on imported fossil fuels has been particularly highlighted by the Russian invasion of Ukraine. Limiting this dependency with a massive replacement of fossil fuel boilers with heat pumps for building heating is the goal of this work. Therefore, with the aim of diversifying energy sources and evaluating the potential use of heat pump technologies for residential buildings with a view to decarbonization, the quantitative reduction in the consumption of fossil fuels was investigated in all regions of Europe through the use of heat pumps. First, a general overview of energy consumption in buildings in Europe has been assessed. The consumption of buildings has been addressed to the different uses (heating, cooling, DHW, etc.) as well as the different sources (natural gas, oil, biomass, etc.). The analysis has been done in order to provide a baseline at the European level on the current consumptions and future consumptions, with a particular interest in the future increase of cooling. A database was therefore created on the distribution of residential energy consumption linked to air conditioning among the various energy carriers (electricity, waste heat, gas, solid fossil fuels, liquid fossil fuels, and renewable sources) for each region in Europe. Subsequently, the energy profiles of various European cities representative of the different climates are analyzed in order to evaluate, in each European climatic region, which energy coverage can be provided by heat pumps in replacement of natural gas and solid and liquid fossil fuels for air conditioning of the buildings, also carrying out the environmental and economic assessments for this energy transition operation. This work aims to make an innovative contribution to the evaluation of the potential for introducing heat pump technology for decarbonization in the air conditioning of buildings in all climates of the different European regions.

Keywords: heat pumps, heating, decarbonization, energy policies

Procedia PDF Downloads 94
14717 Higher Relative Humidity from Pipping Increases Physical Problems in the Broiler Chicks

Authors: M. A. Nogueira, M. Thimotheo, G. C. Ripamonte, S. C. C. Aguiar, M. H. S. Ulian, J. C. Goncalves Netto, I. C. Boleli

Abstract:

Increasing in the relative humidity during the last incubation day is a usual practice in the commercial hatchery to facilitate hatching. This study analyzed whether higher relative humidity improves eclodibility as well as chick quality, and alters the hatch window. Fertile eggs (65- 67g) produced by 53 weeks old broiler breeders (Cobb 500®) were incubated at 37.5°C and 31°C in the wet bulb in incubators with automatic control of temperature and egg turning (1 each hour). Two-hundred ten were distributed randomly in three treatments: 31°C in the wet bulb from internal pipping (BI-31), 33°C from internal pipping (BI-33), and 33°C from external pipping (BE-33), all three hatchers maintained at 37.5°C and without egg turning. For this, eggs were checked for internal pipping by ovoscopy and external pipping by visual observation through the transparent cover of the incubators each hour from day 18 of incubation. No significant differences in the hatchability (BI-31:79.61%, BI-33:77.63%, BE-33:80.77%; by Q-square test, P > 0.05). Absence of significant effects of the treatments were also observed for incubation duration (BI-31:488.58 h, BI-33:488.30 h, BE-33:489.04 h), and chick body weight (BI-31: 49.40g, BI-33: 49.74g, BE-33: 49.34g) and quality scores (BI-31: 90.02, BI-33: 87.56, BE-33: 92.28 points), by variance analysis (P > 0.05). However, BI-33 increased the incidence of feathering and leg problems and remaining of alantoic membrane, and BE-33 increased the incidence of problems with feathering, navel and yolk sac and reduced the leg problems, compared to BI-31. In sum, the results show higher relative humidity from internal or external pipping did not influence hatchability and incubation duration, but reduced chick quality, affecting the incubation efficiency.

Keywords: chick quality, hatchability, hatcher humidity, incubation duration

Procedia PDF Downloads 143
14716 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell

Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan

Abstract:

In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.

Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell

Procedia PDF Downloads 181
14715 Numerical Investigation of Flow and Heat Transfer Characteristics of a Natural Refrigerant within a Vortex Tube

Authors: Mirza Popovac

Abstract:

This paper investigates the application of the vortex tubes towards increasing the efficiency of high temperature heat pumps based on natural refrigerants, by recovering a part of the expansion work within the refrigerant cycle. To this purpose the 3D Navier-Stokes solver is used to perform a set of numerical simulations, investigating the vortex tube performance. Firstly, the fluid flow and heat transfer characteristics are analyzed for standard configurations of vortex tubes, and the obtained results are validated against the experimental and numerical data available in literature. Subsequently, different geometry specifications are analyzed, as well as the interplay between relevant heat pump operating conditions and the properties of natural refrigerants. Finally, the characteristic curve of performance will be derived for investigated vortex tubes specifications when used within high temperature heat pumps.

Keywords: heat pump, vortex tube, CFD, natural refrigerant

Procedia PDF Downloads 109
14714 Heat and Humidity Induced Plastic Changes in Body Lipids and Starvation Resistance in the Tropical Zaprionus indianus of Wet-Dry Seasons

Authors: T. N. Girish, B. E. Pradeep, Ravi Parkash

Abstract:

Insects from tropical wet or dry seasons are likely to cope starvation stress through seasonal phenotypic plasticity in energy metabolites. Accordingly, we analyzed such plastic changes in Zaprionus indianus flies reared under wet or dry season-specific conditions; and also after adult acclimation at 32℃ for 1 to 6 days; and to low (40% RH) or high (70% RH) humidity. Both thermal or humidity acclimation revealed significant accumulation of body lipids for wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Developmental and adult acclimation showed sex specific differences i.e., starvation resistance and body lipids were higher in the males of dry season but in females of wet season. We found seasonal and sex specific differences in the relative level for body lipids at death; and in the rates of accumulation or utilization of energy metabolites (body lipids, carbohydrates and proteins). Body lipids constitute the preferred energy source under starvation for flies of both the seasons. However, utilization of carbohydrates (~20% to 30%) and proteins (~20% to 25%) was evident only in dry season flies. Higher starvation resistance after thermal or humidity acclimation is achieved by increased accumulation of lipids. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity despite reduction in fecundity under starvation. Thus, thermal or humidity induced plastic responses in body lipids support starvation resistance under wet or dry seasons.

Keywords: heat or humidity acclimation, plastic changes in body lipids and starvation resistance, tropical drosophilid, Wet- or Dry seasons, Zaprionus indianus

Procedia PDF Downloads 119
14713 Indoor Microclimate in a Historic Library: Considerations on the Positive Effect of Historic Books on the Stability of Indoor Relative Humidity

Authors: Magda Posani, Maria Do Rosario Veiga, Vasco Peixoto De Freitas

Abstract:

The presented research considers the hygrothermal data acquired in the municipal library of Porto. The library is housed in an XVIII century convent and, among all the rooms in the construction, one, in particular, was chosen for the monitoring campaign because of the presence of a great number of historic books. Temperature and relative humidity, as well as CO₂ concentration, were measured for six consecutive months, in the period December 24th - June 24th. The indoor environment of the building is controlled with a heating and cooling system that is turned on only during the opening hours of the library. The ventilation rate is low because the windows are kept closed, and there is no forced ventilation. The micro-climate is analyzed in terms of users’ comfort and degradation risks for historic books and valuable building surfaces. Through a comparison between indoor and outdoor measured hygrothermal data, indoor relative humidity appears very stable. The influence of the hygroscopicity of books on the stabilization of indoor relative humidity is therefore investigated in detail. The paper finally discusses the benefits given by the presence of historic books in libraries with intermittent heating and cooling. The possibility of obtaining a comfortable and stable indoor climate with low use of HVAC systems in these conditions, while avoiding degradation risks for books and historic building components, is further debated.

Keywords: books, historic buildings, hygroscopicity, relative humidity

Procedia PDF Downloads 118
14712 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab

Authors: Zenab Naseem, Sadia Imran

Abstract:

One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.

Keywords: alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development

Procedia PDF Downloads 221
14711 Improving the Dimensional Stability of Medium-Density Fiberboard with Bio-Based Additives

Authors: Reza Hosseinpourpia, Stergios Adamopoulos, Carsten Mai

Abstract:

Medium density fiberboard (MDF) is a common category of wood-based panels that are widely used in the furniture industry. Fine lignocellulosic fibres are combined with a synthetic resin, mostly urea formaldehyde (UF), and joined together under heat and pressure to form panels. Like solid wood, MDF is a hygroscopic material; therefore, its moisture content depends on the surrounding relative humidity and temperature. In addition, UF is a hydrophilic resin and susceptible to hydrolysis under certain conditions of elevated temperatures and humidity, which cause dimensional instability of the panels. The latter directly affect the performance of final products such as furniture, when they are used in situations of high relative humidity. Existing water-repellent formulations, such as paraffin, present limitations related to their non-renewable nature, cost and highest allowed added amount. Therefore, the aim of the present study was to test the suitability of renewable water repellents as alternative chemicals for enhancing the dimensional stability of MDF panels. A small amount of tall oil based formulations were used as water-repellent agents in the manufacturing of laboratory scale MDF. The effects on dimensional stability, internal bond strength and formaldehyde release of MDF were tested. The results indicated a good potential of tall oil as a bio-based substance of water repellent formulations for improving the dimensional stability of MDF.

Keywords: dimensional stability, medium density fiberboard, tall oil, urea formaldehyde

Procedia PDF Downloads 205
14710 Study of Some Epidemiological Factors Influencing the Disease Incidence in Chickpea (Cicer Arietinum L.)

Authors: Muhammad Asim Nazir

Abstract:

The investigations reported in this manuscript were carried on the screening of one hundred and seventy-eight chickpea germplasm lines/cultivars against wilt disease, caused by Fusarium oxysporum f. sp. ciceris. The screening was conducted in vivo (field) conditions. The field screening was accompanied with the study of some epidemiological factors affecting the occurrence and severity of the disease. Among the epidemiological factors maximum temperature range (28-40°C), minimum temperature range (12-24°C), relative humidity (19-44%), soil temperature (26-41°C) and soil moisture range (19-34°C) was studied for affecting the disease incidence/severity. The results revealed that air temperature was positively correlated with diseases. Soil temperature data revealed that in all cultivars disease incidence was maximum as 39°C. Most of the plants show 40-50% disease incidence. Disease incidence decreased at 33.5°C. The result of correlation of relative humidity of air and wilt incidence revealed that all cultivars/lines were negatively correlated with relative humidity. With increasing relative humidity wilt incidence decreased and vice versa.

Keywords: chickpea, epidemiological, screening, disease

Procedia PDF Downloads 609
14709 Development of the Maturity Sensor Prototype and Method of Its Placement in the Structure

Authors: Yelbek B. Utepov, Assel S. Tulebekova, Alizhan B. Kazkeyev

Abstract:

Maturity sensors are used to determine concrete strength by the non-destructive method. The method of placement of the maturity sensors determines their number required for a certain frame of a monolithic building. Previous studies weakly describe this aspect, giving only logical assumptions. This paper proposes a cheap prototype of an embedded wireless sensor for monitoring concrete structures, as well as an alternative strategy for placing sensors based on the transitional boundaries of the temperature distribution of concrete curing, which were determined by building a heat map of the temperature distribution, where unknown values are calculated by the method of inverse distance weighing. The developed prototype can simultaneously measure temperature and relative humidity over a smartphone-controlled time interval. It implements a maturity method to assess the in-situ strength of concrete, which is considered an alternative to the traditional shock impulse and compression testing method used in Kazakhstan. The prototype was tested in laboratory and field conditions. The tests were aimed at studying the effect of internal and external temperature and relative humidity on concrete's strength gain. Based on an experimentally poured concrete slab with randomly integrated maturity sensors, it was determined that the transition boundaries form elliptical forms. Temperature distribution over the largest diameter of the ellipses was plotted, resulting in correct and inverted parabolas. As a result, the distance between the closest opposite crossing points of the parabolas is accepted as the maximum permissible step for setting the maturity sensors. The proposed placement strategy can be applied to sensors that measure various continuous phenomena such as relative humidity. Prototype testing has also revealed Bluetooth inconvenience due to weak signal and inability to access multiple prototypes simultaneously. For this reason, further prototype upgrades are planned in future work.

Keywords: heat map, placement strategy, temperature and relative humidity, wireless embedded sensor

Procedia PDF Downloads 147
14708 Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements

Authors: Sanita Rubene, Martins Vilnitis, Juris Noviks

Abstract:

Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper.

Keywords: aerated concrete, electrical impedance spectrometry, humidity distribution, non-destructive testing

Procedia PDF Downloads 295
14707 Effect of Temperature and Relative Humidity on Aerosol Spread

Authors: Getu Hailu, Catelynn Hettick, Niklas Pieper, Paul Kim, Augustine Hamner

Abstract:

Airborne transmission is a problem that all viral respiratory diseases have in common. In late 2019, a disease outbreak, now known as SARS-CoV-2, suddenly expanded across China and the rest of the world in a matter of months. Research on the spread and transmission of SARS-CoV-2 airborne particles is ongoing, as well as the development of strategies for the prevention of the spread of these pathogens using indoor air quality (IAQ) methods. By evaluating the surface area of pollutants on the surface of a mannequin in a mock-based clinic room, this study aims to better understand how altering temperature and relative humidity affect aerosol spread and contamination. Four experiments were carried out at a constant temperature of 70 degrees Fahrenheit but with four different humidity levels of 0%, 30%, 45 percent, and 60%. The mannequin was placed in direct aerosol flow since it was discovered that this was the position with the largest exposed surface area. The findings demonstrate that as relative humidity increased while the temperature remained constant, the amount of surface area infected by virus particles decreased. These findings point to approaches to reduce the spread of viral particles, such as SARS-CoV-2 and emphasize the significance of IAQ controls in enclosed environments.

Keywords: IAQ, ventilation, COVID-19, humidity, temperature

Procedia PDF Downloads 112
14706 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks

Authors: Ahmed M. Ashteyat

Abstract:

Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.

Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling

Procedia PDF Downloads 501
14705 Termite Brick Temperature and Relative Humidity by Continuous Monitoring Technique

Authors: Khalid Abdullah Alshuhail, Syrif Junidi, Ideisan Abu-Abdoum, Abdulsalam Aldawoud

Abstract:

For the intention of reducing energy consumption, a proposed construction brick was made of imitation termite mound soil referred here as termite brick (TB). To calculate the thermal performance, a real case model was constructed by using this biomimetic brick for testing purposes. This paper aims at investigating the thermal performance of this brick during different climatic months. Its thermal behaviour was thoroughly studied over the course of four months by using continuous method (CMm). The main parameters were focused on temperature and relative humidity. It was found that the TB does not perform similarly in all four months and/or in all orientations. Each four-month model study was deeply analyzed. By using the CMm method, the model was also examined. The measuring period shows generally that internal temperature and internal humidity are higher in the roof within 2 degrees and lowest at north wall orientation. The relative humidity was also investigated systematically. The paper reveals more interesting findings.

Keywords: building material, continious monitoring, orientation, wall, temprature

Procedia PDF Downloads 92
14704 Density Measurement of Mixed Refrigerants R32+R1234yf and R125+R290 from 0°C to 100°C and at Pressures up to 10 MPa

Authors: Xiaoci Li, Yonghua Huang, Hui Lin

Abstract:

Optimization of the concentration of components in mixed refrigerants leads to potential improvement of either thermodynamic cycle performance or safety performance of heat pumps and refrigerators. R32+R1234yf and R125+R290 are two promising binary mixed refrigerants for the application of heat pumps working in the cold areas. The p-ρ-T data of these mixtures are one of the fundamental and necessary properties for design and evaluation of the performance of the heat pumps. Although the property data of mixtures can be predicted by the mixing models based on the pure substances incorporated in programs such as the NIST database Refprop, direct property measurement will still be helpful to reveal the true state behaviors and verify the models. Densities of the mixtures of R32+R1234yf an d R125+R290 are measured by an Anton Paar U shape oscillating tube digital densimeter DMA-4500 in the range of temperatures from 0°C to 100 °C and pressures up to 10 MPa. The accuracy of the measurement reaches 0.00005 g/cm³. The experimental data are compared with the predictions by Refprop in the corresponding range of pressure and temperature.

Keywords: mixed refrigerant, density measurement, densimeter, thermodynamic property

Procedia PDF Downloads 270
14703 Gate Voltage Controlled Humidity Sensing Using MOSFET of VO2 Particles

Authors: A. A. Akande, B. P. Dhonge, B. W. Mwakikunga, A. G. J. Machatine

Abstract:

This article presents gate-voltage controlled humidity sensing performance of vanadium dioxide nanoparticles prepared from NH4VO3 precursor using microwave irradiation technique. The X-ray diffraction, transmission electron diffraction, and Raman analyses reveal the formation of VO2 (B) with V2O5 and an amorphous phase. The BET surface area is found to be 67.67 m2/g. The humidity sensing measurements using the patented lateral-gate MOSFET configuration was carried out. The results show the optimum response at 5 V up to 8 V of gate voltages for 10 to 80% of relative humidity. The dose-response equation reveals the enhanced resilience of the gated VO2 sensor which may saturate above 272% humidity. The response and recovery times are remarkably much faster (about 60 s) than in non-gated VO2 sensors which normally show response and recovery times of the order of 5 minutes (300 s).

Keywords: VO2, VO2(B), MOSFET, gate voltage, humidity sensor

Procedia PDF Downloads 294
14702 Effects of Roof Materials on Onion Storage

Authors: Imoukhuede Oladunni Bimpe, Ale Monday Olatunbosun

Abstract:

Periodic scarcity of onion requires urgent solution in Nigerian agro-economy. The high percentage of onion losses incurred after harvesting period is due to non-availability of appropriate facility for its storage. Therefore, some storage structures were constructed with different roofing materials. The response of the materials to the weather parameters like temperature and relative humidity were evaluated to know their effects on the performance of the storage structures. The temperature and relative humidity were taken three times daily alongside with the weight of the onion in each of the structures; the losses as indicated by loss indices like shrinkage, rottenness, sprouting and colour were identified and percentage loss per week determined. The highest mean percentage loss (22%) was observed in the structure with iron roofing materials while structure with thatched materials had the lowest (9.4%); The highest temperature was observed in the structure with Asbestos roofing materials and no significant difference in the temperature value in the structure with thatched and Iron materials; highest relatively humidity was found in Asbestos roofing material while the lowest in the structure with Iron materials. It was conclusively found that the storage structure with thatched roof had the best performance in terms of losses.

Keywords: onion, storage structures, weather parameters, roof materials, losses

Procedia PDF Downloads 575
14701 A Phase Change Materials Thermal Storage for Ground-Source Heat Pumps: Computational Fluid Dynamics Analysis of Innovative Layouts

Authors: Emanuele Bonamente, Andrea Aquino, Franco Cotana

Abstract:

The exploitation of the low-temperature geothermal resource via ground-source heat pumps is often limited by the high investment cost mainly due to borehole drilling. From the monitoring of a prototypal system currently used by a commercial building, it was found that a simple upgrade of the conventional layout, obtained including a thermal storage between the ground-source heat exchangers and the heat pump, can optimize the ground energy exploitation requiring for shorter/fewer boreholes. For typical applications, a reduction of up to 66% with respect to the conventional layout can be easily achieved. Results from the monitoring campaign of the prototype are presented in this paper, and upgrades of the thermal storage using phase change materials (PCMs) are proposed using computational fluid dynamics simulations. The PCM thermal storage guarantees an improvement of the system coefficient of performance both for summer cooling and winter heating (up to 25%). A drastic reduction of the storage volume (approx. 1/10 of the original size) is also achieved, making it possible to easily place it within the technical room, avoiding extra costs for underground displacement. A preliminary optimization of the PCM geometry is finally proposed.

Keywords: computational fluid dynamics (CFD), geothermal energy, ground-source heat pumps, phase change materials (PCM)

Procedia PDF Downloads 236
14700 Solar System with Plate Heat Exchanger

Authors: Christer Frennfelt

Abstract:

Solar heating is the most environmentally friendly way to heat water. Brazed Plate Heat Exchangers (BPHEs) are a key component in many solar heating applications for harvesting solar energy into accumulator tanks, producing hot tap water, and heating pools. The combination of high capacity in a compact format, efficient heat transfer, and fast response makes the BPHE the ideal heat exchanger for solar thermal systems. Solar heating is common as a standalone heat source, and as an add-on heat source for boilers, heat pumps, or district heating systems. An accumulator provides the possibility to store heat, which enables combination of different heat sources to a larger extent. In turn this works as protection to reduced access to energy or increased energy prices. For example heat from solar panels is preferably stored during the day for use at night.

Keywords: district heating and cooling, thermal storage, brazed plate heat exchanger, solar domestic hot water and combisystems

Procedia PDF Downloads 323
14699 Effects of Environmental Parameters on Salmonella Contaminated in Harvested Oysters (Crassostrea lugubris and Crassostrea belcheri)

Authors: Varangkana Thaotumpitak, Jarukorn Sripradite, Saharuetai Jeamsripong

Abstract:

Environmental contamination from wastewater discharges originated from anthropogenic activities introduces the accumulation of enteropathogenic bacteria in aquatic animals, especially in oysters, and in shellfish harvesting areas. The consumption of raw or partially cooked oysters can be a risk for seafood-borne diseases in human. This study aimed to evaluate the relationship between the presence of Salmonella in oyster meat samples, and environmental factors (ambient air temperature, relative humidity, gust wind speed, average wind speed, tidal condition, precipitation and season) by using the principal component analysis (PCA). One hundred and forty-four oyster meat samples were collected from four oyster harvesting areas in Phang Nga province, Thailand from March 2016 to February 2017. The prevalence of Salmonella of each site was ranged from 25.0-36.11% in oyster meat. The results of PCA showed that ambient air temperature, relative humidity, and precipitation were main factors correlated with Salmonella detection in these oysters. Positive relationship was observed between positive Salmonella in the oysters and relative humidity (PC1=0.413) and precipitation (PC1=0.607), while the negative association was found between ambient air temperature (PC1=0.338) and the presence of Salmonella in oyster samples. These results suggested that lower temperature and higher precipitation and higher relative humidity will possibly effect on Salmonella contamination of oyster meat. During the high risk period, harvesting of oysters should be prohibited to reduce pathogenic bacteria contamination and to minimize a hazard of humans from Salmonellosis.

Keywords: oyster, Phang Nga Bay, principal component analysis, Salmonella

Procedia PDF Downloads 106
14698 Techno-Economic Assessment of Distributed Heat Pumps Integration within a Swedish Neighborhood: A Cosimulation Approach

Authors: Monica Arnaudo, Monika Topel, Bjorn Laumert

Abstract:

Within the Swedish context, the current trend of relatively low electricity prices promotes the electrification of the energy infrastructure. The residential heating sector takes part in this transition by proposing a switch from a centralized district heating system towards a distributed heat pumps-based setting. When it comes to urban environments, two issues arise. The first, seen from an electricity-sector perspective, is related to the fact that existing networks are limited with regards to their installed capacities. Additional electric loads, such as heat pumps, can cause severe overloads on crucial network elements. The second, seen from a heating-sector perspective, has to do with the fact that the indoor comfort conditions can become difficult to handle when the operation of the heat pumps is limited by a risk of overloading on the distribution grid. Furthermore, the uncertainty of the electricity market prices in the future introduces an additional variable. This study aims at assessing the extent to which distributed heat pumps can penetrate an existing heat energy network while respecting the technical limitations of the electricity grid and the thermal comfort levels in the buildings. In order to account for the multi-disciplinary nature of this research question, a cosimulation modeling approach was adopted. In this way, each energy technology is modeled in its customized simulation environment. As part of the cosimulation methodology: a steady-state power flow analysis in pandapower was used for modeling the electrical distribution grid, a thermal balance model of a reference building was implemented in EnergyPlus to account for space heating and a fluid-cycle model of a heat pump was implemented in JModelica to account for the actual heating technology. With the models set in place, different scenarios based on forecasted electricity market prices were developed both for present and future conditions of Hammarby Sjöstad, a neighborhood located in the south-east of Stockholm (Sweden). For each scenario, the technical and the comfort conditions were assessed. Additionally, the average cost of heat generation was estimated in terms of levelized cost of heat. This indicator enables a techno-economic comparison study among the different scenarios. In order to evaluate the levelized cost of heat, a yearly performance simulation of the energy infrastructure was implemented. The scenarios related to the current electricity prices show that distributed heat pumps can replace the district heating system by covering up to 30% of the heating demand. By lowering of 2°C, the minimum accepted indoor temperature of the apartments, this level of penetration can increase up to 40%. Within the future scenarios, if the electricity prices will increase, as most likely expected within the next decade, the penetration of distributed heat pumps can be limited to 15%. In terms of levelized cost of heat, a residential heat pump technology becomes competitive only within a scenario of decreasing electricity prices. In this case, a district heating system is characterized by an average cost of heat generation 7% higher compared to a distributed heat pumps option.

Keywords: cosimulation, distributed heat pumps, district heating, electrical distribution grid, integrated energy systems

Procedia PDF Downloads 117
14697 Experimental Investigation of Counter-Flow Ranque–Hilsch Vortex Tube Using Humid Air

Authors: Hussein M. Maghrabie, M. Attalla, Hany. A. Mohamed, M. Salem, E. Specht

Abstract:

An experimental investigation is carried out on counter-flow Ranque–Hilsch vortex tube (RHVT). The present work is carried out to study the effect of nozzle aspect ratio, tube length and the inlet pressure (P_i) on the coefficient of performance and energy separation of a RHVT. Further, the effect of moist air with different relative humidity (RH) 40, 60, 80 % is also achieved. The air relative humidity is adjusted using air humidification/dehumidification unit. The experimental study accomplished for number of nozzle N=6, with inner diameter D=7.5 mm., and length of the vortex tube (L) 75, 97.5, and 112.5 mm. The results show that the relative humidity has a significant effect on coefficient of performance and energy separation of a RHVT.

Keywords: COP, counter-flow Ranque–Hilsch vortex tube, energy separation, humid air

Procedia PDF Downloads 484
14696 Experimental Set-up for the Thermo-Hydric Study of a Wood Chips Bed Crossed by an Air Flow

Authors: Dimitri Bigot, Bruno Malet-Damour, Jérôme Vigneron

Abstract:

Many studies have been made about using bio-based materials in buildings. The goal is to reduce its environmental footprint by analyzing its life cycle. This can lead to minimize the carbon emissions or energy consumption. A previous work proposed to numerically study the feasibility of using wood chips to regulate relative humidity inside a building. This has shown the capability of a wood chips bed to regulate humidity inside the building, to improve thermal comfort, and so potentially reduce building energy consumption. However, it also shown that some physical parameters of the wood chips must be identified to validate the proposed model and the associated results. This paper presents an experimental setup able to study such a wood chips bed with different solicitations. It consists of a simple duct filled with wood chips and crossed by an air flow with variable temperature and relative humidity. Its main objective is to study the thermal behavior of the wood chips bed by controlling temperature and relative humidity of the air that enters into it and by observing the same parameters at the output. First, the experimental set up is described according to previous results. A focus is made on the particular properties that have to be characterized. Then some case studies are presented in relation to the previous results in order to identify the key physical properties. Finally, the feasibility of the proposed technology is discussed, and some model validation paths are given.

Keywords: wood chips bed, experimental set-up, bio-based material, desiccant, relative humidity, water content, thermal behaviour, air treatment

Procedia PDF Downloads 89