Search results for: excess thermodynamic parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9191

Search results for: excess thermodynamic parameters

9041 Benzimidazole as Corrosion Inhibitor for Heat Treated 6061 Al-SiCp Composite in Acetic Acid

Authors: Melby Chacko, Jagannath Nayak

Abstract:

6061 Al-SiCp composite was solutionized at 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed onto the surface of composite by mixed adsorption where chemisorption is predominant.

Keywords: 6061 Al-SiCp composite, T6 treatment, corrosion inhibition, chemisorption

Procedia PDF Downloads 359
9040 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids

Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki

Abstract:

Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.

Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction

Procedia PDF Downloads 58
9039 Generalization of Tsallis Entropy from a Q-Deformed Arithmetic

Authors: J. Juan Peña, J. Morales, J. García-Ravelo, J. García-Martínes

Abstract:

It is known that by introducing alternative forms of exponential and logarithmic functions, the Tsallis entropy Sq is itself a generalization of Shannon entropy S. In this work, from a deformation through a scaling function applied to the differential operator, it is possible to generate a q-deformed calculus as well as a q-deformed arithmetic, which not only allows generalizing the exponential and logarithmic functions but also any other standard function. The updated q-deformed differential operator leads to an updated integral operator under which the functions are integrated together with a weight function. For each differentiable function, it is possible to identify its q-deformed partner, which is useful to generalize other algebraic relations proper of the original functions. As an application of this proposal, in this work, a generalization of exponential and logarithmic functions is studied in such a way that their relationship with the thermodynamic functions, particularly the entropy, allows us to have a q-deformed expression of these. As a result, from a particular scaling function applied to the differential operator, a q-deformed arithmetic is obtained, leading to the generalization of the Tsallis entropy.

Keywords: q-calculus, q-deformed arithmetic, entropy, exponential functions, thermodynamic functions

Procedia PDF Downloads 26
9038 Plasma Technology for Hazardous Biomedical Waste Treatment

Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko

Abstract:

One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.

Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas

Procedia PDF Downloads 492
9037 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 107
9036 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 61
9035 Physico-Chemical Basis of Thermal Destruction of Benzo(a)Pyrene and Reducing Their Concentration in the Gas Phase

Authors: K. A. Kemelov, Z. K. Maymekov, D. A. Sambaeva, W. Frenzel

Abstract:

Benzo(a)pyrene is widespread carcinogenic and mutagenic environmental pollutant, which is formed in combustion processes of carbonaceous materials at high temperature and still health safety problem related benz(a)pyrene continues to remain actual. At the moment the mechanisms of formation of benzo(a)pyrene are not studied in detail, there is not concrete certain full scheme of synthesis of benzo(a)pyrene. Studies in this area are mainly dedicated to development of measuring tools and chemical reactions analyzes, or to obtain specific evidence of a large group of polycyclic aromatic hydrocarbons (PAHs). Consequently in this study we try to create physical and chemical model of oxidation and thermo destruction processes of benzo(a)pyrene, using critical thermodynamical parameters in order to estimate theoretical derivatives of benzo(a)pyrene and which conditions benzo(a)pyrene degraded into more harmful substances. According to this physical and chemical modeling of thermal destruction process of benzo(a)pyrene in wide ranges of change of temperature value were calculated. C20H12 - H2O-O2 system was taken for modeling of thermal destruction process of benzo(a)pyrene in order to establish distribution range of equilibrium structures and concentrations of molecules in a gas phase. Also technological ways of reduction of concentration of benzo(a)pyrene in a gas phase were supposed.

Keywords: benzo(a)pyrene, emission, PAH, thermodynamic parameters

Procedia PDF Downloads 272
9034 Removal of Methyl Green by an Algerian Calcic Clay

Authors: Feddal Imene, Boumediene Youssra, Mimanne Goussem

Abstract:

The history of the environment and its chemistry is above all the history of its pollution. For a large part, it is the changes made in the air, water and soil by human beings. From there, we can define that pollution is an unfavorable modification of the natural environment that appears as a by-product of human action, through direct and indirect effects. The protection and preservation of the environment is one of the pillars of sustainable development, which is currently a major issue for the future of man and the planet. Currently, humanity is facing an alarming increase in the pollution of the natural environment by various organic or inorganic materials. The objective of our work is to study the adsorption of a textile dye which is known in the industrial environment, methyl green, on raw calcic clay. Our material was characterized by X-ray diffraction (XRD) Fourier transform infrared (FTIR), we also determined its cation exchange capacity (CEC), pHzc and specific surface by Methylene Blue method. The kinetic and thermodynamic study of the adsorption of methyl green was studied, these experiments resulted that the adsorption of the dye follows pseudo second order kinetics, and according to the thermodynamic study and the study of the probability we can say that we have a physisorption.

Keywords: calcic clay, dye, materials, environment

Procedia PDF Downloads 32
9033 Drug Delivery of Cyclophosphamide Functionalized Zigzag (8,0) CNT, Armchair (4,4) CNT, and Nanocone Complexes in Water

Authors: Morteza Keshavarz

Abstract:

In this work, using density functional theory (DFT) thermodynamic stability and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized zigzag (8,0) CNT, armchair (4,4) CNT and nanocone complexes in water, for two attachment namely the sidewall and tip, is considered. Calculation of the total electronic energy (Et) and binding energy (Eb) of all complexes indicates that the most thermodynamic stability belongs to the sidewall-attachment of cyclophosphamide into functional nanocone. On the other hand, results from chemical hardness show that drug-functionalized zigzag (8,0) and armchair (4,4) complexes in the tip-attachment configuration possess the smallest and greatest chemical hardness, respectively. By computing the solvation energy, it is found that the solution of the drug and all complexes are spontaneous in water. Furthermore, chirality, type of nanovector (nanotube or nanocone), or attachment configuration have no effects on solvation energy of complexes.

Keywords: carbon nanotube, drug delivery, cyclophosphamide drug, density functional theory (DFT)

Procedia PDF Downloads 328
9032 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.

Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning

Procedia PDF Downloads 127
9031 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde

Abstract:

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

Keywords: excess properties, relaxation time, static dielectric constant, and time domain reflectometry technique

Procedia PDF Downloads 120
9030 Exergy Analysis and Evaluation of the Different Flowsheeting Configurations for CO₂ Capture Plant Using 2-Amino-2-Methyl-1-Propanol

Authors: Ebuwa Osagie, Vasilije Manovic

Abstract:

Exergy analysis provides the identification of the location, sources of thermodynamic inefficiencies, and magnitude in a thermal system. Thus, both the qualitative and quantitative assessment can be evaluated with exergy, unlike energy which is based on quantitative assessment only. The main purpose of exergy analysis is to identify where exergy is destroyed. Thus, reduction of the exergy destruction and losses associated with the capture plant systems can improve work potential. Furthermore, thermodynamic analysis of different configurations of the process helps to identify opportunities for reducing the steam requirements for each of the configurations. This paper presents steady-state simulation and exergy analysis of the 2-amino-2-methyl-1-propanol (AMP)-based post-combustion capture (PCC) plant. Exergy analysis performed for the AMP-based plant and the different configurations revealed that the rich split with intercooling configuration gave the highest exergy efficiency of 73.6%, while that of the intercooling and the reference AMP-based plant were 57.3% and 55.8% respectively.

Keywords: 2-amino-2-methyl-1-propanol, modelling, and simulation, post-combustion capture plant, exergy analysis, flowsheeting configurations

Procedia PDF Downloads 136
9029 Investigation of Modified Microporous Materials for Environmental Depollution

Authors: Souhila Bendenia, Chahrazed Bendenia, Hanaa Merad-Dib, Sarra Merabet, Samia Moulebhar, Sid Ahmed Khantar

Abstract:

Today, environmental pollution is a major concernworldwide, threateninghumanhealth. Various techniques have been used, includingdegradation, filtration, advancedoxidationprocesses, ion exchange, membrane processes, and adsorption. The latter is one of the mostsuitablemethods, usinghighly efficient materials. In this study, NaX zeolite was modified with Cu or Ni at various rates. Following ion exchange, the samples were characterized by XRD, BET and SEM/EDX. After characterization, the exchanged zeolites were used for adsorption of various pollutants as CO2. Different thermodynamic parameters were studied such as Qst. XRD results show that the most intense peaks characteristic of 13X persist after the exchange reaction for all samples. The SEM images of our samples have uniform and regular crystal shapes. The results show that ion exhange with Cu or Ni affect the textural properties of X zeolites and prove that the exchange zeolites can be used as an adsorbent for depollution.

Keywords: X zeolites (NaX), ion exchange, characterization, adsorption

Procedia PDF Downloads 41
9028 Management as a Proxy for Firm Quality

Authors: Petar Dobrev

Abstract:

There is no agreed-upon definition of firm quality. While profitability and stock performance often qualify as popular proxies of quality, in this project, we aim to identify quality without relying on a firm’s financial statements or stock returns as selection criteria. Instead, we use firm-level data on management practices across small to medium-sized U.S. manufacturing firms from the World Management Survey (WMS) to measure firm quality. Each firm in the WMS dataset is assigned a mean management score from 0 to 5, with higher scores identifying better-managed firms. This management score serves as our proxy for firm quality and is the sole criteria we use to separate firms into portfolios comprised of high-quality and low-quality firms. We define high-quality (low-quality) firms as those firms with a management score of one standard deviation above (below) the mean. To study whether this proxy for firm quality can identify better-performing firms, we link this data to Compustat and The Center for Research in Security Prices (CRSP) to obtain firm-level data on financial performance and monthly stock returns, respectively. We find that from 1999 to 2019 (our sample data period), firms in the high-quality portfolio are consistently more profitable — higher operating profitability and return on equity compared to low-quality firms. In addition, high-quality firms also exhibit a lower risk of bankruptcy — a higher Altman Z-score. Next, we test whether the stocks of the firms in the high-quality portfolio earn superior risk-adjusted excess returns. We regress the monthly excess returns on each portfolio on the Fama-French 3-factor, 4-factor, and 5-factor models, the betting-against-beta factor, and the quality-minus-junk factor. We find no statistically significant differences in excess returns between both portfolios, suggesting that stocks of high-quality (well managed) firms do not earn superior risk-adjusted returns compared to low-quality (poorly managed) firms. In short, our proxy for firm quality, the WMS management score, can identify firms with superior financial performance (higher profitability and reduced risk of bankruptcy). However, our management proxy cannot identify stocks that earn superior risk-adjusted returns, suggesting no statistically significant relationship between managerial quality and stock performance.

Keywords: excess stock returns, management, profitability, quality

Procedia PDF Downloads 68
9027 Applicability and Reusability of Fly Ash and Base Treated Fly Ash for Adsorption of Catechol from Aqueous Solution: Equilibrium, Kinetics, Thermodynamics and Modeling

Authors: S. Agarwal, A. Rani

Abstract:

Catechol is a natural polyphenolic compound that widely exists in higher plants such as teas, vegetables, fruits, tobaccos, and some traditional Chinese medicines. The fly ash-based zeolites are capable of absorbing a wide range of pollutants. But the process of zeolite synthesis is time-consuming and requires technical setups by the industries. The marketed costs of zeolites are quite high restricting its use by small-scale industries for the removal of phenolic compounds. The present research proposes a simple method of alkaline treatment of FA to produce an effective adsorbent for catechol removal from wastewater. The experimental parameter such as pH, temperature, initial concentration and adsorbent dose on the removal of catechol were studied in batch reactor. For this purpose the adsorbent materials were mixed with aqueous solutions containing catechol ranging in 50 – 200 mg/L initial concentrations and then shaken continuously in a thermostatic Orbital Incubator Shaker at 30 ± 0.1 °C for 24 h. The samples were withdrawn from the shaker at predetermined time interval and separated by centrifugation (Centrifuge machine MBL-20) at 2000 rpm for 4 min. to yield a clear supernatant for analysis of the equilibrium concentrations of the solutes. The concentrations were measured with Double Beam UV/Visible spectrophotometer (model Spectrscan UV 2600/02) at the wavelength of 275 nm for catechol. In the present study, the use of low-cost adsorbent (BTFA) derived from coal fly ash (FA), has been investigated as a substitute of expensive methods for the sequestration of catechol. The FA and BTFA adsorbents were well characterized by XRF, FE-SEM with EDX, FTIR, and surface area and porosity measurement which proves the chemical constituents, functional groups and morphology of the adsorbents. The catechol adsorption capacities of synthesized BTFA and native material were determined. The adsorption was slightly increased with an increase in pH value. The monolayer adsorption capacities of FA and BTFA for catechol were 100 mg g⁻¹ and 333.33 mg g⁻¹ respectively, and maximum adsorption occurs within 60 minutes for both adsorbents used in this test. The equilibrium data are fitted by Freundlich isotherm found on the basis of error analysis (RMSE, SSE, and χ²). Adsorption was found to be spontaneous and exothermic on the basis of thermodynamic parameters (ΔG°, ΔS°, and ΔH°). Pseudo-second-order kinetic model better fitted the data for both FA and BTFA. BTFA showed large adsorptive characteristics, high separation selectivity, and excellent recyclability than FA. These findings indicate that BTFA could be employed as an effective and inexpensive adsorbent for the removal of catechol from wastewater.

Keywords: catechol, fly ash, isotherms, kinetics, thermodynamic parameters

Procedia PDF Downloads 98
9026 Synthesis and Characterization of Molecularly Imprinted Polymer as a New Adsorbent for the Removal of Pyridine from Organic Medium

Authors: Opeyemi Elujulo, Aderonke Okoya, Kehinde Awokoya

Abstract:

Molecularly imprinted polymers (MIP) for the adsorption of pyridine (PYD) was obtained from PYD (the template), styrene (the functional monomer), divinyl benzene (the crosslinker), benzoyl peroxide (the initiator), and water (the porogen). When the template was removed by solvent extraction, imprinted binding sites were left in the polymer material that are capable of selectively rebinding the target molecule. The material was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Batch adsorption experiments were performed to study the adsorption of the material in terms of adsorption kinetics, isotherms, and thermodynamic parameters. The results showed that the imprinted polymer exhibited higher affinity for PYD compared to non-imprinted polymer (NIP).

Keywords: molecularly imprinted polymer, bulk polymerization, environmental pollutant, adsorption

Procedia PDF Downloads 113
9025 Sustainable Development in Orthodontics: Orthodontic Archwire Waste

Authors: Saarah Juman, Ilona Johnson, Stephen Richmond, Brett Duane, Sheelagh Rogers

Abstract:

Introduction: Researchers suggest that within 50 years or less, the available supply of a range of metals will be exhausted, potentially leading to increases in resource conflict and largescale production shortages. The healthcare, dental and orthodontic sectors will undoubtedly be affected as stainless steel instruments are generally heavily relied on. Although changing orthodontic archwires are unavoidable and necessary to allow orthodontic tooth movement through the progression of an archwire sequence with fixed appliances, they are thought to be manufactured in excess of what is needed. Furthermore, orthodontic archwires require trimming extraorally to allow safe intraoral insertion, thus contributing to unnecessary waste of natural resources. Currently, there is no evidence to support the optimisation of archwire length according to orthodontic fixed appliance stage. As such, this study aims to quantify archwire excess (extraoral archwire trimmings) for different stages of orthodontic fixed appliance treatment. Methodology: This prospective, observational, quantitative study observed trimmings made extraorally against pre-treatment study models by clinicians over a 3-month period. Archwires were categorised into one of three categories (initial aligning, sequence, working/finishing arcwhires) within the orthodontic fixed appliance archwire sequence. Data collection included archwire material composition and the corresponding length and weight of excess archwire. Data was entered using a Microsoft Excel spreadsheet and imported into statistical software to obtain simple descriptive statistics. Results: Measurements were obtained for a total of 144 archwires. Archwire materials included nickel titanium and stainless steel. All archwires observed required extraorally trimming to allow safe intraoral insertion. The manufactured lengths of orthodontic initial aligning, sequence, and working/finishing arcwhires were at least 31%, 26%, and 39% in excess, respectively. Conclusions: Orthodontic archwires are manufactured to be excessively long at all orthodontic archwire sequence stages. To conserve natural resources, this study’s findings support the optimisation of orthodontic archwire lengths by manufacturers according to the typical stages of an orthodontic archwire sequence.

Keywords: archwire, orthodontics, sustainability, waste

Procedia PDF Downloads 158
9024 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant

Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim

Abstract:

This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.

Keywords: efficiency, exergy, gas turbine, temperature

Procedia PDF Downloads 257
9023 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential

Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen

Abstract:

Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.

Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance

Procedia PDF Downloads 359
9022 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth

Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie

Abstract:

Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.

Keywords: Spent bleaching earth, reactivation, regeneration, thermal treatment, dye removal, thermodynamic

Procedia PDF Downloads 143
9021 Corrosion Inhibition of Brass in Phosphoric Acid Solution by 2-(5-Methyl-2-Nitro-1H-Imidazol-1-Yl) Ethyl Benzoate

Authors: R. Khrifou, M. Galai, R. Touir, M. Ebn Touhami, Y. Ramli

Abstract:

A 2-(5-methyl-2-Nitro-1H-imidazol-1-yl)ethyl benzoate (IMDZ-B) was synthesized and characterized using elemental analyses, NMR, and Fourier transform infrared (FTIR) techniques. Its effect on brass corrosion in 1.0 M H₃PO₄ solution was investigated by using electrochemical measurements coupled with X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The polarization measurements showed that the IMDZ-B acts as a mixed-type inhibitor. Indeed, it is found that the IMDZ-B compound is a very good inhibitor, and its inhibition efficiency increases with concentration to reach a maximum of 99.5 % at 10-³ M. In addition, the obtained electrochemical parameters from impedance indicated that the IMDZ-B molecules act by adsorption on metallic surfaces. This adsorption was found to obey Langmuir’s adsorption isotherm. However, the temperature effect on the performance of IMDZ-B was also studied. It is found that the IMDZ-B takes its performance at high temperatures. In addition, the obtained kinetic and thermodynamic parameters showed that the IMDZ-B molecules act via two adsorption modes, physisorption and chemisorptions, and its process is endothermic and spontaneous. Finally, the XRD and SEM/EDX analyses confirmed the electrochemical obtained results.

Keywords: low concentration, anti-corrosion brass, IMDZ-B product, phosphoric acid solution, electrochemical, SEM\EDAX analysis

Procedia PDF Downloads 18
9020 Experimental and Theoretical Characterization of Supramolecular Complexes between 7-(Diethylamino)Quinoline-2(1H)-One and Cucurbit[7] Uril

Authors: Kevin A. Droguett, Edwin G. Pérez, Denis Fuentealba, Margarita E. Aliaga, Angélica M. Fierro

Abstract:

Supramolecular chemistry is a field of growing interest. Moreover, studying the formation of host-guest complexes between macrocycles and dyes is highly attractive due to their potential applications. Examples of the above are drug delivery, catalytic process, and sensing, among others. There are different dyes of interest in the literature; one example is the quinolinone derivatives. Those molecules have good optical properties and chemical and thermal stability, making them suitable for developing fluorescent probes. Secondly, several macrocycles can be seen in the literature. One example is the cucurbiturils. This water-soluble macromolecule family has a hydrophobic cavity and two identical carbonyl portals. Additionally, the thermodynamic analysis of those supramolecular systems could help understand the affinity between the host and guest, their interaction, and the main stabilization energy of the complex. In this work, two 7-(diethylamino) quinoline-2 (1H)-one derivative (QD1-2) and their interaction with cucurbit[7]uril (CB[7]) were studied from an experimental and in-silico point of view. For the experimental section, the complexes showed a 1:1 stoichiometry by HRMS-ESI and isothermal titration calorimetry (ITC). The inclusion of the derivatives on the macrocycle lends to an upward shift in the fluorescence intensity, and the pKa value of QD1-2 exhibits almost no variation after the formation of the complex. The thermodynamics of the inclusion complexes was investigated using ITC; the results demonstrate a non-classical hydrophobic effect with a minimum contribution from the entropy term and a constant binding on the order of 106 for both ligands. Additionally, dynamic molecular studies were carried out during 300 ns in an explicit solvent at NTP conditions. Our finding shows that the complex remains stable during the simulation (RMSD ~1 Å), and hydrogen bonds contribute to the stabilization of the systems. Finally, thermodynamic parameters from MMPBSA calculations were obtained to generate new computational insights to compare with experimental results.

Keywords: host-guest complexes, molecular dynamics, quinolin-2(1H)-one derivatives dyes, thermodynamics

Procedia PDF Downloads 56
9019 Integration of Multi Effect Desalination with Solid Oxide Fuel Cell/Gas Turbine Power Cycle

Authors: Mousa Meratizaman, Sina Monadizadeh, Majid Amidpour

Abstract:

One of the most favorable thermal desalination methods used widely today is Multi Effect Desalination. High energy consumption in this method causes coupling it with high temperature power cycle like gas turbine. This combination leads to higher energy efficiency. One of the high temperature power systems which have cogeneration opportunities is Solid Oxide Fuel Cell / Gas Turbine. Integration of Multi Effect Desalination with Solid Oxide Fuel Cell /Gas Turbine power cycle in a range of 300-1000 kW is considered in this article. The exhausted heat of Solid Oxide Fuel Cell /Gas Turbine power cycle is used in Heat Recovery Steam Generator to produce needed motive steam for Desalination unit. Thermodynamic simulation and parametric studies of proposed system are carried out to investigate the system performance.

Keywords: solid oxide fuel cell, thermodynamic simulation, multi effect desalination, gas turbine hybrid cycle

Procedia PDF Downloads 336
9018 Numerical Evaluation of the Flow Behavior inside the Scrubber Unit with Engine Exhaust Pipe

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

A wet scrubber is an air pollution control device that removes particulate matter and acid gases from waste gas streams found in marine engine exhaust. If the flue gases in the exhaust is employed for CFD simulation, it makes the problem complicate due to the involvement of emissions. Owing to the fact, the scrubber system in this paper is handled with appropriate approach by designing with the flow properties of hot air and water droplet injections to evaluate the flow behavior inside the system. Since the wet scrubber has the capability of operating over wide range of mixture compositions, the current scrubber model with the designing approach doesn’t deviate from the actual behavior of the system. The scrubber design is constructed with engine exhaust pipe with the purpose of measuring the flow properties inside the scrubber by the influence of exhaust pipe characteristics. The flow properties are computed by the thermodynamic variables such as temperature and pressure with the flow velocity. In this work, numerical analyses have been conducted for the flow of fluid in the scrubber system through CFD technique.

Keywords: wet scrubber, water droplet injections, thermodynamic variables, CFD technique

Procedia PDF Downloads 314
9017 Density Measurement of Mixed Refrigerants R32+R1234yf and R125+R290 from 0°C to 100°C and at Pressures up to 10 MPa

Authors: Xiaoci Li, Yonghua Huang, Hui Lin

Abstract:

Optimization of the concentration of components in mixed refrigerants leads to potential improvement of either thermodynamic cycle performance or safety performance of heat pumps and refrigerators. R32+R1234yf and R125+R290 are two promising binary mixed refrigerants for the application of heat pumps working in the cold areas. The p-ρ-T data of these mixtures are one of the fundamental and necessary properties for design and evaluation of the performance of the heat pumps. Although the property data of mixtures can be predicted by the mixing models based on the pure substances incorporated in programs such as the NIST database Refprop, direct property measurement will still be helpful to reveal the true state behaviors and verify the models. Densities of the mixtures of R32+R1234yf an d R125+R290 are measured by an Anton Paar U shape oscillating tube digital densimeter DMA-4500 in the range of temperatures from 0°C to 100 °C and pressures up to 10 MPa. The accuracy of the measurement reaches 0.00005 g/cm³. The experimental data are compared with the predictions by Refprop in the corresponding range of pressure and temperature.

Keywords: mixed refrigerant, density measurement, densimeter, thermodynamic property

Procedia PDF Downloads 271
9016 Physico-Chemical Characterization of an Algerian Biomass: Application in the Adsorption of an Organic Pollutant

Authors: Djelloul Addad, Fatiha Belkhadem Mokhtari

Abstract:

The objective of this work is to study the retention of methylene blue (MB) by biomass. The Biomass is characterized by X-ray diffraction (XRD), infrared absorption (IRTF). Results show that the biomass contains organic and mineral substances. The effect of certain physicochemical parameters on the adsorption of MB is studied (effect of the pH). This study shows that the increase in the initial concentration of MB leads to an increase in the adsorbed quantity. The adsorption efficiency of MB decreases with increasing biomass mass. The adsorption kinetics show that the adsorption is rapid, and the maximum amount is reached after 120 min of contact time. It is noted that the pH has no great influence on the adsorption. The isotherms are best modelled by the Langmuir model. The adsorption kinetics follow the pseudo-second-order model. The thermodynamic study of adsorption shows that the adsorption is spontaneous and exothermic.

Keywords: dyes, adsorption, biomass, methylene blue, langmuir

Procedia PDF Downloads 16
9015 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: refractometric method, aqueous solution, molecular dynamics, dielectric constant

Procedia PDF Downloads 241
9014 Fuzzy Logic Modeling of Evaluation the Urban Skylines by the Entropy Approach

Authors: Murat Oral, Seda Bostancı, Sadık Ata, Kevser Dincer

Abstract:

When evaluating the aesthetics of cities, an analysis of the urban form development depending on design properties with a variety of factors is performed together with a study of the effects of this appearance on human beings. Different methods are used while making an aesthetical evaluation related to a city. Entropy, in its preliminary meaning, is the mathematical representation of thermodynamic results. Measuring the entropy is related to the distribution of positional figures of a message or information from the probabilities standpoint. In this study, analysis of evaluation the urban skylines by the entropy approach was modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between application data and RBMTF is done by using absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of evaluation the urban skylines by the entropy approach. As a result, RBMTF model has shown satisfying relation with experimental results, which suggests an alternative method to evaluation of the urban skylines by the entropy approach.

Keywords: urban skylines, entropy, rule-based Mamdani type, fuzzy logic

Procedia PDF Downloads 261
9013 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant

Authors: Renzo Castillo, George Tsatsaronis

Abstract:

High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.

Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion

Procedia PDF Downloads 161
9012 Liquid-Liquid Equilibrium Study in Solvent Extraction of o-Cresol from Coal Tar

Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti

Abstract:

Coal tar is a liquid by-product of the process of coal gasification and carbonation, also in some industries such as steel, power plant, cement, and others. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in solvent extraction of o-Cresol from the coal tar. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of o-Cresol for those system.

Keywords: coal tar, o-Cresol, Wohl, Van Laar, three-suffix margules

Procedia PDF Downloads 243