Search results for: ethylene%20vinyl%20acetate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 268

Search results for: ethylene%20vinyl%20acetate

88 Deep Well Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification

Authors: Mohamed Ahmed Khali

Abstract:

Numbers of deep well anode ground beds (GBs) have been retrieved due to un operated anode chains. New identical magnetite anode chains(MAC) have been installed at Raslanuf complex impressed current Cathodic protection(ICCP) system, distributed at different plants(Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB associated severely corroded wellhead casings were well maintained and/ or replaced by new fabricated and modified ones. The main cause of wellhead casings internal corrosion was discussed, and the conducted remedy action to overcome future corrosion problem is presented. All GB connected anode junction boxes (AJBs) and shunts were closely inspected, maintained, and necessary replacement/and or modification were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB associated Transformer-Rectifiers units (TRUs) were subjected to through inspection, and necessary maintenance has been performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated. An alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded, and all obtained test results are presented. DC current outputs has been adjusted, and DC current outputs of each MAC has been recorded for each GB AJB.

Keywords: magnatite anode, deep well, ground bed, cathodic protection, transformer rectifies, impreced current, junction box

Procedia PDF Downloads 72
87 Adsorption and Selective Determination Ametryne in Food Sample Using of Magnetically Separable Molecular Imprinted Polymers

Authors: Sajjad Hussain, Sabir Khan, Maria Del Pilar Taboada Sotomayor

Abstract:

This work demonstrates the synthesis of magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo first order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32, and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.

Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption

Procedia PDF Downloads 463
86 Exceptionally Glauconite-Rich Strata from the Miocene Bejaoua Facies of Northern Tunisia: Origin, Composition, and Depositional Conditions

Authors: Abdelbasset Tounekti, Kamel Boukhalfa, Tathagata Roy Choudhury, Mohamed Soussi, Santanu Banerjee

Abstract:

The exceptionally glauconite-rich Miocene strata are superbly exposed throughout the front of the nappes zone of northern Tunisia. Each of the glauconitic fine-grained intervals coincide with the peak rise of third order sea-level cycles during the Burdigalian-Langhiantime. These deposits show coarsening- and thickening-upward glauconitic shale and sandstone, recording a shallowing upward progression across offshore-shoreface settings. Petrographic investigation reveals that the glauconite was originated from the alteration of fecal pellets, and lithoclast including feldspar, volcanic particle, and quartz and infillings with intraparticle pores. Mineralogical analysis of both randomly oriented and air-dried, ethylene-glycolate, and heated glauconite pellets show the low intensity of (002) reflection peaks, indicating high iron substitution for aluminum in octahedral sites. Geochemical characterization of the Miocene glauconite reveals a high K2O and variable Fe2O3 (total) content. A combination of layer lattice and divertissement theories explains the origin of glauconite. The formation of glauconite was facilitated by the abundant supply of Fe through contemporaneous volcanism in Algeria and surrounding areas, which accompanied the African-European plate convergence. Therefore, the occurrence of glauconite in the Miocene succession of Tunisia is influenced by the combination of eustacy and volcanism.

Keywords: glauconite, autogenic, volcanism, geochemistry, chamosite, northern Tunisia, miocene

Procedia PDF Downloads 262
85 Use of Magnetically Separable Molecular Imprinted Polymers for Determination of Pesticides in Food Samples

Authors: Sabir Khan, Sajjad Hussain, Ademar Wong, Maria Del Pilar Taboada Sotomayor

Abstract:

The present work aims to develop magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high-performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first-order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo-first-order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32 and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.

Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption

Procedia PDF Downloads 439
84 Deep Well-Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification

Authors: Mohamed Ahmed Khalil

Abstract:

The number of deep well anode ground beds (GBs) have been retrieved due to unoperated anode chains. New identical magnetite anode chains (MAC) have been installed at Raslanuf complex impressed current Cathodic protection (ICCP) system, distributed at different plants (Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB-associated severely corroded wellhead casings were well maintained and/or replaced by new fabricated and modified ones. The main cause of the wellhead casing's severe internal corrosion was discussed and the conducted remedy action to overcome future corrosion problems is presented. All GB-connected anode junction boxes (AJBs) and shunts were closely inspected, maintained and necessary replacement and/or modifications were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB-associated Transformer-Rectifiers Units (TRU) were subjected to thorough inspection and necessary maintenance was performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated, alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded and all obtained test results are presented. DC current outputs have been adjusted and DC current outputs of each MAC have been recorded for each GB AJB.

Keywords: magnetite anodes, deep well, ground beds, cathodic protection, transformer rectifier, impressed current, junction boxes

Procedia PDF Downloads 85
83 Visible-Light-Driven OVs-BiOCl Nanoplates with Enhanced Photocatalytic Activity toward NO Oxidation

Authors: Jiazhen Liao, Xiaolan Zeng

Abstract:

A series of BiOCl nanoplates with different oxygen vacancies (OVs) concentrations were successfully synthesized via a facile solvothermal method. The concentration of OVs of BiOCl can be tuned by the ratios of water/ethylene glycol. Such nanoplates containing oxygen vacancies served as an efficient visible-light-driven photocatalyst for NO oxidation. Compared with pure BiOCl, the enhanced photocatalytic performance was mainly attributed to the introduction of OVs, which greatly enhanced light absorption, promoted electron transfer, activated oxygen molecules. The present work could provide insights into the understanding of the role of OVs in photocatalysts for reference. Combined with characterization analysis, such as XRD(X-ray diffraction), XPS(X-ray photoelectron spectroscopy), TEM(Transmission Electron Microscopy), PL(Fluorescence Spectroscopy), and DFT (Density Functional Theory) calculations, the effect of vacancies on photoelectrochemical properties of BiOCl photocatalysts are shown. Furthermore, the possible reaction mechanisms of photocatalytic NO oxidation were also revealed. According to the results of in situ DRIFTS ( Diffused Reflectance Infrared Fourier Transform Spectroscopy), various intermediates were produced during different time intervals of NO photodegradation. The possible pathways are summarized below. First, visible light irradiation induces electron-hole pairs on the surface of OV-BOC (BiOCl with oxygen vacancies). Second, photogenerated electrons form superoxide radical with the contacted oxygen. Then, the NO molecules adsorbed on the surface of OV-BOC are attacked by superoxide radical and form nitrate instead of NO₂ (by-products). Oxygen vacancies greatly improve the photocatalytic oxidation activity of NO and effectively inhibit the production of harmful by-products during the oxidation of NO.

Keywords: OVs-BiOCl nanoplate, oxygen vacancies, NO oxidation, photocatalysis

Procedia PDF Downloads 103
82 Sequential Release of Dual Drugs Using Thermo-Sensitive Hydrogel for Tumor Vascular Inhibition and to Enhance the Efficacy of Chemotherapy

Authors: Haile F. Darge, Hsieh C. Tsai

Abstract:

The tumor microenvironment affects the therapeutic outcomes of cancer disease. In a malignant tumor, overexpression of vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks. This results in a hostile tumor environment that hinders anti-cancer drug activities and profoundly fuels tumor progression. In this study, we develop a strategy of sequential sustain release of the anti-angiogenic drug: Bevacizumab(BVZ), and anti-cancer drug: Doxorubicin(DOX) which had a synergistic effect on cancer treatment. Poly (D, L-Lactide)- Poly (ethylene glycol) –Poly (D, L-Lactide) (PDLLA-PEG-PDLLA) thermo-sensitive hydrogel was used as a vehicle for local delivery of drugs in a single platform. The in vitro release profiles of the drugs were investigated and confirmed a relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) for a prolonged period. The cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. The in vivo study on Hela xenograft nude mice verified that hydrogel co-loaded with BVZ and DOX displayed the highest tumor suppression efficacy for up to 36 days with pronounce anti-angiogenic effect of BVZ and with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drugs by the hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.

Keywords: anti-angiogenesis, chemotherapy, controlled release, thermo-sensitive hydrogel

Procedia PDF Downloads 101
81 A Bayesian Parameter Identification Method for Thermorheological Complex Materials

Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider

Abstract:

Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.

Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex

Procedia PDF Downloads 226
80 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations

Authors: Elbadawy A. Kamoun

Abstract:

Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.

Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy

Procedia PDF Downloads 249
79 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies

Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel

Abstract:

To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.

Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots

Procedia PDF Downloads 495
78 Stimuli-Responsive Zwitterionic Dressings for Chronic Wounds Management

Authors: Konstans Ruseva, Kristina Ivanova, Katerina Todorova, Margarita Gabrashanska, Tzanko Tzanov, Elena Vassileva

Abstract:

Zwitterionic polymers (ZP) are well-known with their ultralow biofouling. They are successfully competing with poly(ethylene glycols) (PEG), which are considered as the “golden standard” in this respect. These unique properties are attributed to their strong hydration capacity, defined by the dipole-dipole interactions, arising between the ZP pendant groups as well as to the dipoles interaction with water molecules. Beside, ZP are highly resistant to bacterial adhesion thus ensuring an excellent anti-biofilm formation ability. Moreover, ZP are able to respond upon external stimuli such as temperature, pH, salt concentration changes which in combination with their anti-biofouling effect render this type of polymers as materials with a high potential in biomedical applications. The present work is focused on the development of zwitterionic hydrogels for efficient treatment of highly exudating and hard-to-heal chronic wounds. To this purpose, two types of ZP networks with different crosslinking degree were synthesized - polysulfobetaine (PSB) and polycarboxybetaine (PCB) ones. They were characterized in terms of their physico-mechanical properties, e.g. microhardness, swelling ability, smart behaviour. Furthermore, the potential of ZP networks to resist biofilm formation towards Staphylococcus aureus and Escherichia coli was studied. Their ability to reduce the high levels of myeloperoxidase and metalloproteinase, two enzymes that are part of the chronic wounds enviroenment, was revealed. Moreover, the in vitro cytotoxic assessment of PSB and PCB networks along with their in vivo performance in rats was also studied to reveal their high biocompatibility.

Keywords: absorption properties, biocompatibility, enzymatic inhibition activity, wound healing, zwitterionic polymers

Procedia PDF Downloads 165
77 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems

Authors: Raouf Alizadeh, Kadijeh Hemmati

Abstract:

The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.

Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior

Procedia PDF Downloads 289
76 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 348
75 Preparation of Nano-Scaled linbo3 by Polyol Method

Authors: Gabriella Dravecz, László Péter, Zsolt Kis

Abstract:

Abstract— The growth of optical LiNbO3 single crystal and its physical and chemical properties are well known on the macroscopic scale. Nowadays the rare-earth doped single crystals became important for coherent quantum optical experiments: electromagnetically induced transparency, slow down of light pulses, coherent quantum memory. The expansion of applications is increasingly requiring the production of nano scaled LiNbO3 particles. For example, rare-earth doped nanoscaled particles of lithium niobate can be act like single photon source which can be the bases of a coding system of the quantum computer providing complete inaccessibility to strangers. The polyol method is a chemical synthesis where oxide formation occurs instead of hydroxide because of the high temperature. Moreover the polyol medium limits the growth and agglomeration of the grains producing particles with the diameter of 30-200 nm. In this work nano scaled LiNbO3 was prepared by the polyol method. The starting materials (niobium oxalate and LiOH) were diluted in H2O2. Then it was suspended in ethylene glycol and heated up to about the boiling point of the mixture with intensive stirring. After the thermal equilibrium was reached, the mixture was kept in this temperature for 4 hours. The suspension was cooled overnight. The mixture was centrifuged and the particles were filtered. Dynamic Light Scattering (DLS) measurement was carried out and the size of the particles were found to be 80-100 nms. This was confirmed by Scanning Electron Microscope (SEM) investigations. The element analysis of SEM showed large amount of Nb in the sample. The production of LiNbO3 nano particles were succesful by the polyol method. The agglomeration of the particles were avoided and the size of 80-100nm could be reached.

Keywords: lithium-niobate, nanoparticles, polyol, SEM

Procedia PDF Downloads 105
74 A Multi-Templated Fe-Ni-Cu Ion Imprinted Polymer for the Selective and Simultaneous Removal of Toxic Metallic Ions from Wastewater

Authors: Morlu Stevens, Bareki Batlokwa

Abstract:

The use of treated wastewater is widely employed to compensate for the scarcity of safe and uncontaminated freshwater. However, the existence of toxic heavy metal ions in the wastewater pose a health hazard to animals and the environment, hence, the importance for an effective technique to tackle the challenge. A multi-templated ion imprinted sorbent (Fe,Ni,Cu-IIP) for the simultaneous removal of heavy metal ions from waste water was synthesised employing molecular imprinting technology (MIT) via thermal free radical bulk polymerization technique. Methacrylic acid (MAA) was employed as the functional monomer, and ethylene glycol dimethylacrylate (EGDMA) as cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator, Fe, Ni, Cu ions as template ions, and 1,10-phenanthroline as the complexing agent. The template ions were exhaustively washed off the synthesized polymer by solvent extraction in several washing steps, while periodically increasing solvent (HCl) concentration from 1.0 M to 10.0 M. The physical and chemical properties of the sorbents were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) were employed. Optimization of operational parameters such as time, pH and sorbent dosage to evaluate the effectiveness of sorbents were investigated and found to be 15 min, 7.5 and 666.7 mg/L respectively. Selectivity of ion-imprinted polymers and competitive sorption studies between the template and similar ions were carried out and showed good selectivity towards the targeted metal ion by removing 90% - 98% of the templated ions as compared to 58% - 62% of similar ions. The sorbents were further applied for the selective removal of Fe, Ni and Cu from real wastewater samples and recoveries of 92.14 ± 0.16% - 106.09 ± 0.17% and linearities of R2 = 0.9993 - R2 = 0.9997 were achieved.

Keywords: ion imprinting, ion imprinted polymers, heavy metals, wastewater

Procedia PDF Downloads 284
73 Identification of Clay Mineral for Determining Reservoir Maturity Levels Based on Petrographic Analysis, X-Ray Diffraction and Porosity Test on Penosogan Formation Karangsambung Sub-District Kebumen Regency Central Java

Authors: Ayu Dwi Hardiyanti, Bernardus Anggit Winahyu, I. Gusti Agung Ayu Sugita Sari, Lestari Sutra Simamora, I. Wayan Warmada

Abstract:

The Penosogan Formation sandstone, that has Middle Miosen age, has been deemed as a reservoir potential based on sample data from sandstone outcrop in Kebakalan and Kedawung villages, Karangsambung sub-district, Kebumen Regency, Central Java. This research employs the following analytical methods; petrography, X-ray diffraction (XRD), and porosity test. Based on the presence of micritic sandstone, muddy micrite, and muddy sandstone, the Penosogan Formation sandstone has a fine-coarse granular size and middle-to-fine sorting. The composition of the sandstone is mostly made up of plagioclase, skeletal grain, and traces of micrite. The percentage of clay minerals based on petrographic analysis is 10% and appears to envelop grain, resulting enveloping grain which reduces the porosity of rocks. The porosity types as follows: interparticle, vuggy, channel, and shelter, with an equant form of cement. Moreover, the diagenesis process involves compaction, cementation, authigenic mineral growth, and dissolving due to feldspar alteration. The maturity of the reservoir can be seen through the X-ray diffraction analysis results, using ethylene glycol solution for clay minerals fraction transformed from smectite–illite. Porosity test analysis showed that the Penosogan Formation sandstones has a porosity value of 22% based on the Koeseomadinata classification, 1980. That shows high maturity is very influential for the quality of reservoirs sandstone of the Penosogan Formation.

Keywords: sandstone reservoir, Penosogan Formation, smectite, XRD

Procedia PDF Downloads 142
72 Single Ion Conductors for Lithium-Ion Battery Application

Authors: Seyda Tugba Gunday Anil, Ayhan Bozkurt

Abstract:

Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.

Keywords: single-ion conductor, inorganic polymer, blends, polymer electrolyte

Procedia PDF Downloads 131
71 Liquid Tin(II) Alkoxide Initiators for Use in the Ring-Opening Polymerisation of Cyclic Ester Monomers

Authors: Sujitra Ruengdechawiwat, Robert Molloy, Jintana Siripitayananon, Runglawan Somsunan, Paul D. Topham, Brian J. Tighe

Abstract:

The main aim of this research has been to design and synthesize some completely soluble liquid tin(II) alkoxide initiators for use in the ring-opening polymerisation (ROP) of cyclic ester monomers. This is in contrast to conventional tin(II) alkoxides in solid form which tend to be molecular aggregates and difficult to dissolve. The liquid initiators prepared were bis(tin(II) monooctoate) diethylene glycol ([Sn(Oct)]2DEG) and bis(tin(II) monooctoate) ethylene glycol ([Sn(Oct)]2EG). Their efficiencies as initiators in the bulk ROP of ε-caprolactone (CL) at 130oC were studied kinetically by dilatometry. Kinetic data over the 20-70% conversion range was used to construct both first-order and zero-order rate plots. It was found that the rate data fitted more closely to first-order kinetics with respect to the monomer concentration and gave higher first-order rate constants than the corresponding tin(II) octoate/diol initiating systems normally used to generate the tin(II) alkoxide in situ. Since the ultimate objective of this work is to produce copolymers suitable for biomedical use as absorbable monofilament surgical sutures, poly(L-lactide-co-ε-caprolactone) 75:25 mol %, P(LL-co-CL), copolymers were synthesized using both solid and liquid tin(II) alkoxide initiators at 130°C for 48 hrs. The statistical copolymers were obtained in near-quantitative yields with compositions (from 1H-NMR) close to the initial comonomer feed ratios. The monomer sequencing (from 13C-NMR) was partly random and partly blocky (gradient-type) due to the much differing monomer reactivity ratios (rLL >> rCL). From GPC, the copolymers obtained using the soluble liquid tin(II) alkoxides were found to have higher molecular weights (Mn = 40,000-100,000) than those from the only partially soluble solid initiators (Mn = 30,000-52,000).

Keywords: biodegradable polyesters, poly(L-lactide-co-ε-caprolactone), ring-opening polymerisation, tin(II) alkoxide

Procedia PDF Downloads 170
70 Early Age Microstructural Analysis of Cement-Polymer Composite Paste Cured at High Temperature

Authors: Bertilia L. Bartley, Ledjane S. Barreto

Abstract:

As a preliminary investigation on the control of microcracking in composite cement pastes, this study explores and compares the compatibility of Tetraethyl Orthosilicate (TEOS), Ethylene Glycol (EG) and Silicone Resin (SIL) in cement pastes cured at high temperature. Pastes were prepared by incorporating ordinary Portland cement (OPC) into an additive solution, using a solution/cement ratio of 0.45. Specimens were molded for 24h at 21 ± 2°C, then cured in deionized water for another 24h at 74 ± 1°C. TEOS and EG influence on fresh paste properties were similar to the reference OPC paste yet disintegration was observed in EG and SIL specimens after the first 12h of curing. X-Ray Diffraction analysis (XRD) coupled with thermogravimetric analysis (TGA/DTG) verified that SIL addition impedes portlandite formation significantly. Backscatter Scanning Electron Microscopy (SEM) techniques were therefore performed on selected areas of each sample to investigate the morphology of the hydration products detected. Various morphologies of portlandite crystals were observed in pastes with EG and TEOS addition, as well as dense morphologies of calcium silicate hydrate (C-S-H) gel and fibers, and ettringite needles. However, the formation of portlandite aggregate and clusters of C-S-H was highly favored by TEOS addition. Furthermore, the microstructural details of composite pastes were clearly visible at low magnifications i.e. 500x, as compared to the OPC paste. The results demonstrate accelerated hydration within composite pastes, a uniform distribution of hydration products, as well as an adhesive interaction with the products and polymer additive. Overall, TEOS demonstrated the most favorable influence, which indicates the potential of TEOS as a compatible polymer additive within the cement system at high temperature.

Keywords: accelerated curing, cement/polymer composite, hydration, microstructural properties, morphology, portlandite, scanning electron microscopy (sem)

Procedia PDF Downloads 156
69 Environmentally Friendly KOH and NH4OH-KOH Pulping of Rice Straw

Authors: Omid Ghaffarzadeh Mollabashi, Sara Khorshidi, Hossein Kermanian Seyed, Majid Zabihzadeh

Abstract:

The main problem that hinders the intensive use of non-wood raw materials in papermaking industry is the environmental pollution caused by black liquor. As a matter of fact, black liquor of nonwood pulping is discharged to the environment due to the lack of recovery. Traditionally, NaOH pulping produces Na-based black liquor that may increase soil erosion and reduce soil permeability. With substitution of KOH/NH4OH with NaOH as the cooking liquor, K and N can act as a soil fertilizer while offering an environmentally acceptable disposal alternative. For this purpose, rice straw samples were pulped under the following conditions; Constant factors were: straw weight: 100 gram (based on oven dry), liquor to straw ratio 7:1 and maximum temperature, 170 and 180 ºC. Variable factors for KOH cooks were: KOH dosage of 14, 17 and %20 on oven dry of straw and times at maximum temperature of 60 and 90 minutes. For KOH-NH4OH cooks, KOH dosage of 5 and %10 and NH4OH dosage of 25 and %35, both based as oven dry of straw were applied. Besides, time at maximum temperature was 90 minutes. Yield ranges of KOH and KOH-NH4OH pulp samples were obtained from 37.28 to 48.62 and 45.63 to 48.08 percent, respectively. In addition, Kappa number ranged from 21.91 to 29.85 and 55.15 to 56.25, respectively. In comparison with soda, soda-AQ, cold soda, kraft, EDA (dissolving), De-Ethylene Glycol (dissolving), burst and tensile index for KOH pulp was more in similar cooking condition. With an exception of soda pulps, tear index of the mentioned pulp is more than all compared treatments. Therefore, it can be resulted that KOH pulping method is an appropriate choice for making paper of the rice straw. Also, compared to KOH-NH4OH, KOH pulping method is more appropriate choice because of better pulping results.

Keywords: environmentally friendly process, rice straw, NH4OH-KOH pulping, pulp properties

Procedia PDF Downloads 242
68 Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma

Authors: Yuan-Chung Tsai, Masao Kamimura, Kohei Soga, Hsin-Cheng Chiu

Abstract:

In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer.

Keywords: drug delivery, orthotopic brain tumor, photodynamic/photothermal therapies, upconversion nanoparticles

Procedia PDF Downloads 164
67 Study of the Genotoxic Potential of Plant Growth Regulator Ethephon

Authors: Mahshid Hodjat, Maryam Baeeri, Mohammad Amin Rezvanfar, Mohammad Abdollahi

Abstract:

Ethephon is one of the most widely used plant growth regulator in agriculture that its application has been increased in recent years. The toxicity of organophosphate compounds is mostly attributed to their potent inhibition of acetylcholinesterase and their involvement in neurodegenerative disease. Although there are few reports on butyrylcholinesterase inhibitory role of ethephon, still there is no evidence on neurotoxicity and genotoxicity of this compound. The aim of the current study is to assess the potential genotoxic effect of ethephon using two genotoxic endpoints; γH2AX expression and comet assay on embryonic murine fibroblast. γH2AX serves as an early and sensitive biomarker for evaluating the genotoxic effects of chemicals. Oxidative stress biomarkers, including intracellular reactive oxygen species, lipid peroxidation and antioxidant capacity were also examined. The results showed a significant increase in cell proliferation 24h post-treatment with 10, 40,160µg/ml ethephon. The γH2AX expression and γH2AX foci count per cell were increased at low concentration of ethephon that was concomitant with increased DNA damage break at 40 and 160 µg/ml as illustrated by increased comet tail moment. A significant increase in lipid peroxidation and ROS formation were observed at 160 µg/ml and higher doses. The results showed that low-dose of ethephon promoted cell proliferation while induce DNA damage, raising the possibility of ethephon mutagenicity. Ethephon-induced genotoxic effect of low dose might not related to oxidative damage. However, ethephon was found to increase oxidative stress at higher doses, lead to cellular cytotoxicity. Taken together, all data indicated that ethylene, deserves more attention as a plant regulator with potential genotoxicity for which appropriate control is needed to reduce its usage.

Keywords: ethephon, DNA damage, γH2AX, oxidative stress

Procedia PDF Downloads 284
66 Measurements of Scattering Cross Sections for 5.895 keV Photons in Various Polymers

Authors: H. Duggal, G. Singh, G. Singh, A. Bhalla, S. Kumar, J. S. Shahi, D. Mehta

Abstract:

The total differential cross section for scattering of the 5.895 keV photons by various polymers has been measured at scattering angle of 135o. The experimental measurements were carried out using the energy dispersive setup involving annular source of the 55Fe radioisotope and a low energy germanium (LEGe) detector. The cross section values are measured for 20 polymer targets namely, Paraffin Wax, Polytetrafluoro ethylene (PTFE), Cellulose, Silicone oil, Polyvinyl alcohol (PVA), Polyvinyl purrolidone (PVP), Polymethyl methacrylate (PMMA), Kapton, Mylar, Chitosan, Polyvinyl chloride (PVC), Bakelite, Carbopol, Chlorobutyl rubber (CBR), Polyetylene glycol (PEG), Polysorbate-20, Nylon-6, Cetyl alcohol, Carboxyl methyl sodium cellulose and Sodium starch glucolate. The measurements were performed in vacuum so as to avoid scattering contribution due to air and strong absorption of low energy photons in the air column. In the present investigations, the geometrical factor and efficiency of the detector were determined by measuring the K x-rays emitted from the 22Ti and 23V targets excited by the Mn K x-rays in the same experimental set up. The measured scattering cross sections have been compared with the sum of theoretically calculated elastic and inelastic scattering cross sections. The theoretical elastic (Rayleigh) scattering cross sections based on the various form factor approximations, namely, non-relativistic form factor (NF), relativistic form factor (RF), modified form factor (MF), and MF with anomalous scattering factor (ASF) as well as the second order S-matrix formalisms, and the inelastic scattering differential cross sections based on the Klein-Nishina formula after including the inelastic scattering function (KN+ISF) have been calculated. The experimental results show fairly good agreement with theoretical cross sections.

Keywords: photon, polymers, elastic and inelastic, scattering cross sections

Procedia PDF Downloads 660
65 Novel Wound Healing Biodegradable Patch of Bioactive

Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari

Abstract:

The present research was aimed to develop a biodegradable dermal patch formulation for wound healing in a novel, sustained and systematic manner. The goal is to reduce the frequency of dressings with improved drug delivery and thereby enhance therapeutic performance. In present study optimized formulation was designed using component polymers and excipients (e.g. Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin) to impart significant folding endurance, elasticity and strength. Gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in suitable medium was mixed with stirring to gelatin mixture. With continued stirring to the mixture Curcumin was added in optimized ratio to get homogeneous dispersion. Polymers were dispersed with stirring in final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2C) and at room temperature (23 ± 2C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12 h and matched the biodegradation rate as drug release with correlation factor R2 > 0.9. The film based formulation developed shows promising results in terms of stability and release profiles.

Keywords: biodegradable, patch, bioactive, polymer

Procedia PDF Downloads 486
64 Rheological Properties of Polymer Systems in Magnetic Field

Authors: T. S. Soliman, A. G. Galyas, E. V. Rusinova, S. A. Vshivkov

Abstract:

The liquid crystals combining properties of a liquid and an anisotropic crystal substance play an important role in a science and engineering. Molecules of cellulose and its derivatives have rigid helical conformation, stabilized by intramolecular hydrogen bonds. Therefore the macromolecules of these polymers are capable to be ordered at dissolution and form liquid crystals of cholesteric type. Phase diagrams of solutions of some cellulose derivatives are known. However, little is known about the effect of a magnetic field on the viscosity of polymer solutions. The systems hydroxypropyl cellulose (HPC) – ethanol, HPC – ethylene glycol, HPC–DМАA, HPC–DMF, ethyl cellulose (EC)–ethanol, EC–DMF, were studied in the presence and absence of magnetic field. The solution viscosity was determined on a Rheotest RN 4.1 rheometer. The effect of a magnetic field on the solution properties was studied with the use of two magnets, which induces a magnetic-field-lines directed perpendicularly and parallel to the rotational axis of a rotor. Application of the magnetic field is shown to be accompanied by an increase in the additional assembly of macromolecules, as is evident from a gain in the radii of light scattering particles. In the presence of a magnetic field, the long chains of macromolecules are oriented in parallel with field lines. Such an orientation is associated with the molecular diamagnetic anisotropy of macromolecules. As a result, supramolecular particles are formed, especially in the vicinity of the region of liquid crystalline phase transition. The magnetic field leads to the increase in viscosity of solutions. The results were used to plot the concentration dependence of η/η0, where η and η0 are the viscosities of solutions in the presence and absence of a magnetic field, respectively. In this case, the values of viscosity corresponding to low shear rates were chosen because the concentration dependence of viscosity at low shear rates is typical for anisotropic systems. In the investigated composition range, the values of η/η0 are described by a curve with a maximum.

Keywords: rheology, liquid crystals, magnetic field, cellulose ethers

Procedia PDF Downloads 315
63 New Biobased(Furanic-Sulfonated) Poly(esteramide)s

Authors: Souhir Abid

Abstract:

The growing interest in vegetal biomass as an alternative for fossil resources has stimulated the development of numerous classes of monomers. Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons (i) firstly environmental concerns, and (ii) secondly the use of monomers from renewable feedstock is a steadily growing field of interest in order to reduce the amount of petroleum consumed in the chemical industry and to open new high-value-added markets to agriculture. Furanic polymers have been considered as alternative environmentally friendly polymers. In our earlier work, modifying furanic polyesters by incorporation of amide functions along their backbone, lead to a particular class of polymer ‘poly(ester-amide)s’, was investigated to combine the excellent mechanical properties of polyamides and the biodegradability of polyesters. As a continuation of our studies on this family of polymer, a series of furanic poly(ester-amide)s bearing sulfonate groups in the main chain were synthesized from 5,5’-Isopropylidene-bis(ethyl 2-furoate), dimethyl 5-sodiosulfoisophthalate, ethylene glycol and hexamethylene diamine by melt polycondensation using zinc acetate as a catalyst. In view of the complexity of the NMR spectrum analysis of the resulting sulfonated poly(ester-amide)s, we found that it is useful to prepare initially the corresponding homopolymers: sulfonated polyesters and polyamides. Structural data of these polymers will be used as a basic element in 1H NMR characterization. The hydrolytic degradation in acidic aqueous conditions (pH = 4,35 ) at 37 °C over the period of four weeks show that the mechanism of the hydrolysis of poly(ester amide)s was elucidated in relation with the microstructure. The strong intermolecular hydrogen bonding interactions between amide functions and water molecules increases the hydrophilicity of the macromolecular chains and consequently their hydrolytic degradation.

Keywords: furan, hydrolytic degradation, polycondensation, poly(ester amide)

Procedia PDF Downloads 261
62 Study of Lamination Quality of Semi-Flexible Solar Modules with Special Textile Materials

Authors: K. Drabczyk, Z. Starowicz, S. Maleczek, P. Zieba

Abstract:

The army, police and fire brigade commonly use dedicated equipment based on special textile materials. The properties of these textiles should ensure human life and health protection. Equally important is the ability to use electronic equipment and this requires access to the source of electricity. Photovoltaic cells integrated with such textiles can be solution for this problem in the most of outdoor circumstances. One idea may be to laminate the cells to textile without changing their properties. The main goal of this work was analyzed lamination quality of special designed semi-flexible solar module with special textile materials as a backsheet. In the first step of investigation, the quality of lamination was determined using device equipped with dynamometer. In this work, the crystalline silicon solar cells 50 x 50 mm and thin chemical tempered glass - 62 x 62 mm and 0.8 mm thick - were used. The obtained results showed the correlation between breaking force and type of textile weave and fiber. The breaking force was in the ranges: 4.5-5.5 N, 15-20 N and 30-33 N depending on the type of wave and fiber type. To verify these observations the microscopic and FTIR analysis of fibers was performed. The studies showed the special textile can be used as a backsheet of semi-flexible solar modules. This work presents a new composition of solar module with special textile layer which, to our best knowledge, has not been published so far. Moreover, the work presents original investigations on adhesion of EVA (ethylene-vinyl acetate) polymer to textile with respect to fiber structure of laminated substrate. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management.

Keywords: flexible solar modules, lamination process, solar cells, textile for photovoltaics

Procedia PDF Downloads 331
61 Study of Nanoclay Blends Based on PET/PEN Prepared by Reactive Extrusion

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

A new route of preparation of compatible blends, based on poly(ethylene terephthalate)(PET)/poly(ethylenenaphthalene2,6-dicarboxylate) (PEN)/clay nanocomposites has been successfully performed in one step by reactive melt extrusion. To achieve this, untreated clay was first purified and functionalized “in situ” with a compound based on an organic peroxide/sulfur mixture and (tetra methyl thiuram disulfide) TMTD as accelerator or activator for sulfur. The PET and PEN materials were first mixed separately in the melt state with different amounts of functionalized clay. It was observed that the compositions PET/4 wt% clay and PEN/7.5 wt% clay showed total exfoliation. These completely exfoliated compositions, called nPET and nPEN, respectively, were used to prepare new nPET/nPEN nanoblends in the same mixing batch. The nPET/nPEN nanoblends were compared to neat blends of PET/PEN. The blends and the nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. The results of the WAXS measurements study showed that the exfoliation of tetrahedral nanolayers of clay was complete and the octahedral structure disappeared totally. From the different WAXS patterns, it is seen that all samples are amorphous phase. The thermal study showed that there are only one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This indicated that both PET/PEN blends and nPET/nPEN blends were compatible in the entire range of compositions. In addition, nPET/nPEN blends present lower Tc values and higher Tm values than the corresponding neat PET/PEN blends. The obtained results indicate that nPET/nPEN blends are somewhat different from the pure ones in nanostructure and behavior, thus showing the additional effect of nanolayers. The present study allowed establishing good correlations between the different measured properties.

Keywords: PET, PEN, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing

Procedia PDF Downloads 268
60 Effects of pH, Load Capacity and Contact Time in the Sulphate Sorption onto a Functionalized Mesoporous Structure

Authors: Jaime Pizarro, Ximena Castillo

Abstract:

The intensive use of water in agriculture, industry, human consumption and increasing pollution are factors that reduce the availability of water for future generations; the challenge is to advance in sustainable and low-cost solutions to reuse water and to facilitate the availability of the resource in quality and quantity. The use of new low-cost materials with sorbent capacity for pollutants is a solution that contributes to the improvement and expansion of water treatment and reuse systems. Fly ash, a residue from the combustion of coal in power plants that is produced in large quantities in newly industrialized countries, contains a high amount of silicon oxides and aluminum oxides, whose properties can be used for the synthesis of mesoporous materials. Properly functionalized, this material allows obtaining matrixes with high sorption capacity. The mesoporous materials have a large surface area, thermal and mechanical stability, uniform porous structure, and high sorption and functionalization capacities. The goal of this study was to develop hexagonal mesoporous siliceous material (HMS) for the adsorption of sulphate from industrial and mining waters. The silica was extracted from fly ash after calcination at 850 ° C, followed by the addition of water. The mesoporous structure has a surface area of 282 m2 g-1 and a size of 5.7 nm and was functionalized with ethylene diamine through of a self-assembly method. The material was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The capacity of sulphate sorption was evaluated according to pH, maximum load capacity and contact time. The sulphate maximum adsorption capacity was 146.1 mg g-1, which is three times higher than commercial sorbents. The kinetic data were fitted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model.

Keywords: fly ash, mesoporous siliceous, sorption, sulphate

Procedia PDF Downloads 133
59 Clove Oil Incorporated Biodegradable Film for Active Food Packaging

Authors: Shubham Sharma, Sandra Barkauskaite, Brendan Duffy, Swarna Jaiswal, Amit K. Jaiswal

Abstract:

Food packaging protects food from temperature, light, and humidity; preserves food and guarantees the safety and the integrity of the food. Advancement in packaging research leads to development of active packaging system with numerous properties such as oxygen scavengers, carbon-dioxide generating systems, antimicrobial active packaging, moisture control packaging, ethylene scavengers etc. In the active packaging, several additives such as essential oils, polyphenols etc. are incorporated into packaging film or within the packaging material to achieve the desired properties. This study investigates the effect on the structural, thermal and functional properties of different poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) blend films incorporated with clove essential oil. The PLA-PBAT films were prepared by a solution casting method and then characterized based on their optical, mechanical properties, surface hydrophobicity, chemical composition, antimicrobial activity against S. aureus and E. coli, and inhibition of biofilm formation of E. coli. Results showed that, the developed packaging film containing clove oil has significant UV-blocking property (80%). However, incorporation of clove oil resulted in reduced transparency and tensile strength of the film as the concentration of clove oil increased. The surface hydrophobicity of packaging film was improved with the increasing concentration of essential oil. Similarly, thickness of the clove oil containing films increased from 36.71 µm to 106.67 µm as the concentration increases. The antimicrobial activity and biofilm inhibition study showed that the clove-incorporated PLA-PBAT composite film was effective against tested bacteria E. coli and S. aureus. This study showed that the PLA-PBAT – Clove oil composite film has significant antimicrobial and UV-blocking properties and can be used as an active food packaging film.

Keywords: active packaging, clove oil, poly(butylene adipate-co-terephthalate), poly(lactide)

Procedia PDF Downloads 119