Search results for: enzyme purification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1259

Search results for: enzyme purification

989 Optimization of Tangential Flow Filtration Process for Purifying DNA Vaccine

Authors: Piyakajornkul T., Noppiboon S., Hochareon L., Kitsubun P.

Abstract:

Nowadays, DNA vaccines become an interesting subject in the third vaccine generation. The platform of DNA vaccines production has been developed and its downstream process becomes challenging due to the quality of the products in terms of purity and percentage of supercoiled DNA. To overcome these challenges, tangential flow filtration (TFF), which is involved in the purification process, could be used since it provides effective separation of impurity prior to performing further purification steps. However, operating conditions of TFF is varied based on several factors such as sizes of target particle and impurities, a concentration of solution as well as a concentration polarization on the membrane surface. In this study, pVAX1/lacZ was used as a model of TFF optimization in order to prevent a concentration polarization that can lead to the membrane fouling and also minimize a diafiltration volume while maintaining the maximum permeate flux resulting in proper operating times and buffer volume. By using trans membrane pressure (TMP) excursion method, feed flow rates and TMP were varied. The results showed a correlation of permeate flux with TMP where the maximum volume concentration factor reached 2.5 times of the initial volume when feed flow rate and TMP were 7 liters/m²/min and 1 bar, respectively. It was optimal operating conditions before TFF system undergone pressure independent regime. In addition, the diafiltration volume was 14 times of the concentrated volume prior to performing a further anion chromatography process.

Keywords: concentration polarization, DNA vaccines, optimization, permeate flux, pressure dependent, tangential flow filtration (TFF), trans membrane pressure (TMP)

Procedia PDF Downloads 121
988 Effects of Novel Protease Enzyme From Bacillus subtilis on Low Protein and Low Energy Guar Meal (Cyamopsis tetragonoloba) Meal Based Diets on Performance and Nutrients Digestibility in Broilers

Authors: Aqeel Ahmed Shad, Tanveer Ahmad, Muhammad Farooq Iqbal, Muhammad Javaid Asad

Abstract:

The supplemental effects of novel protease produced from Bacillus subtilis K-5 and beta-mannanase were evaluated on growth performance, carcass characteristics, nutrients digestibility, blood profile and intestinal morphometry of broilers fed guar meal (Cyamopsis tetragonoloba) based diets with reduced Crude Protein (CP), Essential Amino Acids (EAAs), and Metabolizable energy (ME) contents. One-day old Ross 308 broiler chicks (n=360) were randomly allotted to thirty six experimental units in a way that each of the nine dietary treatments received four replicates with ten birds per replicate. A control diet without guar meal (0GM) was formulated with standard nutrient specifications of Ross 308 for the starter and finisher phases. Two negative control diets, one with 5% (5GM) and second with 10% (10GM) guar meal, were formulated with reduction of 5% CP, 5% EAAs and 80 Kcal/kg ME. These three basal diets (no enzyme) were supplemented with novel protease enzyme (PROT) and commercial beta-mannanase (Beta-M) enzyme. The birds were reared up to 35d of age. The data on weekly body weight gain (BWG) and feed intake were recorded to compute feed:gain for the starter (0-21d) and finisher (22-35d) phases. At the end of 35d of experimental period, four birds per experimental unit were randomly selected for blood samples collection and later slaughtered for ileal digesta, intestinal tract and carcass trait sampling. The data on overall performance (1-35d) indicated improved (P<0.05) BWG and feed:gain in birds supplemented with PROT (1.41% and 1.67) and Beta-M (2.79% and 1.64) than non-supplemented groups. Improved (P<0.05) carcass yield, breast meat yield and thigh meat yield were noted with the supplementation of Beta-M. However, non-significant (P>0.05) effect on carcass traits was noted in broiler fed guar meal based PROT supplemented diets. Crude protein digestibility, nitrogen retention (Nret) and apparent digestibility coefficient for nitrogen (ADCN) were improved (P<0.05) only with PROT. The improvement in apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen (AMEn) was noted (P<0.05) with both supplemented enzymes. However, no effect (P>0.05) of enzyme addition was noted on blood glucose, total protein and cholesterol. Improved villus height of duodenum, jejunum and ileum was noted (P<0.05) with the addition of both enzymes. The EAAs digestibility was improved (P<0.05) only with PROT. In conclusion, beta-mannanase and protease supplementation better improved the overall bird performance in low nutrient profile guar meal based diets than non-supplemented diets.

Keywords: novel protease, guar meal, broilers, low protein diets, low metabolizable energy diets, nutrients digestibility

Procedia PDF Downloads 32
987 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification

Authors: Zahrasadat Hosseini, Jie Yuan

Abstract:

Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.

Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping

Procedia PDF Downloads 52
986 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification

Authors: Zahrasadat Hosseini, Jie Yuan

Abstract:

Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices.

Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping

Procedia PDF Downloads 56
985 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles

Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica

Abstract:

Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.

Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation

Procedia PDF Downloads 266
984 Development of a Two-Step 'Green' Process for (-) Ambrafuran Production

Authors: Lucia Steenkamp, Chris V. D. Westhuyzen, Kgama Mathiba

Abstract:

Ambergris, and more specifically its oxidation product (–)-ambrafuran, is a scarce, valuable, and sought-after perfumery ingredient. The material is used as a fixative agent to stabilise perfumes in formulations by reducing the evaporation rate of volatile substances. Ambergris is a metabolic product of the sperm whale (Physeter macrocephatus L.), resulting from intestinal irritation. Chemically, (–)-ambrafuran is produced from the natural product sclareol in eight synthetic steps – in the process using harsh and often toxic chemicals to do so. An overall yield of no more than 76% can be achieved in some routes, but generally, this is lower. A new 'green' route has been developed in our laboratory in which sclareol, extracted from the Clary sage plant, is converted to (–)-ambrafuran in two steps with an overall yield in excess of 80%. The first step uses a microorganism, Hyphozyma roseoniger, to bioconvert sclareol to an intermediate diol using substrate concentrations up to 50g/L. The yield varies between 90 and 67% depending on the substrate concentration used. The purity of the diol product is 95%, and the diol is used without further purification in the next step. The intermediate diol is then cyclodehydrated to the final product (–)-ambrafuran using a zeolite, which is not harmful to the environment and is readily recycled. The yield of the product is 96%, and following a single recrystallization, the purity of the product is > 99.5%. A preliminary LC-MS study of the bioconversion identified several intermediates produced in the fermentation broth under oxygen-restricted conditions. Initially, a short-lived ketone is produced in equilibrium with a more stable pyranol, a key intermediate in the process. The latter is oxidised under Norrish type I cleavage conditions to yield an acetate, which is hydrolysed either chemically or under lipase action to afford the primary fermentation product, an intermediate diol. All the intermediates identified point to the likely CYP450 action as the key enzyme(s) in the mechanism. This invention is an exceptional example of how the power of biocatalysis, combined with a mild, benign chemical step, can be deployed to replace a total chemical synthesis of a specific chiral antipode of a commercially relevant material.

Keywords: ambrafuran, biocatalysis, fragrance, microorganism

Procedia PDF Downloads 174
983 Manganese Imidazole Complexes: Electrocatalytic Hydrogen Production

Authors: Vishakha Kaim, Mookan Natarajan, Sandeep Kaur-Ghumaan

Abstract:

Hydrogen is one of the most abundant elements present on earth’s crust and considered to be the simplest element in existence. It is not found naturally as a gas on earth and thus has to be manufactured. Hydrogen can be produced from a variety of sources, i.e., water, fossil fuels, or biomass and it is a byproduct of many chemical processes. It is also considered as a secondary source of energy commonly referred to as an energy carrier. Though hydrogen is not widely used as a fuel, it still has the potential for greater use in the future as a clean and renewable source of energy. Electrocatalysis is one of the important source for the production of hydrogen which could contribute to this prominent challenge. Metals such as platinum and palladium are considered efficient for hydrogen production but with limited applications. As a result, a wide variety of metal complexes with earth abundant elements and varied ligand environments have been explored for the electrochemical production of hydrogen. In nature, [FeFe] hydrogenase enzyme present in DesulfoVibrio desulfuricans and Clostridium pasteurianum catalyses the reversible interconversion of protons and electrons into dihydrogen. Since the first structure for the enzyme was reported in 1990s, a range of iron complexes has been synthesized as structural and functional mimics of the enzyme active site. Mn is one of the most desirable element for sustainable catalytic transformations, immediately behind Fe and Ti. Only limited number manganese complexes have been reported in the last two decades as catalysts for proton reduction. Furthermore, redox reactions could be carried out in a facile manner, due to the capability of manganese complexes to be stable at different oxidation states. Herein are reported, four µ2-thiolate bridged manganese complexes [Mn₂(CO)₆(μ-S₂N₄C₁₄H₁₀)] 1, [Mn₂(CO)7(μ- S₂N₄C₁₄H₁₀)] 2, Mn₂(CO)₆(μ-S₄N₂C₁₄H₁₀)] 3 and [Mn₂(CO)(μ- S₄N₂C₁₄H₁₀)] 4 have been synthesized and characterized. The cyclic voltammograms of the complexes displayed irreversible reduction peaks in the range - 0.9 to -1.3 V (vs. Fc⁺/Fc in acetonitrile at 0.1 Vs⁻¹). The complexes were catalytically active towards proton reduction in the presence of trifluoroacetic acid as seen from electrochemical investigations.

Keywords: earth abundant, electrocatalytic, hydrogen, manganese

Procedia PDF Downloads 140
982 Characterization of the Queuine Salvage Pathway From Bacteria in the Human Parasite Entamoeba Histolytica

Authors: Lotem Sarid, Meirav Trebicz-Geffen, Serge Ankri

Abstract:

Queuosine (Q) is a naturally occurring modified nucleoside that occurs in the first position of transfer RNA anticodons such as Asp, Asn, His, and Tyr. As eukaryotes lack pathways to synthesize queuine, the nucleobase of queuosine, they must obtain it from their diet or gut microbiota. Our previous work investigated the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica and defined the enzyme EhTGT responsible for its incorporation into tRNA. To our best knowledge, it is unknown how E. histolytica salvages Q from gut bacteria. We used N-acryloyl-3-aminophenylboronic acid (APB) PAGE analysis to demonstrate that E. histolytica trophozoites can salvage queuine from Q or E. coli K12 but not from the modified E. coli QueC strain, which cannot produce queuine. Next, we examined the role of EhDUF2419, a protein with homology to DNA glycosylase, as a queuine salvage enzyme in E. histolytica. When EhDUF2419 expression is silenced, it inhibits Q's conversion to queuine, resulting in a decrease in Q-tRNA levels. We also observed that Q protects control trophozoites from oxidative stress (OS), but not siEhDUF2419 trophozoites. Overall, our data reveal that EhDUF2419 is central for the salvaging of queuine from bacteria and for the resistance of the parasite to OS.

Keywords: entamoeba histolytica, epitranscriptomics, gut microbiota, queuine, queuosine, response to oxidative stress, tRNA modification.

Procedia PDF Downloads 94
981 Fluorometric Aptasensor: Evaluation of Stability and Comparison to Standard Enzyme-Linked Immunosorbent Assay

Authors: J. Carlos Kuri, Varun Vij, Raymond J. Turner, Orly Yadid-Pecht

Abstract:

Celiac disease (CD) is an immune system disorder that is triggered by ingesting gluten. As a gluten-free (GF) diet has become a concern of many people for health reasons, a gold standard had to be nominated. Enzyme-linked immunosorbent assay (ELISA) has taken the seat of this role. However, multiple limitations were discovered, and with that, the desire for an alternative method now exists. Nucleic acid-based aptamers have become of great interest due to their selectivity, specificity, simplicity, and rapid-testing advantages. However, fluorescence-based aptasensors have been tagged as unstable, but lifespan details are rarely stated. In this work, the lifespan stability of a fluorescence-based aptasensor is shown over an 8-week-long study displaying the accuracy of the sensor and false negatives. This study follows 22 different samples, including GF and gluten-rich (GR) and soy sauce products, off-the-shelf products, and reference material from laboratories, giving a total of 836 tests. The analysis shows an accuracy of correctly classifying GF and GR products of 96.30% and 100%, respectively when the protocol is augmented with molecular sieves. The overall accuracy remains around 94% within the first four weeks and then decays to 63%.

Keywords: aptasensor, PEG, rGO, FAM, RM, ELISA

Procedia PDF Downloads 102
980 Process Evaluation for a Trienzymatic System

Authors: C. Müller, T. Ortmann, S. Scholl, H. J. Jördening

Abstract:

Multienzymatic catalysis can be used as an alternative to chemical synthesis or hydrolysis of polysaccharides for the production of high value oligosaccharides from cheap resources such as sucrose. However, development of multienzymatic processes is complex, especially with respect to suitable conditions for enzymes originating from different organisms. Furthermore, an optimal configuration of the catalysts in a reaction cascade has to be found. These challenges can be approached by design of experiments. The system investigated in this study is a trienzymatic catalyzed reaction which results in laminaribiose production from sucrose and comprises covalently immobilized sucrose phosphorylase (SP), glucose isomerase (GI) and laminaribiose phosphorylase (LP). Operational windows determined with design of experiments and kinetic data of the enzymes were used to optimize the enzyme ratio for maximum product formation and minimal production of byproducts. After adjustment of the enzyme activity ratio to 1: 1.74: 2.23 (SP: LP: GI), different process options were investigated in silico. The considered options included substrate dependency, the use of glucose as co-substrate and substitution of glucose isomerase by glucose addition. Modeling of batch operation in a stirred tank reactor led to yields of 44.4% whereas operation in a continuous stirred tank reactor resulted in product yields of 22.5%. The maximum yield in a bienzymatic system comprised of sucrose phosphorylase and laminaribiose phosphorylase was 67.7% with sucrose and different amounts of glucose as substrate. The experimental data was in good compliance with the process model for batch operation. The continuous operation will be investigated in further studies. Simulation of operational process possibilities enabled us to compare various operational modes regarding different aspects such as cost efficiency, with the minimum amount of expensive and time-consuming practical experiments. This gives us more flexibility in process implementation and allows us, for example, to change the production goal from laminaribiose to higher oligosaccharides.

Keywords: design of experiments, enzyme kinetics, multi-enzymatic system, in silico process development

Procedia PDF Downloads 305
979 High Acid-Stable α-Amylase Production by Milk in Liquid Culture

Authors: Shohei Matsuo, Saki Mikai, Hiroshi Morita

Abstract:

Objectives: Shochu is a popular Japanese distilled spirits. In the production of shochu, the filamentous fungus Aspergillus kawachii has traditionally been used. A. kawachii produces two types of starch hydrolytic enzymes, α-amylase (enzymatic liquefaction) and glucoamylase (enzymatic saccharification). Liquid culture system is a relatively easy microorganism to ferment with relatively low cost of production compared for solid culture. In liquid culture system, acid-unstable α-amylase (α-A) was produced abundantly, but, acid-stable α-amylase (Aα-A) was not produced. Since there is high enzyme productivity, most in shochu brewing have been adopted by a solid culture method. In this study, therefore, we investigated production of Aα-A in liquid culture system. Materials and methods: Microorganism Aspergillus kawachii NBRC 4308 was used. The mold was cultured at 30 °C for 7~14 d to allow formation of conidiospores on slant agar medium. Liquid Culture System: A. kawachii was cultured in a 100 ml of following altered SLS medium: 1.0 g of rice flour, 0.1 g of K2HPO4, 0.1 g of KCl, 0.6 g of tryptone, 0.05 g of MgSO4・7H2O, 0.001 g of FeSO4・7H2O, 0.0003 g of ZnSO4・7H2O, 0.021 g of CaCl2, 0.33 of citric acid (pH 3.0). The pH of the medium was adjusted to the designated value with 10 % HCl solution. The cultivation was shaking at 30 °C and 200 rpm for 72 h. It was filtered to obtain a crude enzyme solution. Aα-A assay: The crude enzyme solution was analyzed. An acid-stable α-amylase activity was carried out using an α-amylase assay kit (Kikkoman Corporation, Noda, Japan). It was conducted after adding 9 ml of 100 mM acetate buffer (pH 3.0) to 1 ml of the culture product supernatant and acid treatment at 37°C for 1 h. One unit of a-amylase activity was defined as the amount of enzyme that yielded 1 mmol of 2-chloro-4-nitrophenyl 6-azide-6-deoxy-b-maltopentaoside (CNP) per minute. Results and Conclusion: We experimented with co-culture of A. kawachii and lactobacillus in order to get control of pH in altered SLS medium. However, high production of acid-stable α-amylase was not obtained. We experimented with yoghurt or milk made an addition to liquid culture. The result indicated that high production of acid-stable α-amylase (964 U/g-substrate) was obtained when milk made an addition to liquid culture. Phosphate concentration in the liquid medium was a major cause of increased acid-stable α-amylase activity. In liquid culture, acid-stable α-amylase activity was enhanced by milk, but Fats and oils in the milk were oxidized. In addition, Tryptone is not approved as a food additive in Japan. Thus, alter SLS medium added to skim milk excepting for the fats and oils in the milk instead of tryptone. The result indicated that high production of acid-stable α-amylase was obtained with the same effect as milk.

Keywords: acid-stable α-amylase, liquid culture, milk, shochu

Procedia PDF Downloads 257
978 Application of Liquid Chromatographic Method for the in vitro Determination of Gastric and Intestinal Stability of Pure Andrographolide in the Extract of Andrographis paniculata

Authors: Vijay R. Patil, Sathiyanarayanan Lohidasan, K. R. Mahadik

Abstract:

Gastrointestinal stability of andrographolide was evaluated in vitro in simulated gastric (SGF) and intestinal (SIF) fluids using a validated HPLC-PDA method. The method was validated using a 5μm ThermoHypersil GOLD C18column (250 mm × 4.0 mm) and mobile phase consisting of water: acetonitrile; 70: 30 (v/v) delivered isocratically at a flow rate of 1 mL/min with UV detection at 228 nm. Andrographolide in pure form and extract Andrographis paniculata was incubated at 37°C in an incubator shaker in USP simulated gastric and intestinal fluids with and without enzymes. Systematic protocol as per FDA Guidance System was followed for stability study and samples were assayed at 0, 15, 30 and 60 min intervals for gastric and at 0, 15, 30, 60 min, 1, 2 and 3 h for intestinal stability study. Also, the stability study was performed up to 24 h to see the degradation pattern in SGF and SIF (with enzyme and without enzyme). The developed method was found to be accurate, precise and robust. Andrographolide was found to be stable in SGF (pH ∼ 1.2) for 1h and SIF (pH 6.8) up to 3 h. The relative difference (RD) of amount of drug added and found at all time points was found to be < 3%. The present study suggests that drug loss in the gastrointestinal tract takes place may be by membrane permeation rather than a degradation process.

Keywords: andrographolide, Andrographis paniculata, in vitro, stability, gastric, Intestinal HPLC-PDA

Procedia PDF Downloads 220
977 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network

Authors: P. Singh, R. M. Banik

Abstract:

Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.

Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network

Procedia PDF Downloads 398
976 Effects of Nitrogen and Arsenic on Antioxidant Enzyme Activities and Photosynthetic Pigments in Safflower (Carthamus tinctorius L.)

Authors: Mostafa Heidari

Abstract:

Nitrogen fertilization has played a significant role in increasing crop yield, and solving problems of hunger and malnutrition worldwide. However, excessive of heavy metals such as arsenic can interfere on growth and reduced grain yield. In order to investigate the effects of different concentrations of arsenic and nitrogen fertilizer on photosynthetic pigments and antioxidant enzyme activities in safflower (cv. Goldasht), a factorial plot experiment as randomized complete block design with three replication was conducted in university of Zabol. Arsenic treatment included: A1= control or 0, A2=30, A3=60 and A4=90 mg. kg-1 soil from the Na2HASO4 source and three nitrogen levels including W1=75, W2=150 and W3=225 kg.ha-1 from urea source. Results showed that, arsenic had a significant effect on the activity of antioxidant enzymes. By increasing arsenic levels from A1 to A4, the activity of ascorbate peroxidase (APX) and gayacol peroxidase (GPX) increased and catalase (CAT) was decreased. In this study, arsenic had no significant on chlorophyll a, b and cartoneid content. Nitrogen and interaction between arsenic and nitrogen treatment, except APX, had significant effect on CAT and GPX. The highest GPX activity was obtained at A4N3 treatment. Nitrogen increased the content of chlorophyll a, b and cartoneid.

Keywords: arsenic, physiological parameters, oxidative enzymes, nitrogen

Procedia PDF Downloads 414
975 Effect of Anion and Amino Functional Group on Resin for Lipase Immobilization with Adsorption-Cross Linking Method

Authors: Heri Hermansyah, Annisa Kurnia, A. Vania Anisya, Adi Surjosatyo, Yopi Sunarya, Rita Arbianti, Tania Surya Utami

Abstract:

Lipase is one of biocatalyst which is applied commercially for the process in industries, such as bioenergy, food, and pharmaceutical industry. Nowadays, biocatalysts are preferred in industries because they work in mild condition, high specificity, and reduce energy consumption (high pressure and temperature). But, the usage of lipase for industry scale is limited by economic reason due to the high price of lipase and difficulty of the separation system. Immobilization of lipase is one of the solutions to maintain the activity of lipase and reduce separation system in the process. Therefore, we conduct a study about lipase immobilization with the adsorption-cross linking method using glutaraldehyde because this method produces high enzyme loading and stability. Lipase is immobilized on different kind of resin with the various functional group. Highest enzyme loading (76.69%) was achieved by lipase immobilized on anion macroporous which have anion functional group (OH). However, highest activity (24,69 U/g support) through olive oil emulsion method was achieved by lipase immobilized on anion macroporous-chitosan which have amino (NH2) and anion (OH-) functional group. In addition, it also success to produce biodiesel until reach yield 50,6% through interesterification reaction and after 4 cycles stable 63.9% relative with initial yield. While for Aspergillus, niger lipase immobilized on anion macroporous-kitosan have unit activity 22,84 U/g resin and yield biodiesel higher than commercial lipase (69,1%) and after 4 cycles stable reach 70.6% relative from initial yield. This shows that optimum functional group on support for immobilization with adsorption-cross linking is the support that contains amino (NH2) and anion (OH-) functional group because they can react with glutaraldehyde and binding with enzyme prevent desorption of lipase from support through binding lipase with a functional group on support.

Keywords: adsorption-cross linking, immobilization, lipase, resin

Procedia PDF Downloads 340
974 Effects of Dietary Copper Supplementation on the Freshwater Prawn, Macrobrachium rosenbergii

Authors: Muralisankar Thirunavukkarasu, Saravana Bhavan Periyakali, Santhanam Perumal

Abstract:

The present study was performed to assess the effects of dietary copper (Cu) on growth, biochemical constituents, digestive enzyme activities, enzymatic antioxidant and metabolic enzymes of the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The Cu was supplemented at 0, 10, 20, 40, 60 and 80 mg kg-1 with the basal diets. Cu supplemented diets were fed to M. rosenbergii PL for a period of 90 days. At the end of the feeding experiment, 40 mg kg-1 Cu supplemented feeds fed PL showed significant (P < 0.05) improvement in survival, growth, digestive enzyme activities and concentrations of biochemical constituents. However, PL fed with 60 to 80 mg Cu kg-1 showed negative performance. Activities of enzymatic antioxidants, metabolic enzymes and lipid peroxidation in the muscle and hepatopancreas showed insignificant alterations (P > 0.05) up to 40 mg kg-1 Cu supplemented feeds fed PL. Whereas, 60 and 80 mg of Cu kg-1 supplemented feeds fed PL showed significant alterations on these antioxidants and metabolic enzymes levels. It indicates that beyond 40 mg Cu kg-1 diets were produced some toxic to M. rosenbergii PL. Therefore, the present study suggests that 40 mg Cu kg-1 can be supplemented in the diets of M. rosenbergii PL for regulating better survival and growth.

Keywords: antioxidants, biochemical constituents, copper, growth, Macrobrachium rosenbergii

Procedia PDF Downloads 192
973 X-Ray Crystallographic Studies on BPSL2418 from Burkholderia pseudomallei

Authors: Mona Alharbi

Abstract:

Melioidosis has emerged as a lethal disease. Unfortunately, the molecular mechanisms of virulence and pathogenicity of Burkholderia pseudomallei remain unknown. However, proteomics research has selected putative targets in B. pseudomallei that might play roles in the B. pseudomallei virulence. BPSL 2418 putative protein has been predicted as a free methionine sulfoxide reductase and interestingly there is a link between the level of the methionine sulfoxide in pathogen tissues and its virulence. Therefore in this work, we describe the cloning expression, purification, and crystallization of BPSL 2418 and the solution of its 3D structure using X-ray crystallography. Also, we aimed to identify the substrate binding and reduced forms of the enzyme to understand the role of BPSL 2418. The gene encoding BPSL2418 from B. pseudomallei was amplified by PCR and reclone in pETBlue-1 vector and transformed into E. coli Tuner DE3 pLacI. BPSL2418 was overexpressed using E. coli Tuner DE3 pLacI and induced by 300μM IPTG for 4h at 37°C. Then BPS2418 purified to better than 95% purity. The pure BPSL2418 was crystallized with PEG 4000 and PEG 6000 as precipitants in several conditions. Diffraction data were collected to 1.2Å resolution. The crystals belonged to space group P2 21 21 with unit-cell parameters a = 42.24Å, b = 53.48Å, c = 60.54Å, α=γ=β= 90Å. The BPSL2418 binding MES was solved by molecular replacement with the known structure 3ksf using PHASER program. The structure is composed of six antiparallel β-strands and four α-helices and two loops. BPSL2418 shows high homology with the GAF domain fRMsrs enzymes which suggest that BPSL2418 might act as methionine sulfoxide reductase. The amino acids alignment between the fRmsrs including BPSL 2418 shows that the three cysteines that thought to catalyze the reduction are fully conserved. BPSL 2418 contains the three conserved cysteines (Cys⁷⁵, Cys⁸⁵ and Cys¹⁰⁹). The active site contains the six antiparallel β-strands and two loops where the disulfide bond formed between Cys⁷⁵ and Cys¹⁰⁹. X-ray structure of free methionine sulfoxide binding and native forms of BPSL2418 were solved to increase the understanding of the BPSL2418 catalytic mechanism.

Keywords: X-Ray Crystallography, BPSL2418, Burkholderia pseudomallei, Melioidosis

Procedia PDF Downloads 221
972 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga

Abstract:

Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.

Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC

Procedia PDF Downloads 232
971 Tetra Butyl Ammonium Cyanate Mediated Selective Synthesis of Sulfonyltriuret and Their Investigation towards Trypsin Protease Modulation

Authors: Amarjyoti Das Mahapatra, Umesh Kumar, Bhaskar Datta

Abstract:

A pseudo peptide can mimic the biological or structural properties of natural peptides. They have become an increasing attention in medicinal chemistry because of their interesting advantages like more bioavailability and less biodegradation than compare to the physiologically active native peptides which increase their therapeutic applications. Many biologically active compounds contain urea as functional groups, and they have improved pharmacokinetic properties because of their bioavailability and metabolic stability. Recently we have reported a single-step synthesis of sulfonyl urea and sulfonyltriuret from sulfonyl chloride and sodium cyanate. But the yield of sulfonyltriuret was less around 40-60% because of the formation of other products like sulfonamide and sulfonylureas. In the present work, we mainly focused on the selective synthesis of sulfonyltriuret using tetrabutylammonium cyanate and sulfonyl chloride. More precisely, we are interested in the controlled synthesis of oligomeric urea mainly sulfonyltriuret as a new class of pseudo peptide and their application as protease modulators. The distinctive architecture of these molecules in the form of their pseudo-peptide backbone offers promise as a potential pharmacophore. The synthesized molecules have been screened on trypsin enzyme, and we observed that these molecules are the efficient modulator of trypsin enzyme.

Keywords: pseudo peptide, pharmacophore, sulfonyltriuret, trypsin

Procedia PDF Downloads 140
970 Comparative Study of Stability of Crude and Purified Red Pigments of Pokeberry (Phytolacca Americana L.) Fruits

Authors: Nani Mchedlishvili, Nino Omiadze, Marine Abutidze, Jose Neptuno Rodriguez-Lopez, Tinatin Sadunishvili, Nikoloz Pruidze, Giorgi Kvesitadze

Abstract:

Recently, there is an increased interest in the development of food natural colorants as alternatives to synthetic dyes because of both legislative action and consumer concern. Betalains are widely used in the food industry as an alternative of synthetic colorants. The interest of betalains are caused not only by their coloring effect but also by their beneficial properties. The aim of the work was to study of stability of crude and purified red pigments of pokeberry (Phytolacca america L.). The pokeberry fruit juice was filtrated and concentrated by rotary vacuum evaporator up to 25% and the concentrated juice was passed through the Sepadex-25(fine) column (20×1.1 cm). From the column the pigment elution rate was 18 ml/hr. 1.5ml fractions of pigment were collected. In the fractions the coloring substances were determined using CuS04 x 7 H2O as a standard. From the Sephadex G-25 column only one fraction of the betalain red pigment was eluted with the absorption maximum at 538 nm. The degree of pigment purification was 1.6 and pigment yield from the column was 15 %. It was shown that thermostability of pokeberry fruit red pigment was significantly decreased after the purification. For example, during incubation at 100C for 10 min crude pigment retained 98 % of its color while under the same conditions only 72% of the color of purified pigment was retained. The purified pigment was found to be characterized by less storage stability too. The storage of the initial crude juice and the pigment fraction obtained after the gelfiltration for 10 days at 4°C showed the lost of color by 29 and 74 % respectively. From the results obtained, it can be concluded that during the gelfiltration the pokeberry fruit red pigment gets separated from such substances that cause its stabilization in the crude juice.

Keywords: betalains, gelfiltration, pokeberry fruit, stability

Procedia PDF Downloads 246
969 Quality Management of Drinking Water Purification Process in the 15-Liter Container Using Design of Experiment and Process Capability Analysis

Authors: Chanchai Wimon, Polin Muangngam, Thannapat Nimsumram, Chanin Prombutra, Prasert Aengchuan, Perawat Boonpuek

Abstract:

Cleaning water containers is essential for drinking water production to prevent contamination and residual chemicals from washing liquid. Water distribution divisions in Thailand are facing a critical problem with residual contamination in 15-liter drinking water containers due to dust and residual chemicals (TDS value > 200) after normal washing. A thorough washing process is required before filling the purified water into each container. Unfortunately, the washing procedure and frequency do not align with the work instructions provided by the health department. The measured Total Dissolved Solids (TDS) value of the remaining water was found to range between 195–202, exceeding the standard TDS for excellent drinking water (50-190 ppm). This research uses the design of experiment technique in statistics to improve the washing process and reduce such contamination. Statistical data from our survey of the cleaning process is collected to identify affecting factors. Washing time and water volume are varied to test the efficiency of the washing process in reducing residual sediment in the water. The result indicates that cleaning the 15-liter container with 2 liters of tap water mixed with 15 milliliters of dishwashing liquid for 3.12 minutes per container is optimal, as the resulting TDS reduces to 189.75, falling within the standard value for good drinking water. This study result would benefit the drinking water industry in implementing a statistically evaluated cleaning procedure without conducting multiple trials, thus saving takt time and production costs.

Keywords: design of experiment, drinking water purification, quality management, production process reliability

Procedia PDF Downloads 15
968 Low Impact Development Strategies Applied in the Water System Planning in the Coastal Eco-Green Campus

Authors: Ying Li, Zaisheng Hong, Weihong Wang

Abstract:

With the rapid enlargement of the size of Chinese universities, newly built campuses are springing up everywhere in recent years. It is urged to build eco-green campus because the role of higher education institutions in the transition to a more sustainable society has been highlighted for almost three decades. On condition that a new campus is usually built on an undeveloped site, where the basic infrastructure is not completed, finding proper strategies in planning and design of the campus becomes a primary concern. Low Impact Development (LID) options have been proposed as an alternative approach to make better use of rainwater in planning and design of an undeveloped site. On the basis of analyzing the natural circumstance, geographic condition, and other relative information, four main LID approaches are coordinated in this study of Hebei Union University, which are ‘Storage’, ‘Retaining’, ‘Infiltration’ and ‘Purification’. ‘Storage’ refers to a big central lake in the campus for rainwater harvesting. ‘Retaining’ means rainwater gardens scattered in the campus, also being known as bioretention areas which mimic the naturally created pools of water, to decrease surface flow runoff. ‘Infiltration’ is designed of grassed swales, which also play a part of floodway channel. ‘Purification’ is known as either natural or artificial wetland to reduce pollutants such as nitrogen and phosphorous in the waterbody. With above mentioned measures dealing with the synthetic use of rainwater in the acid & alkali area in the coastal district, an eco-green campus construction and an ecological sustainability will be realized, which will give us more enlightenment and reference.

Keywords: newly built campus, low impact development, planning design, rainwater reuse

Procedia PDF Downloads 219
967 The Determination of Aflatoxins in Paddy and Milled Fractions of Rice in Guyana: Preliminary Results

Authors: Donna M. Morrison, Lambert Chester, Coretta A. N. Samuels, David R. Ledoux

Abstract:

A survey was conducted in the five rice-growing regions in Guyana to determine the presence of aflatoxins in multiple fractions of rice in June/October 2015 growing season. The fractions were paddy, steamed paddy, cargo rice, white rice and parboiled rice. Samples were analyzed by High Performance Liquid Chromatography. A subset of the samples was further analyzed by enzyme-linked immunosorbent assay (ELISA) for concurrence. All analyses were conducted at the University of Missouri, USA. Of the 186 samples tested, 16 had aflatoxin concentrations greater than 20 ppb the recommended limit for aflatoxins in food according to the United States Food and Drug Administration. An additional three samples had aflatoxin B1 concentrations greater than the European Union Commission maximum levels for aflatoxin B1 in rice at 5 µg/kg and total aflatoxins (B1, B2, G1 and G2) at 10 µg/kg. The survey indicates that there is no widespread aflatoxin problem in rice in Guyana. The incidence of aflatoxins appears to be localized.

Keywords: aflatoxin, enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), rice fractions

Procedia PDF Downloads 239
966 Enzymatic Hydrolysis of Sugar Cane Bagasse Using Recombinant Hemicellulases

Authors: Lorena C. Cintra, Izadora M. De Oliveira, Amanda G. Fernandes, Francieli Colussi, Rosália S. A. Jesuíno, Fabrícia P. Faria, Cirano J. Ulhoa

Abstract:

Xylan is the main component of hemicellulose and for its complete degradation is required cooperative action of a system consisting of several enzymes including endo-xylanases (XYN), β-xylosidases (XYL) and α-L-arabinofuranosidases (ABF). The recombinant hemicellulolytic enzymes an endoxylanase (HXYN2), β-xylosidase (HXYLA), and an α-L-arabinofuranosidase (ABF3) were used in hydrolysis tests. These three enzymes are produced by filamentous fungi and were expressed heterologously and produced in Pichia pastoris previously. The aim of this work was to evaluate the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of sugarcane bagasse (SCB). The interaction between the three recombinant enzymes during SCB pre-treated by steam explosion hydrolysis was performed with different concentrations of HXYN2, HXYLA and ABF3 in different ratios in according to a central composite rotational design (CCRD) 23, including six axial points and six central points, totaling 20 assays. The influence of the factors was assessed by analyzing the main effects and interaction between the factors, calculated using Statistica 8.0 software (StatSoft Inc. Tulsa, OK, USA). The Pareto chart was constructed with this software and showed the values of the Student’s t test for each recombinant enzyme. It was considered as response variable the quantification of reducing sugars by DNS (mg/mL). The Pareto chart showed that the recombinant enzyme ABF3 exerted more significant effect during SCB hydrolysis, with higher concentrations and with the lowest concentration of this enzyme. It was performed analysis of variance according to Fisher method (ANOVA). In ANOVA for the release of reducing sugars (mg/ml) as the variable response, the concentration of ABF3 showed significance during hydrolysis SCB. The result obtained by ANOVA, is in accordance with those presented in the analysis method based on the statistical Student's t (Pareto chart). The degradation of the central chain of xylan by HXYN2 and HXYLA was more strongly influenced by ABF3 action. A model was obtained, and it describes the performance of the interaction of all three enzymes for the release of reducing sugars, and can be used to better explain the results of the statistical analysis. The formulation capable of releasing the higher levels of reducing sugars had the following concentrations: HXYN2 with 600 U/g of substrate, HXYLA with 11.5 U.g-1 and ABF3 with 0.32 U.g-1. In conclusion, the recombinant enzyme that has a more significant effect during SCB hydrolysis was ABF3. It is noteworthy that the xylan present in the SCB is arabinoglucoronoxylan, due to this fact debranching enzymes are important to allow access of enzymes that act on the central chain.

Keywords: experimental design, hydrolysis, recombinant enzymes, sugar cane bagasse

Procedia PDF Downloads 198
965 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey

Abstract:

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

Keywords: genus Geobacillus, NADPH/NADH-dependent reductase, selenium nanoparticles, biosynthesis

Procedia PDF Downloads 286
964 Antioxidant Potential and Inhibition of Key Enzymes Linked to Alzheimer's Diseases and Diabetes Mellitus by Monoterpene-Rich Essential Oil from Sideritis Galatica Bornm. Endemic to Turkey

Authors: Gokhan Zengin, Cengiz Sarikurkcu, Abdurrahman Aktumsek, Ramazan Ceylan

Abstract:

The present study was designated to characterize the essential oil from S. galatica (SGEOs) and evaluate its antioxidant and enzyme inhibitory activities. Antioxidant capacity were tested different methods including free radical scavenging (DPPH, ABTS and NO), reducing power (FRAP and CUPRAC), metal chelating and phosphomolybdenum. Inhibitory activities were analyzed on acetylcholiesterase, butrylcholinesterase, α-amylase and α-glucosidase. SGEOs were chemically analyzed and identified by gas chromatography (GC) and gas chromatography/mass spectrophotometry (GC/MS). 23 components, representing 98.1% of SGEOs were identified. Monoterpene hydrocarbons (74.1%), especially α- (23.0%) and β-pinene (32.2%), were the main constituents in SGEOs. The main sesquiterpene hydrocarbons were β-caryophyllene (16.9%), Germacrene-D (1.2%) and Caryophyllene oxide (1.2%), respectively. Generally, SGEOs has shown moderate free radical, reducing power, metal chelating and enzyme inhibitory activities. These activities related to chemical profile in SGEOs. Our findings supported that the possible utility of SGEOs is a source of natural agents for food, cosmetics or pharmaceutical industries.

Keywords: sideritis galatica, antioxidant, monoterpenes, cholinesterase, anti-diabetic

Procedia PDF Downloads 395
963 Cloning of Strawberry’s Malonyltransferase Genes and Characterisation of Their Enzymes

Authors: Xiran Wang, Johanna Trinkl, Thomas Hoffmann, Wilfried Schwab

Abstract:

Malonyltransferases (MATs) are enzymes that play a key role in the biosynthesis of secondary metabolites in plants, such as flavonoids and anthocyanins. As a kind of flavonoid-rich fruit, strawberries are an ideal model to study MATs. From Goodberry metabolome data, in the hybrid generation of 2 strawberries various, Fragaria × ananassa cv. 'Senga Sengana' and 'Candonga', we found the malonylated flavonoid concentration is significantly higher in 'Senga Sengana' compared with 'Candonga'. Therefore, we aimed to identify and characterize the malonyltransferases responsible for the different malonylated flavonoid concentrations in two different strawberry cultivars. In this study, we have found 6 MATs via genome mapping, metabolome analysis, gene cloning, and enzyme assay from strawberries, which catalyzed the malonylation of flavonoid substrates: quercetin-3-glucoside, kaempferol-3-glucoside, pelargonidin-3-glucoside, and cyanidin-3-glucoside. All four compounds reacted with FaMATs to varying degrees. These MATs have important implication into strawberries’ flavonoid biosynthesis, and also provide insights into insights into flavonoid biosynthesis, potential applications in agriculture, plant science, and pharmacy, and information on the regulation of secondary metabolism in plants.

Keywords: malonyltransferase, strawberry, flavonoid biosynthesis, enzyme assay

Procedia PDF Downloads 92
962 In situ Growth of ZIF-8 on TEMPO-Oxidized Cellulose Nanofibril Film and Coated with Pectin for pH and Enzyme Dual-Responsive Controlled Release Active Packaging

Authors: Tiantian Min, Chuanxiang Cheng, Jin Yue

Abstract:

The growth and reproduction of microorganisms in food packaging can cause food decay and foodborne diseases, which pose a serious threat to the health of consumers and even cause serious economic losses. Active food packaging containing antibacterial bioactive compounds is a promising strategy for extending the shelf life of products and maintaining the food quality, as well as reducing the food waste. However, most active packaging can only act as slow-release effect for antimicrobials, which causes the release rate of antimicrobials not match the growth rate of microorganisms. Stimuli-responsive active packaging materials based on biopolymeric substrates and bioactive substances that respond to some biological and non-biological trigger factors provide more opportunities for fresh food preservation. The biological stimuli factors such as relative humidity, pH and enzyme existed in the exudate secreted by microorganisms have been expected to design food packaging materials. These stimuli-responsive materials achieved accurate release or delivery of bioactive substances at specific time and appropriate dose. Recently, metal-organic-frameworks (MOFs) nanoparticles become attractive carriers to enhance the efficiency of bioactive compounds or drugs. Cellulose nanofibrils have been widely applied for film substrates due to their biodegradability and biocompatibility. The abundant hydroxyl groups in cellulose can be oxidized to carboxyl groups by TEMPO, making it easier to anchoring MOFs and to be further modification. In this study, a pH and enzyme dual-responsive CAR@ZIF-8/TOCNF/PE film was fabricated by in-situ growth of ZIF-8 nanoparticles onto TEMPO-oxidized cellulose (TOCNF) film and further coated with pectin (PE) for stabilization and controlled release of carvacrol (CAR). The enzyme triggered release of CAR was achieved owing to the degradation of pectin by pectinase secreted by microorganisms. Similarly, the pH-responsive release of CAR was attributed to the unique skeleton degradation of ZIF-8, further accelerating the release of CAR from the topological structure of ZIF-8. The composite film performed excellent crystallinity and adsorb ability confirmed by X-ray diffraction and BET analysis, and the inhibition efficiency against Escherichia coli, Staphylococcus aureus and Aspergillus niger reached more than 99%. The composite film was capable of releasing CAR when exposure to dose-dependent enzyme (0.1, 0.2, and 0.3 mg/mL) and acidic condition (pH = 5). When inoculated 10 μL of Aspergillus niger spore suspension on the equatorial position of mango and raspberries, this composite film acted as packaging pads effectively inhibited the mycelial growth and prolonged the shelf life of mango and raspberries to 7 days. Such MOF-TOCNF based film provided a targeted, controlled and sustained release of bioactive compounds for long-term antibacterial activity and preservation effect, which can also avoid the cross-contamination of fruits.

Keywords: active food packaging, controlled release, fruit preservation, in-situ growth, stimuli-responsive

Procedia PDF Downloads 30
961 Analysis of Histamine Content in Selected Food Products from the Serbian Market

Authors: Brizita Djordjevic, Bojana Vidovic, Milica Zrnic, Uros Cakar, Ivan Stankovic, Davor Korcok, Sladjana Sobajic

Abstract:

Histamine is a biogenic amine, which is formed by enzymatic decarboxylation from the amino acid histidine. It can be found in foods such as fish and fish products, meat and fermented meat products, cheese, wine and beer. The presence of histamine in these foods can indicate microbiological spoilage or poor manufacturing processes. The consumption of food containing large amounts of histamine can have toxicological consequences. In 62 food products (31 canned fish products, 19 wines and 12 cheeses) from the market of Serbia the content of histamine was determined using enzyme-linked immunosorbent assay (ELISA) test kit according to the manufacturer's instructions (Immunolab GmbH, Kassel, Germany). The detection limits of this assay were 20 µg/kg for fish and cheese and 4 µg/L for wine. The concentration of histamine varied between 0.16-207 mg/kg in canned fish products, 0.03-1.47 mg/kg in cheeses and 0.01- 0.18 mg/L in wines. In all analyzed canned fish products the results obtained for the histamine were below the limits set by European and national legislation, so they can be considered acceptable and safe for the health consumers. The levels of histamine in analyzed cheeses and wines were very low and did not pose safety concerns.

Keywords: cheese, enzyme-linked immunosorbent assay, histamine, fish products, wine

Procedia PDF Downloads 422
960 Characterization of the Catalytic and Structural Roles of the Human Hexokinase 2 in Cancer Progression

Authors: Mir Hussain Nawaz, Lyudmila Nedyalkova, Haizhong Zhu, Wael M. Rabeh

Abstract:

In this study, we aim to biochemically and structurally characterize the interactions of human HK2 with the mitochondria in addition to the role of its N-terminal domain in catalysis and stability of the full-length enzyme. Here, we solved the crystal structure of human HK2 in complex with glucose and glucose-6-phosphate (PDB code: 2NZT), where it is a homodimer with catalytically active N- and C-terminal domains linked by a seven-turn α-helix. Different from the inactive N-terminal domains of isozymes 1 and 3, the N- domain of HK2 not only capable to catalyze a reaction but it is responsible for the thermodynamic stabilizes of the full-length enzyme. Deletion of first α-helix of the N-domain that binds to the mitochondria altered the stability and catalytic activity of the full-length HK2. In addition, we found the linker helix between the N- and C-terminal domains to play an important role in controlling the catalytic activity of the N-terminal domain. HK2 is a major step in the regulation of glucose metabolism in cancer making it an ideal target for the development of new anticancer therapeutics. Characterizing the structural and molecular mechanisms of human HK2 and its role in cancer metabolism will accelerate the design and development of new cancer therapeutics that are safe and cancer specific.

Keywords: cancer metabolism, enzymology, drug discovery, protein stability

Procedia PDF Downloads 233