Search results for: ensemble models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6544

Search results for: ensemble models

6424 Review of Models of Consumer Behaviour and Influence of Emotions in the Decision Making

Authors: Mikel Alonso López

Abstract:

In order to begin the process of studying the task of making consumer decisions, the main decision models must be analyzed. The objective of this task is to see if there is a presence of emotions in those models, and analyze how authors that have created them consider their impact in consumer choices. In this paper, the most important models of consumer behavior are analysed. This review is useful to consider an unproblematic background knowledge in the literature. The order that has been established for this study is chronological.

Keywords: consumer behaviour, emotions, decision making, consumer psychology

Procedia PDF Downloads 411
6423 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 248
6422 Reliability Estimation of Bridge Structures with Updated Finite Element Models

Authors: Ekin Ozer

Abstract:

Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.

Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring

Procedia PDF Downloads 178
6421 Detection of Chaos in General Parametric Model of Infectious Disease

Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari

Abstract:

Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.

Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test

Procedia PDF Downloads 294
6420 Innovative Methods of Improving Train Formation in Freight Transport

Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova

Abstract:

The paper is focused on the operational model for transport the single wagon consignments on railway network by using two different models of train formation. The paper gives an overview of possibilities of improving the quality of transport services. Paper deals with two models used in problematic of train formatting - time continuously and time discrete. By applying these models in practice, the transport company can guarantee a higher quality of service and expect increasing of transport performance. The models are also applicable into others transport networks. The models supplement a theoretical problem of train formation by new ways of looking to affecting the organization of wagon flows.

Keywords: train formation, wagon flows, marshalling yard, railway technology

Procedia PDF Downloads 413
6419 Reconsidering Taylor’s Law with Chaotic Population Dynamical Systems

Authors: Yuzuru Mitsui, Takashi Ikegami

Abstract:

The exponents of Taylor’s law in deterministic chaotic systems are computed, and their meanings are intensively discussed. Taylor’s law is the scaling relationship between the mean and variance (in both space and time) of population abundance, and this law is known to hold in a variety of ecological time series. The exponents found in the temporal Taylor’s law are different from those of the spatial Taylor’s law. The temporal Taylor’s law is calculated on the time series from the same locations (or the same initial states) of different temporal phases. However, with the spatial Taylor’s law, the mean and variance are calculated from the same temporal phase sampled from different places. Most previous studies were done with stochastic models, but we computed the temporal and spatial Taylor’s law in deterministic systems. The temporal Taylor’s law evaluated using the same initial state, and the spatial Taylor’s law was evaluated using the ensemble average and variance. There were two main discoveries from this work. First, it is often stated that deterministic systems tend to have the value two for Taylor’s exponent. However, most of the calculated exponents here were not two. Second, we investigated the relationships between chaotic features measured by the Lyapunov exponent, the correlation dimension, and other indexes with Taylor’s exponents. No strong correlations were found; however, there is some relationship in the same model, but with different parameter values, and we will discuss the meaning of those results at the end of this paper.

Keywords: chaos, density effect, population dynamics, Taylor’s law

Procedia PDF Downloads 149
6418 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application

Authors: Zouhour Neji Ben Salem

Abstract:

Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.

Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation

Procedia PDF Downloads 368
6417 Possibility of Making Ceramic Models from Condemned Plaster of Paris (Pop) Moulds for Ceramics Production in Edo State Nigeria

Authors: Osariyekemwen, Daniel Nosakhare

Abstract:

Some ceramic wastes, such as discarded (condemn) Plaster of Paris (POP) in Auchi Polytechnic, Edo State, constitute environmental hazards. This study, therefore, bridges the forgoing gaps by undertaking the use of these discarded (POP) moulds to produced ceramic models for making casting moulds for mass production. This is in line with the possibility of using this medium to properly manage the discarded (condemn) Plaster of Paris (POP) that littered our immediate environment. Presently these are major wastes disposal in the department. Hence, the study has been made to fabricate sanitary miniature models and contract fuse models, respectively. Findings arising from this study show that discarded (condemn) Plaster of Paris (POP) can be carved when to set it neither shrink nor expand; hence warping is quite unusual. Above all, it also gives good finishing with little deterioration with time when compared to clay models.

Keywords: plaster of Paris, condemn, moulds, models, production

Procedia PDF Downloads 149
6416 Short Review on Models to Estimate the Risk in the Financial Area

Authors: Tiberiu Socaciu, Tudor Colomeischi, Eugenia Iancu

Abstract:

Business failure affects in various proportions shareholders, managers, lenders (banks), suppliers, customers, the financial community, government and society as a whole. In the era in which we have telecommunications networks, exists an interdependence of markets, the effect of a failure of a company is relatively instant. To effectively manage risk exposure is thus require sophisticated support systems, supported by analytical tools to measure, monitor, manage and control operational risks that may arise. As we know, bankruptcy is a phenomenon that managers do not want no matter what stage of life is the company they direct / lead. In the analysis made by us, by the nature of economic models that are reviewed (Altman, Conan-Holder etc.), estimating the risk of bankruptcy of a company corresponds to some extent with its own business cycle tracing of the company. Various models for predicting bankruptcy take into account direct / indirect aspects such as market position, company growth trend, competition structure, characteristics and customer retention, organization and distribution, location etc. From the perspective of our research we will now review the economic models known in theory and practice for estimating the risk of bankruptcy; such models are based on indicators drawn from major accounting firms.

Keywords: Anglo-Saxon models, continental models, national models, statistical models

Procedia PDF Downloads 377
6415 Improve Safety Performance of Un-Signalized Intersections in Oman

Authors: Siham G. Farag

Abstract:

The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T- intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.

Keywords: accidents prediction models (APMs), generalized linear model (GLM), T-intersections, Oman

Procedia PDF Downloads 241
6414 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 68
6413 Fem Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli

Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha

Abstract:

Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in four-point bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.

Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus

Procedia PDF Downloads 254
6412 Modelling and Maping Malnutrition Toddlers in Bojonegoro Regency with Mixed Geographically Weighted Regression Approach

Authors: Elvira Mustikawati P.H., Iis Dewi Ratih, Dita Amelia

Abstract:

Bojonegoro has proclaimed a policy of zero malnutrition. Therefore, as an effort to solve the cases of malnutrition children in Bojonegoro, this study used the approach geographically Mixed Weighted Regression (MGWR) to determine the factors that influence the percentage of malnourished children under five in which factors can be divided into locally influential factor in each district and global factors that influence throughout the district. Based on the test of goodness of fit models, R2 and AIC values in GWR models are better than MGWR models. R2 and AIC values in MGWR models are 84.37% and 14.28, while the GWR models respectively are 91.04% and -62.04. Based on the analysis with GWR models, District Sekar, Bubulan, Gondang, and Dander is a district with three predictor variables (percentage of vitamin A, the percentage of births assisted health personnel, and the percentage of clean water) that significantly influence the percentage of malnourished children under five.

Keywords: GWR, MGWR, R2, AIC

Procedia PDF Downloads 253
6411 A Comparative Analysis of E-Government Quality Models

Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri

Abstract:

Many quality models have been used to measure e-government portals quality. However, the absence of an international consensus for e-government portals quality models results in many differences in terms of quality attributes and measures. The aim of this paper is to compare and analyze the existing e-government quality models proposed in literature (those that are based on ISO standards and those that are not) in order to propose guidelines to build a good and useful e-government portals quality model. Our findings show that, there is no e-government portal quality model based on the new international standard ISO 25010. Besides that, the quality models are not based on a best practice model to allow agencies to both; measure e-government portals quality and identify missing best practices for those portals.

Keywords: e-government, portal, best practices, quality model, ISO, standard, ISO 25010, ISO 9126

Procedia PDF Downloads 525
6410 Archaeology Study of Soul Houses in Ancient Egypt on Five Models in the Grand Egyptian Museum

Authors: Ayman Aboelkassem, Mahmoud Ali

Abstract:

Introduction: The models of soul houses have appeared in the prehistory, old kingdom and middle kingdom period. These soul houses represented the imagination of the deceased about his house in the afterlife, some of these soul houses were two floors and the study will examine five models of soul houses which were discovered near Saqqara site by an Egyptian mission. These models had been transferred to The Grand Egyptian Museum (GEM) to be ready to display at the new museum. We focus on models of soul houses (GEM Numbers, 1276, 1280, 1281, 1282, 8711) these models of soul houses were related to the old kingdom period. These models were all made of pottery, the five models have an oval shape and were decorated with relief. Methodology: The study will focus on the development of soul houses during the different periods in ancient Egypt, the function of soul houses, the kind of offerings which were put in it and the symbolism of the offerings colors in ancient Egyptian believe. Conclusion: This study is useful for the heritage and ancient civilizations especially when we talk about opening new museums like The Grand Egyptian Museum which will display a new collection of soul houses. The study of soul houses and The kinds of offerings which put in it reflect the economic situation in the Egyptian society and kinds of oils which were famous in ancient Egypt.

Keywords: archaeology study, Grand Egyptian Museum, relief, soul houses

Procedia PDF Downloads 225
6409 Assimilating Multi-Mission Satellites Data into a Hydrological Model

Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn

Abstract:

Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.

Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF

Procedia PDF Downloads 253
6408 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison

Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran

Abstract:

This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.

Keywords: heat transfer, nanofluid, single-phase models, two-phase models

Procedia PDF Downloads 458
6407 Molecular Dynamics Simulation of Realistic Biochar Models with Controlled Microporosity

Authors: Audrey Ngambia, Ondrej Masek, Valentina Erastova

Abstract:

Biochar is an amorphous carbon-rich material generated from the pyrolysis of biomass with multifarious properties and functionality. Biochar has shown proven applications in the treatment of flue gas and organic and inorganic pollutants in soil and water/wastewater as a result of its multiple surface functional groups and porous structures. These properties have also shown potential in energy storage and carbon capture. The availability of diverse sources of biomass to produce biochar has increased interest in it as a sustainable and environmentally friendly material. The properties and porous structures of biochar vary depending on the type of biomass and high heat treatment temperature (HHT). Biochars produced at HHT between 400°C – 800°C generally have lower H/C and O/C ratios, higher porosities, larger pore sizes and higher surface areas with temperature. While all is known experimentally, there is little knowledge on the porous role structure and functional groups play on processes occurring at the atomistic scale, which are extremely important for the optimization of biochar for application, especially in the adsorption of gases. Atomistic simulations methods have shown the potential to generate such amorphous materials; however, most of the models available are composed of only carbon atoms or graphitic sheets, which are very dense or with simple slit pores, all of which ignore the important role of heteroatoms such as O, N, S and pore morphologies. Hence, developing realistic models that integrate these parameters are important to understand their role in governing adsorption mechanisms that will aid in guiding the design and optimization of biochar materials for target applications. In this work, molecular dynamics simulations in the isobaric ensemble are used to generate realistic biochar models taking into account experimentally determined H/C, O/C, N/C, aromaticity, micropore size range, micropore volumes and true densities of biochars. A pore generation approach was developed using virtual atoms, which is a Lennard-Jones sphere of varying van der Waals radius and softness. Its interaction via a soft-core potential with the biochar matrix allows the creation of pores with rough surfaces while varying the van der Waals radius parameters gives control to the pore-size distribution. We focused on microporosity, creating average pore sizes of 0.5 - 2 nm in diameter and pore volumes in the range of 0.05 – 1 cm3/g, which corresponds to experimental gas adsorption micropore sizes of amorphous porous biochars. Realistic biochar models with surface functionalities, micropore size distribution and pore morphologies were developed, and they could aid in the study of adsorption processes in confined micropores.

Keywords: biochar, heteroatoms, micropore size, molecular dynamics simulations, surface functional groups, virtual atoms

Procedia PDF Downloads 39
6406 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 161
6405 The Promotion Effects for a Supply Chain System with a Dominant Retailer

Authors: Tai-Yue Wang, Yi-Ho Chen

Abstract:

In this study, we investigate a two-echelon supply chain with two suppliers and three retailers among which one retailer dominates other retailers. A price competition demand function is used to model this dominant retailer, which is leading market. The promotion strategies and negotiation schemes are integrated to form decision-making models under different scenarios. These models are then formulated into different mathematical programming models. The decision variables such as promotional costs, retailer prices, wholesale price, and order quantity are included in these models. At last, the distributions of promotion costs under different cost allocation strategies are discussed. Finally, an empirical example used to validate our models. The results from this empirical example show that the profit model will create the largest profit for the supply chain but with different profit-sharing results. At the same time, the more risk a member can take, the more profits are distributed to that member in the utility model.

Keywords: supply chain, price promotion, mathematical models, dominant retailer

Procedia PDF Downloads 377
6404 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.

Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model

Procedia PDF Downloads 51
6403 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 89
6402 Management of Cultural Heritage: Bologna Gates

Authors: Alfonso Ippolito, Cristiana Bartolomei

Abstract:

A growing demand is felt today for realistic 3D models enabling the cognition and popularization of historical-artistic heritage. Evaluation and preservation of Cultural Heritage is inextricably connected with the innovative processes of gaining, managing, and using knowledge. The development and perfecting of techniques for acquiring and elaborating photorealistic 3D models, made them pivotal elements for popularizing information of objects on the scale of architectonic structures.

Keywords: cultural heritage, databases, non-contact survey, 2D-3D models

Procedia PDF Downloads 387
6401 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 39
6400 Copula Markov Switching Multifractal Models for Forecasting Value-at-Risk

Authors: Giriraj Achari, Malay Bhattacharyya

Abstract:

In this paper, the effectiveness of Copula Markov Switching Multifractal (MSM) models at forecasting Value-at-Risk of a two-stock portfolio is studied. The innovations are allowed to be drawn from distributions that can capture skewness and leptokurtosis, which are well documented empirical characteristics observed in financial returns. The candidate distributions considered for this purpose are Johnson-SU, Pearson Type-IV and α-Stable distributions. The two univariate marginal distributions are combined using the Student-t copula. The estimation of all parameters is performed by Maximum Likelihood Estimation. Finally, the models are compared in terms of accurate Value-at-Risk (VaR) forecasts using tests of unconditional coverage and independence. It is found that Copula-MSM-models with leptokurtic innovation distributions perform slightly better than Copula-MSM model with Normal innovations. Copula-MSM models, in general, produce better VaR forecasts as compared to traditional methods like Historical Simulation method, Variance-Covariance approach and Copula-Generalized Autoregressive Conditional Heteroscedasticity (Copula-GARCH) models.

Keywords: Copula, Markov Switching, multifractal, value-at-risk

Procedia PDF Downloads 142
6399 Digital Marketing Maturity Models: Overview and Comparison

Authors: Elina Bakhtieva

Abstract:

The variety of available digital tools, strategies and activities might confuse and disorient even an experienced marketer. This applies in particular to B2B companies, which are usually less flexible in uptaking of digital technology than B2C companies. B2B companies are lacking a framework that corresponds to the specifics of the B2B business, and which helps to evaluate a company’s capabilities and to choose an appropriate path. A B2B digital marketing maturity model helps to fill this gap. However, modern marketing offers no widely approved digital marketing maturity model, and thus, some marketing institutions provide their own tools. The purpose of this paper is building an optimized B2B digital marketing maturity model based on a SWOT (strengths, weaknesses, opportunities, and threats) analysis of existing models. The current study provides an analytical review of the existing digital marketing maturity models with open access. The results of the research are twofold. First, the provided SWOT analysis outlines the main advantages and disadvantages of existing models. Secondly, the strengths of existing digital marketing maturity models, helps to identify the main characteristics and the structure of an optimized B2B digital marketing maturity model. The research findings indicate that only one out of three analyzed models could be used as a separate tool. This study is among the first examining the use of maturity models in digital marketing. It helps businesses to choose between the existing digital marketing models, the most effective one. Moreover, it creates a base for future research on digital marketing maturity models. This study contributes to the emerging B2B digital marketing literature by providing a SWOT analysis of the existing digital marketing maturity models and suggesting a structure and main characteristics of an optimized B2B digital marketing maturity model.

Keywords: B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis

Procedia PDF Downloads 307
6398 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies

Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan

Abstract:

Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.

Keywords: energy models, environmental policy instruments, mitigating CO2 emission, economic wide impact

Procedia PDF Downloads 496
6397 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018

Authors: Mário Ernesto Sitoe, Orlando Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: evasion and retention, cross-validation, bagging, stacking

Procedia PDF Downloads 54
6396 Operating Speed Models on Tangent Sections of Two-Lane Rural Roads

Authors: Dražen Cvitanić, Biljana Maljković

Abstract:

This paper presents models for predicting operating speeds on tangent sections of two-lane rural roads developed on continuous speed data. The data corresponds to 20 drivers of different ages and driving experiences, driving their own cars along an 18 km long section of a state road. The data were first used for determination of maximum operating speeds on tangents and their comparison with speeds in the middle of tangents i.e. speed data used in most of operating speed studies. Analysis of continuous speed data indicated that the spot speed data are not reliable indicators of relevant speeds. After that, operating speed models for tangent sections were developed. There was no significant difference between models developed using speed data in the middle of tangent sections and models developed using maximum operating speeds on tangent sections. All developed models have higher coefficient of determination then models developed on spot speed data. Thus, it can be concluded that the method of measuring has more significant impact on the quality of operating speed model than the location of measurement.

Keywords: operating speed, continuous speed data, tangent sections, spot speed, consistency

Procedia PDF Downloads 422
6395 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine

Procedia PDF Downloads 305