Search results for: decision forest (DF)
4859 PRISM: An Analytical Tool for Forest Plan Development
Authors: Dung Nguyen, Yu Wei, Eric Henderson
Abstract:
Analytical tools have been used for decades to assist in the development of forest plans. In 2016, a new decision support system, PRISM, was jointly developed by United States Forest Service (USFS) Northern Region and Colorado State University to support the forest planning process. Prism has a friendly user interface with functionality for database management, model development, data visualization, and sensitivity analysis. The software is tailored for USFS planning, but it is flexible enough to support planning efforts by other forestland owners and managers. Here, the core capability of PRISM and its applications in developing plans for several United States national forests are presented. The strengths of PRISM are also discussed to show its potential of being a preferable tool for managers and experts in the domain of forest management and planning.Keywords: decision support, forest management, forest plan, graphical user interface, software
Procedia PDF Downloads 1134858 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process
Authors: S. Ghorbani, N. I. Polushin
Abstract:
The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.Keywords: decision tree forest, GMDH, surface roughness, Taguchi method, turning process
Procedia PDF Downloads 4484857 Application of Machine Learning Techniques in Forest Cover-Type Prediction
Authors: Saba Ebrahimi, Hedieh Ashrafi
Abstract:
Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset
Procedia PDF Downloads 2204856 The Nexus of Decentralized Policy, social Heterogeneity and Poverty in Equitable Forest Benefit Sharing in the Lowland Community Forestry Program of Nepal
Authors: Dhiraj Neupane
Abstract:
Decentralized policy and practices have largely concentrated on the transformation of decision-making authorities from central to local institutions (or people) in the developing world. Such policy and practices always aimed for the equitable and efficient management of resources in the line of poverty reduction. The transformation of forest decision-making autonomy has also glorified as the best forest management alternatives to maximize the forest benefits and improve the livelihood of local people living nearby the forests. However, social heterogeneity and poor decision-making capacity of local institutions (or people) pose a nexus while managing the resources and sharing the forest benefits among the user households despite the policy objectives. The situation is severe in the lowland of Nepal, where forest resources have higher economic potential and user households have heterogeneous socio-economic conditions. The study discovered that utilizing the power of decision-making autonomy, user households were putting low values of timber considering the equitable access of timber to all user households as it is the most valuable product of community forest. Being the society is heterogeneous by socio-economic conditions, households of better economic conditions were always taking higher amount of forest benefits. The low valuation of timber has negative consequences on equitable benefit sharing and poor support to livelihood improvement of user households. Moreover, low valuation has possibility to increase the local demands of timber and increase the human pressure on forests.Keywords: decentralized forest policy, Nepal, poverty, social heterogeneity, Terai
Procedia PDF Downloads 2914855 Impacts of Community Forest on Forest Resources Management and Livelihood Improvement of Local People in Nepal
Authors: Samipraj Mishra
Abstract:
Despite the successful implementation of community forestry program, a number of pros and cons have been raised on Terai community forestry in the case of lowland locally called Terai region of Nepal, which is climatically belongs to tropical humid and possessed high quality forests in terms of ecology and economy. The study aims to investigate the local pricing strategy of forest products and its impacts on equitable forest benefit sharing, collection of community fund and carrying out livelihood improvement activities. The study was carried out on six community forests revealed that local people have substantially benefited from the community forests. However, being the region is heterogeneous by socio-economic conditions and forest resources have higher economical potential, the decision of low pricing strategy made by the local people have created inequality problems while sharing the forest benefits, and poorly contributed to community fund collection and consequently carrying out limited activities of livelihood improvement. The paper argued that the decision of low pricing strategy of forest products is counter-productive to promote the equitable benefit sharing in the areas of heterogeneous socio-economic conditions with high value forests. The low pricing strategy has been increasing accessibility of better off households at higher rate than poor; as such households always have higher affording capacity. It is also defective to increase the community fund and carry out activities of livelihood improvement effectively. The study concluded that unilateral decentralized forest policy and decision-making autonomy to the local people seems questionable unless their decision-making capacities are enriched sufficiently. Therefore, it is recommended that empowerment of decision-making capacity of local people and their respective institutions together with policy and program formulation are prerequisite for efficient and equitable community forest management and its long-term sustainability.Keywords: community forest, livelihood, socio-economy, pricing system, Nepal
Procedia PDF Downloads 2764854 Forest Products Pricing System in Community Forestry Program: An Analysis of Its Impacts on Forest Resources Management and Livelihood Improvement of Local People
Authors: Mohan Bikram Thapa
Abstract:
Despite the successful implementation of community forestry program, a number of pros and cons have been raised on Terai community forestry in the case of lowland locally called Terai region of Nepal, which climatically belongs to tropical humid and possessed high-quality forests in terms of ecology and economy. The study aims to investigate the local pricing strategy of forest products and its impacts on equitable forest benefits sharing, the collection of community fund and carrying out livelihood improvement activities. The study was carried out on six community forests revealed that local people have substantially benefited from the community forests. However, being the region is heterogeneous by socio-economic conditions and forest resources have higher economic potential, the decision of low pricing strategy made by the local people have created inequality problems while sharing the forest benefits, and poorly contributed to community fund collection and consequently carrying out limited activities of livelihood improvement. The paper argued that the decision of low pricing strategy of forest products is counterproductive to promote the equitable benefit-sharing in the areas of heterogeneous socio-economic conditions with high-value forests. The low pricing strategy has been increasing accessibility of better off households at a higher rate than poor, as such households always have the higher affording capacity. It is also defective to increase the community fund and carry out activities of livelihood improvement effectively. The study concluded that unilateral decentralized forest policy and decision-making autonomy to the local people seems questionable unless their decision-making capacities are enriched sufficiently. Therefore, it is recommended that empowerments of decision-making capacity of local people and their respective institutions together with policy and program formulation are prerequisite for efficient and equitable community forest management and its long-term sustainability.Keywords: benefit sharing, community forest, livelihood, pricing mechanism, Nepal
Procedia PDF Downloads 3704853 Community Forest Management Practice in Nepal: Public Understanding of Forest Benefit
Authors: Chandralal Shrestha
Abstract:
In the developing countries like Nepal, the community based forest management approach has often been glorified as one of the best forest management alternatives to maximize the forest benefits. Though the approach has succeeded to construct a local level institution and conserve the forest biodiversity, how the local communities perceived about the forest benefits, the question always remains silent among the researchers and policy makers. The paper aims to explore the understanding of forest benefits from the perspective of local communities who used the forests in terms of institutional stability, equity and livelihood opportunity, and ecological stability. The paper revealed that the local communities have mixed understanding over the forest benefits. The institutional and ecological activities carried out by the local communities indicated that they have better understanding over the forest benefits. However, inequality while sharing the forest benefits, low pricing strategy and its negative consequences in valuation of forest products and limited livelihood opportunities indicated the poor understanding.Keywords: community based forest management, forest benefits, lowland, Nepal
Procedia PDF Downloads 3184852 Decentralized Forest Policy for Natural Sal (Shorea robusta) Forests Management in the Terai Region of Nepal
Authors: Medani Prasad Rijal
Abstract:
The study outlines the impacts of decentralized forest policy on natural Sal (shorea robusta) forests in the Terai region of Nepal. The government has implemented community forestry program to manage the forest resources and improve the livelihood of local people collectively. The forest management authorities such as conserve, manage, develop and use of forest resources were shifted to the local communities, however, the ownership right of the forestland retained by the government. Local communities took the decision on harvesting, distribution, and sell of forest products by fixing the prices independently. The local communities were putting the low value of forest products and distributed among the user households on the name of collective decision. The decision of low valuation is devaluating the worth of forest products. Therefore, the study hypothesized that decision-making capacities are equally prominent next to the decentralized policy and program formulation. To accomplish the study, individual to group level discussions and questionnaire survey methods were applied with executive committee members and user households. The study revealed that the local intuition called Community Forest User Group (CFUG) committee normally took the decisions on consensus basis. Considering to the access and affording capacity of user households having poor economic backgrounds, low pricing mechanism of forest products has been practiced, even though the Sal timber is far expensive in the local market. The local communities thought that low pricing mechanism is accessible to all user households from poor to better off households. However, the analysis of forest products distribution opposed the assumption as most of the Sal timber, which is the most valuable forest product of community forest only purchased by the limited households of better economic conditions. Since the Terai region is heterogeneous by socio-economic conditions, better off households always have higher affording capacity and possibility of taking higher timber benefits because of low price mechanism. On the other hand, the minimum price rate of forest products has poor contribution in community fund collection. Consequently, it has poor support to carry out poverty alleviation activities to poor people. The local communities have been fixed Sal timber price rate around three times cheaper than normal market price, which is a strong evidence of forest product devaluation itself. Finally, the study concluded that the capacity building of local executives as the decision-makers of natural Sal forests is equally indispensable next to the policy and program formulation for effective decentralized forest management. Unilateral decentralized forest policy may devaluate the forest products rather than devolve of power to the local communities and empower to them.Keywords: community forestry program, decentralized forest policy, Nepal, Sal forests, Terai
Procedia PDF Downloads 3404851 A Study of Permission-Based Malware Detection Using Machine Learning
Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud
Abstract:
Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.Keywords: android malware detection, machine learning, malware, malware analysis
Procedia PDF Downloads 1754850 Community Forestry Programme through the Local Forest Users Group, Nepal
Authors: Daniyal Neupane
Abstract:
Establishment of community forestry in Nepal is a successful step in the conservation of forests. Community forestry programme through the local forest users group has shown its positive impacts in the society. This paper discusses an overview of the present scenario of the community forestry in Nepal. It describes the brief historical background, some important forest legislations, and organization of forest. The paper also describes the internal conflicts between forest users and district forest offices, and possible resolution. It also suggests some of the aspects of community forestry in which the research needs to be focused for the better management of the forests in Nepal.Keywords: community forest, conservation of forest, local forest users group, better management, Nepal
Procedia PDF Downloads 3154849 Simulation of Forest Fire Using Wireless Sensor Network
Authors: Mohammad F. Fauzi, Nurul H. Shahba M. Shahrun, Nurul W. Hamzah, Mohd Noah A. Rahman, Afzaal H. Seyal
Abstract:
In this paper, we proposed a simulation system using Wireless Sensor Network (WSN) that will be distributed around the forest for early forest fire detection and to locate the areas affected. In Brunei Darussalam, approximately 78% of the nation is covered by forest. Since the forest is Brunei’s most precious natural assets, it is very important to protect and conserve our forest. The hot climate in Brunei Darussalam can lead to forest fires which can be a fatal threat to the preservation of our forest. The process consists of getting data from the sensors, analyzing the data and producing an alert. The key factors that we are going to analyze are the surrounding temperature, wind speed and wind direction, humidity of the air and soil.Keywords: forest fire monitor, humidity, wind direction, wireless sensor network
Procedia PDF Downloads 4574848 Economic Benefits in Community Based Forest Management from Users Perspective in Community Forestry, Nepal
Authors: Sovit Pujari
Abstract:
In the developing countries like Nepal, the community-based forest management approach has often been glorified as one of the best forest management alternatives to maximize the forest benefits. Though the approach has succeeded to construct a local level institution and conserve the forest biodiversity, how the local communities perceived about the forest benefits, the question always remains silent among the researchers and policy makers. The paper aims to explore the understanding of forest benefits from the perspective of local communities who used the forests in terms of institutional stability, equity and livelihood opportunity, and ecological stability. The paper revealed that the local communities have mixed understanding over the forest benefits. The institutional and ecological activities carried out by the local communities indicated that they have a better understanding over the forest benefits. However, inequality while sharing the forest benefits, low pricing strategy and its negative consequences in the valuation of forest products and limited livelihood opportunities indicating the poor understanding.Keywords: community based forest management, low pricing strategy, forest benefits, livelihood opportunities, Nepal
Procedia PDF Downloads 3474847 Public Participation Best Practices in Environmental Decision-making in Newfoundland and Labrador: Analyzing the Forestry Management Planning Process
Authors: Kimberley K. Whyte-Jones
Abstract:
Public participation may improve the quality of environmental management decisions. However, the quality of such a decision is strongly dependent on the quality of the process that leads to it. In order to ensure an effective and efficient process, key features of best practice in participation should be carefully observed; this would also combat disillusionment of citizens, decision-makers and practitioners. The overarching aim of this study is to determine what constitutes an effective public participation process relevant to the Newfoundland and Labrador, Canada context, and to discover whether the public participation process that led to the 2014-2024 Provincial Sustainable Forest Management Strategy (PSFMS) met best practices criteria. The research design uses an exploratory case study strategy to consider a specific participatory process in environmental decision-making in Newfoundland and Labrador. Data collection methods include formal semi-structured interviews and the review of secondary data sources. The results of this study will determine the validity of a specific public participation best practice framework. The findings will be useful for informing citizen participation processes in general and will deduce best practices in public participation in environmental management in the province. The study is, therefore, meaningful for guiding future policies and practices in the management of forest resources in the province of Newfoundland and Labrador, and will help in filling a noticeable gap in research compiling best practices for environmentally related public participation processes.Keywords: best practices, environmental decision-making, forest management, public participation
Procedia PDF Downloads 3264846 Carbon Sequestration and Carbon Stock Potential of Major Forest Types in the Foot Hills of Nilgiri Biosphere Reserve, India
Authors: B. Palanikumaran, N. Kanagaraj, M. Sangareswari, V. Sailaja, Kapil Sihag
Abstract:
The present study aimed to estimate the carbon sequestration potential of major forest types present in the foothills of Nilgiri biosphere reserve. The total biomass carbon stock was estimated in tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest as 14.61 t C ha⁻¹ 75.16 t C ha⁻¹ and 187.52 t C ha⁻¹ respectively. The density and basal area were estimated in tropical thorn forest, tropical dry deciduous forest, tropical moist deciduous forest as 173 stems ha⁻¹, 349 stems ha⁻¹, 391 stems ha⁻¹ and 6.21 m² ha⁻¹, 31.09 m² ha⁻¹, 67.34 m² ha⁻¹ respectively. The soil carbon stock of different forest ecosystems was estimated, and the results revealed that tropical moist deciduous forest (71.74 t C ha⁻¹) accounted for more soil carbon stock when compared to tropical dry deciduous forest (31.80 t C ha⁻¹) and tropical thorn forest (3.99 t C ha⁻¹). The tropical moist deciduous forest has the maximum annual leaf litter which was 12.77 t ha⁻¹ year⁻¹ followed by 6.44 t ha⁻¹ year⁻¹ litter fall of tropical dry deciduous forest. The tropical thorn forest accounted for 3.42 t ha⁻¹ yr⁻¹ leaf litter production. The leaf litter carbon stock of tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest found to be 1.02 t C ha⁻¹ yr⁻¹ 2.28 t⁻¹ C ha⁻¹ yr⁻¹ and 5.42 t C ha⁻¹ yr⁻¹ respectively. The results explained that decomposition percent at the soil surface in the following order.tropical dry deciduous forest (77.66 percent) > tropical thorn forest (69.49 percent) > tropical moist deciduous forest (63.17 percent). Decomposition percent at soil subsurface was studied, and the highest decomposition percent was observed in tropical dry deciduous forest (80.52 percent) followed by tropical moist deciduous forest (77.65 percent) and tropical thorn forest (72.10 percent). The decomposition percent was higher at soil subsurface. Among the three forest type, tropical moist deciduous forest accounted for the highest bacterial (59.67 x 105cfu’s g⁻¹ soil), actinomycetes (74.87 x 104cfu’s g⁻¹ soil) and fungal (112.60 x10³cfu’s g⁻¹ soil) population. The overall observation of the study helps to conclude that, the tropical moist deciduous forest has the potential of storing higher carbon content as biomass with the value of 264.68 t C ha⁻¹ and microbial populations.Keywords: basal area, carbon sequestration, carbon stock, Nilgiri biosphere reserve
Procedia PDF Downloads 1734845 Community Activism for Sustainable Forest Management in Nepal: Lessons fromTarpakha Community Forest Siranchok, Gorkha
Authors: Prem Bahadur Giri, Trilochana Pokhrel
Abstract:
The nationalization of forest during early 1960s had become a counterproductive for the conservation of forest in Nepal. Realizing this fact, the Government of Nepal initiated a paradigm shift from government-controlled forestry system to people’s direct participation for managing forestry, conceptualizing community forest approach in the early 1980s. The community forestry approach is expected to promote sustainable forest management, restoring degraded forests for enhancing the forest condition on one hand, and on the other, improvement of livelihoods, particularly of low-income people and forest dependent communities, as well as promoting community ownership to forest. As a result, establishment of community forests started and had taken faster momentum in Nepal. Of the total land in Nepal, forest occupies 6.5 million hectares which is around 45 percent of the forest area. Of the total forest area 1.8 million hectarehas been handed-over to community management. A total of 19,361 ‘community forest users groups’ are already created to manage the community forest.Tostreamlinethe governance of community forest, the enactment of ‘Forest Act 1993’ provides a clear legal basis for managing community forest in Nepal. This article is based on an in-depth study taking a case of Tarpakha Community Forest (TCF) located in Siranchok Rural Municipality of Gorkha District in Nepal. It mainly discusses on to extent the TCF able to achieve twin objectives of this community forest for catalyzing socio-economic improvement of the targeted community and conservation of forest. The primary information was generated through in-depth interviews along with group discussion with members, management committee, and other relevant stakeholders. The findings reveal that there is significant improvement of regeneration of forest and also changes in the socio-economic status of local community. However, coordination with local municipality and forest governing entities is still weak.Keywords: community forest, nepal, socio-economic benefit, sustainable forest management
Procedia PDF Downloads 864844 Role of Different Land Use Types on Ecosystem Services Provision in Moribane Forest Reserve - Mozambique
Authors: Francisco Domingos Francisco
Abstract:
Tropical forests are key providers of many Ecosystem Services (ES), contributing to human wellbeing on a global and local scale. Communities around and within Moribane Forest Reserve (MFR), Manica Province - Mozambique, benefit from ES through the exploitation of non-wood and wood forest products. The objective was to assess the provisioning capacity of the MFR in woody forest products in species and profiles of interest to local communities in the main sources of extraction. Social data relating to the basic needs of local communities for these products were captured through an exploratory study before this one. From that study, it became known about the most collected wood species, the sources of collection, and their availability in the profiles of greatest interest to them. A field survey through 39 rectangular 50mx20m plots was conducted with 13 plots established in each of the three land-use types (LUT), namely Restricted Forest, Unrestricted Forest, and Disturbed areas. The results show that 89 species were identified, of which 28 (31.4%) are assumed to be the most used by the communities. The number of species of local interest does not vary across the LUT (p>0.05). The most used species (MUS) is distributed in 82% in Restricted Forest, 75% in Unrestricted, and also 75% in Disturbed. Most individuals of both general and MUS found in Unrestricted Forest, and Degraded areas have lower end profiles (5-7 cm), representing 0.77 and 0.26%, respectively. The profile of individuals of species of local interest varies by LUT (p<0.05), and their greatest proportion (0.51%) outside the lower end is found in Restricted Forest. There were no similarities between the LUT for the species in general (JCI <0.5) but between the MUS (JCI >0.5). Conclusion, the areas authorized for the exploitation of wood forest products in the MFR tend to reduce their ability to provide local communities with forest products in species and profiles of their interest. This reduction item is a serious threat to the biodiversity of the Restricted Forest. The study can help the academic community in future studies by replicating the methodology used for monitoring purposes or conducting studies in other similar areas, and the results may support decision-makers in designing better strategies for sustainability.Keywords: ecosystem services, land-use types, local communities, species profile, wellbeing, wood forest product
Procedia PDF Downloads 1374843 Modelling Forest Fire Risk in the Goaso Forest Area of Ghana: Remote Sensing and Geographic Information Systems Approach
Authors: Bernard Kumi-Boateng, Issaka Yakubu
Abstract:
Forest fire, which is, an uncontrolled fire occurring in nature has become a major concern for the Forestry Commission of Ghana (FCG). The forest fires in Ghana usually result in massive destruction and take a long time for the firefighting crews to gain control over the situation. In order to assess the effect of forest fire at local scale, it is important to consider the role fire plays in vegetation composition, biodiversity, soil erosion, and the hydrological cycle. The occurrence, frequency and behaviour of forest fires vary over time and space, primarily as a result of the complicated influences of changes in land use, vegetation composition, fire suppression efforts, and other indigenous factors. One of the forest zones in Ghana with a high level of vegetation stress is the Goaso forest area. The area has experienced changes in its traditional land use such as hunting, charcoal production, inefficient logging practices and rural abandonment patterns. These factors which were identified as major causes of forest fire, have recently modified the incidence of fire in the Goaso area. In spite of the incidence of forest fires in the Goaso forest area, most of the forest services do not provide a cartographic representation of the burned areas. This has resulted in significant amount of information being required by the firefighting unit of the FCG to understand fire risk factors and its spatial effects. This study uses Remote Sensing and Geographic Information System techniques to develop a fire risk hazard model using the Goaso Forest Area (GFA) as a case study. From the results of the study, natural forest, agricultural lands and plantation cover types were identified as the major fuel contributing loads. However, water bodies, roads and settlements were identified as minor fuel contributing loads. Based on the major and minor fuel contributing loads, a forest fire risk hazard model with a reasonable accuracy has been developed for the GFA to assist decision making.Keywords: forest, GIS, remote sensing, Goaso
Procedia PDF Downloads 4634842 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 1004841 The Interrelationship Between Urban Forest ,Forest Policy And Degraded Lands In Nigeria
Authors: Pius Akindele Adeniyi
Abstract:
The World's tropical forests are disappearing at an alarming rate of more than 200,000 ha per year as a result of deforestation due mainly to population pressures, economic growth, poor management and inappropriate policy. A forest policy determines the role of the sector in a nation's economy and it is formulated in accordance with the objectives of the national economic development. Urban forestry as a concept is relatively new in Nigeria when compared to European and American countries. It consists of growing of trees, shrubs and grass along streets, in parks, and around public or private buildings whose management rests in the hands of the public and private owners. Major urban centers in Nigeria are devoid of efficiently planned tree-planting programs. Hence, various factors militating against environmental improvements, such as climate and other agents of degradation, are highlighted for the necessary attention. The paper discusses the need for forest policy formulation and the objectives of forest policy. Elements of forest policy are also discussed and in particular, those peculiar to urbanization and degraded lands are Forest policy and land-use and policy implementation together with some problem issues in forest policy are discussed while recommendations are given on formulation of a forest policy.Keywords: urban, forest, policy, environment, interaction, degraded
Procedia PDF Downloads 1014840 Insect Outbreaks, Harvesting and Wildfire in Forests: Mathematical Models for Coupling Disturbances
Authors: M. C. A. Leite, B. Chen-Charpentier, F. Agusto
Abstract:
A long-term goal of sustainable forest management is a relatively stable source of wood and a stable forest age-class structure has become the goal of many forest management practices. In the absence of disturbances, this forest management goal could easily be achieved. However, in the face of recurring insect outbreaks and other disruptive processes forest planning becomes more difficult, requiring knowledge of the effects on the forest of a wide variety of environmental factors (e.g., habitat heterogeneity, fire size and frequency, harvesting, insect outbreaks, and age distributions). The association between distinct forest disturbances and the potential effect on forest dynamics is a complex matter, particularly when evaluated over time and at large scale, and is not well understood. However, gaining knowledge in this area is crucial for a sustainable forest management. Mathematical modeling is a tool that can be used to broader the understanding in this area. In this talk we will introduce mathematical models formulation incorporating the effect of insect outbreaks either as a single disturbance in the forest population dynamics or coupled with other disturbances: either wildfire or harvesting. The results and ecological insights will be discussed.Keywords: age-structured forest population, disturbances interaction, harvesting insects outbreak dynamics, mathematical modeling
Procedia PDF Downloads 5284839 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 3194838 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach
Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta
Abstract:
Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.Keywords: support vector machines, decision tree, random forest
Procedia PDF Downloads 474837 Community Activism for Sustainable Forest Management in Nepal: Lessons fromTarpakha Community Forest
Authors: Prem Bahadur Giri
Abstract:
The nationalization of forests during the early 1960s had become counterproductive for the conservation of forests in Nepal. Realizing this fact, the Government of Nepal initiated a paradigm shift from a government-controlled forestry system to people’s direct participation in managing forestry, conceptualizing a community forest approach in the early 1980s. The community forestry approach is expected to promote sustainable forest management, restoring degraded forests to enhance the forest condition on the one hand, and on the other, improvement of livelihoods, particularly of low-income people and forest-dependent communities, as well as promoting community ownership of a forest. As a result, the establishment of community forests started and had taken faster momentum in Nepal. Of the total land in Nepal, forest occupies 6.5 million hectares which are around 45 percent of the forest area. Of the total forest area, 1.8 million hectares have been handed over to community management. A total of 19,361 ‘community forest users groups’ are already created to manage the community forest. To streamline the governance of community forests, the enactment of ‘The Forest Act 1993’ provides a clear legal basis for managing community forests in Nepal. This article is based on an in-depth study taking the case of Tarpakha Community Forest (TCF) located in Siranchok Rural Municipality of Gorkha District in Nepal. It mainly discusses the extent to which the TCF is able to achieve the twin objectives of this community forest for catalyzing socio-economic improvement of the targeted community and conservation of the forest. The primary information was generated through in-depth interviews along with group discussions with members, the management committee, and other relevant stakeholders. The findings reveal that there is a significant improvement in the regeneration of the forest and also changes in the socio-economic status of the local community. However, coordination with local municipalities and forest governing entities is still weak.Keywords: community forest, socio-economic benefit, sustainable forest management, Nepal
Procedia PDF Downloads 1004836 Assessment of Non-Timber Forest Products from Community Managed Forest of Thenzawl Forest Division, Mizoram, Northeast India
Authors: K. Lalhmingsangi, U. K. Sahoo
Abstract:
Non-Timber Forest Products represent one of the key sources of income and subsistence to the fringe communities living in rural areas. A study was conducted for the assessment of NTFP within the community forest of five villages under Thenzawl forest division. Participatory Rural Appraisal (PRA), questionnaire, field exercise, discussion and interview with the first hand NTFP exploiter and sellers was adopted for the field study. Fuel wood, medicinal plants, fodder, wild vegetables, fruits, broom grass, thatch grass, bamboo pole and cane species are the main NTFP harvested from the community forest. Among all the NTFPs, the highest percentage of household involvement was found in fuel wood, i.e. 53% of household and least in medicinal plants 5%. They harvest for their own consumption as well as for selling to the market to meet their needs. Edible food and fruits are sold to the market and it was estimated that 300 (Rs/hh/yr) was earned by each household through the selling of this NTFP from the community forest alone. No marketing channels are linked with fuelwood, medicinal plants and fodder since they harvest only for their own consumption.Keywords: community forest, subsistence, non-timber forest products, Thenzawl Forest Division
Procedia PDF Downloads 1564835 Heart Attack Prediction Using Several Machine Learning Methods
Authors: Suzan Anwar, Utkarsh Goyal
Abstract:
Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest
Procedia PDF Downloads 1454834 Optimal Management of Forest Stands under Wind Risk in Czech Republic
Authors: Zohreh Mohammadi, Jan Kaspar, Peter Lohmander, Robert Marusak, Harald Vacik, Ljusk Ola Eriksson
Abstract:
Storms are important damaging agents in European forest ecosystems. In the latest decades, significant economic losses in European forestry occurred due to storms. This study investigates the problem of optimal harvest planning when forest stands risk to be felled by storms. One of the most applicable mathematical methods which are being used to optimize forest management is stochastic dynamic programming (SDP). This method belongs to the adaptive optimization class. Sequential decisions, such as harvest decisions, can be optimized based on sequential information about events that cannot be perfectly predicted, such as the future storms and the future states of wind protection from other forest stands. In this paper, stochastic dynamic programming is used to maximize the expected present value of the profits from an area consisting of several forest stands. The region of analysis is the Czech Republic. The harvest decisions, in a particular time period, should be simultaneously taken in all neighbor stands. The reason is that different stands protect each other from possible winds. The optimal harvest age of a particular stand is a function of wind speed and different wind protection effects. The optimal harvest age often decreases with wind speed, but it cannot be determined for one stand at a time. When we consider a particular stand, this stand also protects other stands. Furthermore, the particular stand is protected by neighbor stands. In some forest stands, it may even be rational to increase the harvest age under the influence of stronger winds, in order to protect more valuable stands in the neighborhood. It is important to integrate wind risk in forestry decision-making.Keywords: Czech republic, forest stands, stochastic dynamic programming, wind risk
Procedia PDF Downloads 1524833 Design an Architectural Model for Deploying Wireless Sensor Network to Prevent Forest Fire
Authors: Saurabh Shukla, G. N. Pandey
Abstract:
The fires have become the most serious disasters to forest resources and the human environment. In recent years, due to climate change, human activities and other factors the frequency of forest fires has increased considerably. The monitoring and prevention of forest fires have now become a global concern for forest fire prevention organizations. Currently, the methods for forest fire prevention largely consist of patrols, observation from watch towers. Thus, software like deployment of the wireless sensor network to prevent forest fire is being developed to get a better estimate of the temperature and humidity prospects. Now days, wireless sensor networks are beginning to be deployed at an accelerated pace. It is not unrealistic to expect that in coming years the world will be covered with wireless sensor networks. This new technology has lots of unlimited potentials and can be used for numerous application areas including environmental, medical, military, transportation, entertainment, crisis management, homeland defense, and smart spaces.Keywords: deployment, sensors, wireless sensor networks, forest fires
Procedia PDF Downloads 4434832 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 724831 What Happens When We Try to Bridge the Science-Practice Gap? An Example from the Brazilian Native Vegetation Protection Law
Authors: Alice Brites, Gerd Sparovek, Jean Paul Metzger, Ricardo Rodrigues
Abstract:
The segregation between science and policy in decision making process hinders nature conservation efforts worldwide. Scientists have been criticized for not producing information that leads to effective solutions for environmental problems. In an attempt to bridge this gap between science and practice, we conducted a project aimed at supporting the implementation of the Brazilian Native Vegetation Protection Law (NVPL) implementation in São Paulo State (SP), Brazil. To do so, we conducted multiple open meetings with the stakeholders involved in this discussion. Throughout this process, we raised stakeholders' demands for scientific information and brought feedbacks about our findings. However, our main scientific advice was not taken into account during the NVPL implementation in SP. The NVPL has a mechanism that exempts landholders who converted native vegetation without offending the legislation in place at the time of the conversion from restoration requirements. We found out that there were no accurate spatialized data for native vegetation cover before the 1960s. Thus, the initial benchmark for the mechanism application should be the 1965 Brazilian Forest Act. Even so, SP kept the 1934 Brazilian Forest Act as the initial legal benchmark for the law application. This decision implies the use of a probabilistic native vegetation map that has uncertainty and subjectivity as its intrinsic characteristics, thus its use can lead to legal queries, corruption, and an unfair benefit application. But why this decision was made even after the scientific advice was vastly divulgated? We raised some possible reasons to explain it. First, the decision was made during a government transition, showing that circumstantial political events can overshadow scientific arguments. Second, the debate about the NVPL in SP was not pacified and powerful stakeholders could benefit from the confusion created by this decision. Finally, the native vegetation protection mechanism is a complex issue, with many technical aspects that can be hard to understand for a non-specialized courtroom, such as the one that made the final decision at SP. This example shows that science and decision-makers still have a long way ahead to improve their way to interact and that science needs to find its way to be heard above the political buzz.Keywords: Brazil, forest act, science-based dialogue, science-policy interface
Procedia PDF Downloads 1274830 Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment
Authors: Mark Joseph Quinto, Roan Beronilla, Guiller Damian, Eliza Camaso, Ronaldo Alberto
Abstract:
Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree’s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS.Keywords: carbon stock, forest inventory, LiDAR, tree count
Procedia PDF Downloads 395