Search results for: coupled BEM-FEM
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1501

Search results for: coupled BEM-FEM

1171 Demonstration of Powering up Low Power Wireless Sensor Network by RF Energy Harvesting System

Authors: Lim Teck Beng, Thiha Kyaw, Poh Boon Kiat, Lee Ngai Meng

Abstract:

This work presents discussion on the possibility of merging two emerging technologies in microwave; wireless power transfer (WPT) and RF energy harvesting. The current state of art of the two technologies is discussed and the strength and weakness of the two technologies is also presented. The equivalent circuit of wireless power transfer is modeled and explained as how the range and efficiency can be further increased by controlling certain parameters in the receiver. The different techniques of harvesting the RF energy from the ambient are also extensive study. Last but not least, we demonstrate that a low power wireless sensor network (WSN) can be power up by RF energy harvesting. The WSN is designed to transmit every 3 minutes of information containing the temperature of the environment and also the voltage of the node. One thing worth mention is both the sensors that are used for measurement are also powering up by the RF energy harvesting system.

Keywords: energy harvesting, wireless power transfer, wireless sensor network and magnetic coupled resonator

Procedia PDF Downloads 489
1170 Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions

Authors: Hector A. Tinoco, Cesar Garcia-Diaz, Olga L. Ocampo-Lopez

Abstract:

In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.

Keywords: hard disk drive, energy harvesting, voice coil motor, energy harvester, gait motions

Procedia PDF Downloads 328
1169 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 86
1168 Novel Aminoglycosides to Target Resistant Pathogens

Authors: Nihar Ranjan, Derrick Watkins, Dev P. Arya

Abstract:

Current methods in the study of antibiotic activity of ribosome targeted antibiotics are dependent on cell based bacterial inhibition assays or various forms of ribosomal binding assays. These assays are typically independent of each other and little direct correlation between the ribosomal binding and bacterial inhibition is established with the complementary assay. We have developed novel high-throughput capable assays for ribosome targeted drug discovery. One such assay examines the compounds ability to bind to a model ribosomal RNA A-site. We have also coupled this assay to other functional orthogonal assays. Such analysis can provide valuable understanding of the relationships between two complementary drug screening methods and could be used as standard analysis to correlate the affinity of a compound for its target and the effect the compound has on a cell.

Keywords: bacterial resistance, aminoglycosides, screening, drugs

Procedia PDF Downloads 336
1167 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics

Procedia PDF Downloads 473
1166 Trace Metals in Natural Bottled Water on Montenegrin Market and Comaparison with Tap Water in Podgorica

Authors: Katarina Živković, Ivana Joksimović

Abstract:

Many different chemicals may occur in drinking water and cause significant human health risks after prolonged periods of exposure. In particular concern are contaminants that have cumulative toxic properties, such as heavy metals. This investigation was done to clarify concerns about chemical quality and safety of drinking tap water in Podgorica. For comparison, all available natural bottled water on Montenegrin market were bought. All samples (bottled water and tap water from Podgorica) were analyzed using ICP –OES on contents of Al, Cd, Pb, Cu, Zn,Cr, Fe, As and Mn. All results compared with the maximum concentration levels allowed by international standards and World Health Organization (WHO) guidelines. The results of analysis showed that all trace of heavy metals were very low and in same time below MCL according to WHO and International standard.

Keywords: inductively coupled plasma - optical emission spectrometry (ICP-OES), Montenegro (Podgorica), natural bottled water, tap water , trace of heavy metal

Procedia PDF Downloads 425
1165 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi

Abstract:

The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.

Keywords: productivity, efficiency, convective heat coefficient, SSD model, SSDHPmodel

Procedia PDF Downloads 187
1164 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data

Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin

Abstract:

Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.

Keywords: honey, fluorescence, PARAFAC, artificial neural networks

Procedia PDF Downloads 925
1163 Characterization of Group Dynamics for Fostering Mathematical Modeling Competencies

Authors: Ayse Ozturk

Abstract:

The study extends the prior research on modeling competencies by positioning students’ cognitive and language resources as the fundamentals for pursuing their own inquiry and expression lines through mathematical modeling. This strategy aims to answer the question that guides this study, “How do students’ group approaches to modeling tasks affect their modeling competencies over a unit of instruction?” Six bilingual tenth-grade students worked on open-ended modeling problems along with the content focused on quantities over six weeks. Each group was found to have a unique cognitive approach for solving these problems. Three different problem-solving strategies affected how the groups’ modeling competencies changed. The results provide evidence that the discussion around groups’ solutions, coupled with their reflections, advances group interpreting and validating competencies in the mathematical modeling process

Keywords: cognition, collective learning, mathematical modeling competencies, problem-solving

Procedia PDF Downloads 129
1162 Detection of Heroin and Its Metabolites in Urine Samples: A Chemiluminescence Approach

Authors: Sonu Gandhi, Neena Capalash, Prince Sharma, C. Raman Suri

Abstract:

A sensitive chemiluminescence immunoassay (CIA) for heroin and its major metabolites is reported. The method is based on the competitive reaction of horseradish peroxidase (HRP)-labeled anti-MAM antibody and free drug in spiked urine samples. A hapten-protein conjugate was synthesized by using acidic derivative of monoacetyl morphine (MAM) coupled to carrier protein BSA and was used as an immunogen for the generation of anti-MAM (monoacetyl morphine) antibody. A high titer of antibody (1:64,0000) was obtained and the relative affinity constant (Kaff) of antibody was 3.1×107 l/mol. Under the optimal conditions, linear range and reactivity for heroin, mono acetyl morphine (MAM), morphine and codeine were 0.08, 0.09, 0.095 and 0.092 ng/mL respectively. The developed chemiluminescence inhibition assay could detect heroin and its metabolites in standard and urine samples up to 0.01 ng/ml.

Keywords: heroin, metabolites, chemiluminescence immunoassay, horse radish peroxidase

Procedia PDF Downloads 239
1161 Phenolic Composition and Contribution of Individual Compounds to Antioxidant Activity of Malus domestica Borkh Fruit Cultivars

Authors: Raudone Lina, Raudonis Raimondas, Liaudanskas Mindaugas, Pukalskas Audrius, Viskelis Pranas, Janulis Valdimaras

Abstract:

Human health fortification, its protection and disease prophylaxis are the main problems of the health care systems. Plant origin materials and their preparations are applied for the prevention of the common diseases. Oxidative stress takes part in the pathogenesis of many autoimmune, neurodegenerative, tumor and ageing processes. The antioxidants are able to protect the human body from the free radicals and to stop the progression of numerous chronic diseases. The research of plant origin materials is relevant for the search of natural antioxidants. A group of compounds that gained scientific attention due to antioxidant properties and effects on human health are phenolic compounds. Phenolic compounds are widely abundant in various parts of plants, i.e. leaves, stems, roots, flowers and fruits. Most commonly consumed fruits all over the world are apples. It is very important to analyze the antioxidant activity of apples as they are extensively used in the prevention of various diseases. The aim of this study was to determine the antioxidant profiles of Malus domestica Borkh fruit cultivars (Aldas, Auksis, Connel Red, Ligol, Lodel, Rajka) and to identify the phenolic compounds with potent contribution to antioxidant activity. Nineteen constituents were identified in apple cultivars using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Phytochemical profile was constituted of phenolic acids, procyanidins, quercetin derivatives and dihydrochalcones. Reducing and radical scavenging activities of individual constituents were determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP and ABTS assay, respectively. Significant differences of total radical scavenging and reducing activity (expressed as trolox equivalents, TE µmol/g) were determined between the investigated cultivars. Chlorogenic acid and complex of procyanidins were the main contributors to antioxidant activity determining up to 35 % and 55 % of total TE values, respectively. Determined phenolic composition and antioxidant activity significantly depend on apple cultivars. It is important to determine the individual compounds that are significant for antioxidant activity and that could be investigated in vivo systems. The identification of the antioxidants provides information for the further research of standardized extracts that could be used for pharmaceutical preparations with specific phenolic traits.

Keywords: FRAP, ABTS, antioxidant, phenolic, apples, chlorogenic acid

Procedia PDF Downloads 376
1160 Self-Assembled Tin Particles Made by Plasma-Induced Dewetting

Authors: Han Joo Choe, Soon-Ho Kwon, Jung-Joong Lee

Abstract:

Tin particles of various size and distribution were self-assembled by plasma treating tin film deposited on silicon oxide substrates. Plasma treatment was conducted using an inductively coupled plasma (ICP) source. A range of ICP power and topographic templated substrates were evaluated to observe changes in particle size and particle distribution. Scanning electron microscopy images of the particles were analyzed using computer software. The evolution of tin film dewetting into particles initiated from the hole nucleation in grain boundaries. Increasing ICP power during plasma treatment produced larger number of particles per area and smaller particle size and particle-size distribution. Topographic templates were also effective in positioning and controlling the size of the particles. By combining the effects of ICP power and topographic templates, particles of similar size and well-ordered distribution were obtained.

Keywords: dewetting, particles, plasma, tin

Procedia PDF Downloads 226
1159 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

Authors: Aymen Laadhari

Abstract:

We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.

Keywords: finite element method, level set, Newton, membrane

Procedia PDF Downloads 303
1158 Thermoelectrical Properties of Cs Doped BiCuSeO as Promising Oxide Materials for Thermoelectric Energy Converter

Authors: Abdenour Achour, Kan Chen, Mike Reece, Zhaorong Huang

Abstract:

Here we report the synthesis of pure and cost effective of BiCuSeO by a flux method in air, and the enhancement of the thermoelectric performance by Cs doping. The comparison between our synthesis and the usual vacuum furnace method has been studied for the pristine oxyselenides BiCuSeO. We report for very high Seebeck coefficients up to 516 μV K⁻¹ at room temperature with the electrical conductivity of 5.20 S cm⁻¹ which lead to a high power factor of 140 µWm⁻¹K⁻². We also report at the high temperatures the lowest thermal conductivity value of 0.42 µWm⁻¹K⁻¹. Upon doping with Cs, enhanced electrical conductivity coupled with a moderate Seebeck coefficient lead to a power factor of 338 µWm⁻¹K⁻² at 682 K. Moreover, it shows a very low thermal conductivity in the temperature range of 300 to 682 K (0.75 to 0.35 Wm⁻¹K⁻¹). By optimizing the power factor and reducing the thermal conductivity, this results in a high ZT of ~ 0.66 at 682 K for Bi0.995Cs0.005CuSeO.

Keywords: BiCuSeO, Cs doping, thermoelectric, oxyselenide

Procedia PDF Downloads 268
1157 Polypropylene/Red Mud Polymer Composites: Effects of Powder Size on Mechanical and Thermal Properties

Authors: Munir Tasdemir

Abstract:

Polymer/clay composites have received great attention in the past three decades owing to their light weight coupled with significantly better mechanical and barrier properties than the corresponding neat polymer resins. An investigation was carried out on the effects of red mud powder size and ratio on the mechanical and thermal properties of polypropylene /red mud polymer composites. Red mud, in four different concentrations (0, 10, 20 and 30 wt %) and three different powder size (180, 63 and 38 micron) were added to PP to produce composites. The mechanical properties, including the elasticity modulus, tensile & yield strength, % elongation, hardness, Izod impact strength and the thermal properties including the melt flow index, heat deflection temperature and vicat softening point of the composites were investigated. The structures of the composites were investigated by scanning electron microscopy and compared to mechanical and thermal properties as a function of red mud powder content and size.

Keywords: polypropylene, powder, red mud, mechanical properties

Procedia PDF Downloads 299
1156 Determination of Heavy Metals (Cd, Pb, Hg, Cu, Fe, Mn, Al, As, Ni and Zn) in 6 Important Commercial Fish Species in North of Hormoz Strait

Authors: Majid Afkhami, Maryam Ehsanpour, Zahra Khoshnood

Abstract:

The concentrations of 10 heavy metals (Cd, Pb, Hg, Cu, Fe, Mn, Al, As, Ni, Zn) were measured in muscle, gill and liver of 6 species from Hormoz Strait in north coast of Persian Gulf in 12 months (April 2009 – March 2010). All samples were analyzed three times for Cd, Pb, Cu, Fe, Mn, Al, As, Ni, Zn by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and for Hg by LECO AMA254 Advanced Mercury Analyzer. Results of this study showed that iron had the highest concentration (total mean concentration) in all species, followed by Zn, Cu, Ni, Al, Pb, Mn, Cd, Hg and lowest concentration in three tissues was As. In addition, the accumulation of metals was species-dependent, and was higher in Scomberomorous commerson and Scomberomorous guttatus (p<0.05) and the lowest concentration was record in Pampus argenteus (p<0.05).

Keywords: Persian Gulf, heavy metals, Hormoz strait, Scomberomorous guttatus, Scomberomorous commerson, Pampus argenteus

Procedia PDF Downloads 617
1155 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society

Authors: Weihua Ruan, Kuan-Chou Chen

Abstract:

This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.

Keywords: Hamilton-Jacobi-Bellman equations, infinite-horizon differential games, continuous and discrete state variables, political-economy models

Procedia PDF Downloads 345
1154 Photo-Degradation of a Pharmaceutical Product in the Presence of a Catalyst Supported on a Silicoaluminophosphate Solid

Authors: I. Ben Kaddour, S. Larbaoui

Abstract:

Since their first synthesis in 1984, silicoaluminophosphates have proven their effectiveness as a good adsorbent and catalyst in several environmental and energy applications. In this work, the photocatalytic reaction of the photo-degradation of a pharmaceutical product in water was carried out in the presence of a series of materials based on titanium oxide, anatase phase, supported on the microporous framework of the SAPO4-5 at different levels, under ultraviolet light. These photo-catalysts were characterized by different physicochemical analysis methods in order to determine their structural, textural, and morphological properties, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), microscopy scanning electronics (SEM), nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS). In this study, liquid chromatography coupled with spectroscopy of mass (LC-MS) was used to determine the nature of the intermediate products formed during the photocatalytic degradation of DCF.

Keywords: photocatalysis, titanium dioxide, SAPO-5, diclofenac

Procedia PDF Downloads 39
1153 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion

Authors: M. Sari Yilmaz, N. Karamahmut Mermer

Abstract:

Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence (XRF) spectroscopy and X-ray diffraction (XRD). The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry (ICP-OES).

Keywords: extraction, fly ash, fusion, XRD

Procedia PDF Downloads 298
1152 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 514
1151 Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers

Authors: Qiong Rao, Xiongqi Peng

Abstract:

In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT.

Keywords: nanofillers, adhesive joints, fracture toughness, cohesive zone model

Procedia PDF Downloads 104
1150 Experimental Performance and Numerical Simulation of Double Glass Wall

Authors: Thana Ananacha

Abstract:

This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.

Keywords: thermal simulation, Double Glass Wall, velocity field, finite element method (FEM)

Procedia PDF Downloads 332
1149 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform

Authors: Hana Rabbouch

Abstract:

In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.

Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets

Procedia PDF Downloads 114
1148 Technical and Economical Evaluation of Electricity Generation and Seawater Desalination Using Nuclear Energy

Authors: A. Hany A. Khater, G. M. Mostafa, M. R. Badawy

Abstract:

The techno-economic analysis of the nuclear desalination is a very important tool that enables studying of the mutual effects between the nuclear power plant and the coupled desalination plant under different operating conditions, and hence investigating the feasibility of safe and economical production of potable water. For this purpose, a comprehensive model for both technical and economic performance evaluation of the nuclear desalination has been prepared. The developed model has the capability to be used in performing a parametric study for the performance measuring parameters of the nuclear desalination system. Also a sensitivity analysis of varying important factors such as interest/discount rate, power plant availability, fossil fuel prices, purchased electricity price, nuclear fuel cost, and specific base cost for both power and water plant has been conducted.

Keywords: uclear desalination, PWR, MED, MED-TVC, MSF, RO

Procedia PDF Downloads 695
1147 Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal

Authors: Mousaab Alrhmoun, Magali Casellas, Michel Baudu, Christophe Dagot

Abstract:

The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: The pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process.

Keywords: activated carbon, organic micropolluants, membrane bioreactor, carbon

Procedia PDF Downloads 294
1146 Simulation and Optimization of an Annular Methanol Reformer

Authors: Shu-Bo Yang, Wei Wu, Yuan-Heng Liu

Abstract:

This research aims to design a heat-exchanger type of methanol reformer coupled with a preheating design in gPROMS® environment. The endothermic methanol steam reforming reaction (MSR) and the exothermic preferential oxidation reaction (PROX) occur in the inner tube and the outer tube of the reformer, respectively. The effective heat transfer manner between the inner and outer tubes is investigated. It is verified that the countercurrent-flow type reformer provides the higher hydrogen yield than the cocurrent-flow type. Since the hot spot temperature appears in the outer tube, an improved scheme is proposed to suppress the hot spot temperature by splitting the excess air flowing into two sites. Finally, an optimization algorithm for maximizing the hydrogen yield is employed to determine optimal operating conditions.

Keywords: methanol reformer, methanol steam reforming, optimization, simulation

Procedia PDF Downloads 309
1145 Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes

Authors: R. Faiez, M. Mashhoudi, F. Najafi

Abstract:

Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermos-capillary flow affects inversely the phase boundaries of distinct shapes. The in homogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow.

Keywords: computer simulation, fluid flow, interface shape, thermos-capillary effect

Procedia PDF Downloads 218
1144 MIOM: A Mixed-Initiative Operational Model for Robots in Urban Search and Rescue

Authors: Mario Gianni, Federico Nardi, Federico Ferri, Filippo Cantucci, Manuel A. Ruiz Garcia, Karthik Pushparaj, Fiora Pirri

Abstract:

In this paper, we describe a Mixed-Initiative Operational Model (MIOM) which directly intervenes on the state of the functionalities embedded into a robot for Urban Search&Rescue (USAR) domain applications. MIOM extends the reasoning capabilities of the vehicle, i.e. mapping, path planning, visual perception and trajectory tracking, with operator knowledge. Especially in USAR scenarios, this coupled initiative has the main advantage of enhancing the overall performance of a rescue mission. In-field experiments with rescue responders have been carried out to evaluate the effectiveness of this operational model.

Keywords: mixed-initiative planning and control, operator control interfaces for rescue robotics, situation awareness, urban search, rescue robotics

Procedia PDF Downloads 330
1143 A Meso Macro Model Prediction of Laminated Composite Damage Elastic Behaviour

Authors: A. Hocine, A. Ghouaoula, S. M. Medjdoub, M. Cherifi

Abstract:

The present paper proposed a meso–macro model describing the mechanical behaviour composite laminates of staking sequence [+θ/-θ]s under tensil loading. The behaviour of a layer is ex-pressed through elasticity coupled to damage. The elastic strain is due to the elasticity of the layer and can be modeled by using the classical laminate theory, and the laminate is considered as an orthotropic material. This means that no coupling effect between strain and curvature is considered. In the present work, the damage is associated to cracking of the matrix and parallel to the fibers and it being taken into account by the changes in the stiffness of the layers. The anisotropic damage is completely described by a single scalar variable and its evolution law is specified from the principle of maximum dissipation. The stress/strain relationship is investigated in plane stress loading.

Keywords: damage, behavior modeling, meso-macro model, composite laminate, membrane loading

Procedia PDF Downloads 451
1142 Evaluation of Toxic Elements in Thai Rice Samples

Authors: W. Srinuttrakul, V. Permnamtip

Abstract:

Toxic elements in rice samples are great concern in Thailand because rice (Oryza sativa) is a staple food for Thai people. Furthermore, rice is an economic crop of Thailand for export. In this study, the concentrations of arsenic (As), cadmium (Cd) and lead (Pb) in rice samples collected from the paddy fields in the northern, northeastern and southern regions of Thailand were determined by inductively coupled plasma mass spectrometry. The mean concentrations of As, Cd and Pb in 55 rice samples were 0.112±0.056, 0.029±0.037 and 0.031±0.033 mg kg-1, respectively. All rice samples showed As, Cd and Pb lower than the limit data of Codex. The estimated daily intakes (EDIs) of As, Cd, and Pb from rice consumption were 0.026±0.013, 0.007±0.009 and 0.007±0.008 mg day-1, respectively. The percentage contribution to Provisional Tolerable Weekly Intake (PTWI) values of As, Cd and Pb for Thai male (body weight of 69 kg) was 17.6%, 9.7%, and 2.9%, respectively, and for Thai female (body weight of 57 kg) was 21.3%, 11.7% and 3.5%, respectively. The findings indicated that all studied rice samples are safe for consumption.

Keywords: arsenic, cadmium, ICP-MS, lead, rice

Procedia PDF Downloads 225