Search results for: corrosion mechanism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3625

Search results for: corrosion mechanism

3445 Corrosion Inhibition of Copper in 1M HNO3 Solution by Oleic Acid

Authors: S. Nigri, R. Oumeddour, F. Djazi

Abstract:

The inhibition of the corrosion of copper in 1 M HNO3 solution by oleic acid was investigated by weight loss measurement, potentiodynamic polarization and scanning electron microscope (SEM) studies. The experimental results have showed that this compound revealed a good corrosion inhibition and the inhibition efficiency is increased with the inhibitor concentration to reach 98%. The results obtained revealed that the adsorption of the inhibitor molecule onto metal surface is found to obey Langmuir adsorption isotherm. The temperature effect on the corrosion behavior of copper in 1 M HNO3 without and with inhibitor at different concentration was studied in the temperature range from 303 to 333 K and the kinetic parameters activation such as Ea, ∆Ha and ∆Sa were evaluated. Tafel plot analysis revealed that oleic acid acts as a mixed type inhibitor. SEM analysis substantiated the formation of protective layer over the copper surface.

Keywords: oleic acid, weight loss, electrochemical measurement, SEM analysis

Procedia PDF Downloads 365
3444 A Comparative Analysis of Traditional and Advanced Methods in Evaluating Anti-corrosion Performance of Sacrificial and Barrier Coatings

Authors: Kazem Sabet-Bokati, Ilia Rodionov, Marciel Gaier, Kevin Plucknett

Abstract:

Protective coatings play a pivotal role in mitigating corrosion and preserving the integrity of metallic structures exposed to harsh environmental conditions. The diversity of corrosive environments necessitates the development of protective coatings suitable for various conditions. Accurately selecting and interpreting analysis methods is crucial in identifying the most suitable protective coatings for the various corrosive environments. This study conducted a comprehensive comparative analysis of traditional and advanced methods to assess the anti-corrosion performance of sacrificial and barrier coatings. The protective performance of pure epoxy, zinc-rich epoxy, and cold galvanizing coatings was evaluated using salt spray tests, together with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The performance of each coating was thoroughly differentiated under both atmospheric and immersion conditions. The distinct protective performance of each coating against atmospheric corrosion was assessed using traditional standard methods. Additionally, the electrochemical responses of these coatings in immersion conditions were systematically studied, and a detailed discussion on interpreting the electrochemical responses is provided. Zinc-rich epoxy and cold galvanizing coatings offer superior anti-corrosion performance against atmospheric corrosion, while the pure epoxy coating excels in immersion conditions.

Keywords: corrosion, barrier coatings, sacrificial coatings, salt-spray, EIS, polarization

Procedia PDF Downloads 25
3443 Evaluation of Corrosion Behaviour of Coatings Applied in a High-Strength Low Alloy Steel in Different Climatic Cabinets

Authors: Raquel Bayon, Ainara Lopez-Ortega, Elena Rodriguez, Amaya Igartua

Abstract:

Corrosion is one of the most concerning phenomenon that accelerates material degradation in offshore applications. In order to avoid the premature failure of metallic materials in marine environments, organic coatings have widely been used, due to their elevated corrosion resistance. Thermally-sprayed metals have recently been used in offshore applications, whereas ceramic materials are usually less employed, due to their high cost. The protectiveness of the coatings can be evaluated and categorized in corrosivity categories in accordance with the ISO 12944-6 Standard. According to this standard, for coatings that are supposed to work in marine environments, a C5-M category is required for components working out of the water or partially immersed in the splash zone, and an Im2 category for totally immersed components. C5-M/Im-2 high category would correspond to a durability of more than 20 years without maintenance in accordance with ISO 12944 and NORSOK M501 standards. In this work, the corrosion behavior of three potential coatings used in offshore applications has been evaluated. For this aim, the materials have been subjected to different environmental conditions in several climatic chambers (humidostatic, climatic, immersion, UV and salt-fog). The category of the coatings to each condition has been selected, in accordance with the previously mentioned standard.

Keywords: cabinet, coatings, corrosion, offshore

Procedia PDF Downloads 387
3442 Numerical Simulation of the Remaining Life of Ramshir Bridge over the Karoon River

Authors: M. Jalali Azizpour, V.Tavvaf, E. Akhlaghi, H. Mohammadi Majd, A. Shirani, S. M. Moravvej, M. Kazemi, A. R. Aboudi Asl, A. Jaderi

Abstract:

The static and corrosion behavior of the bridge using for pipelines in the south of country have been evaluated. The bridge was constructed more than 40 years ago on the Karoon River. Mentioned bridge is located in Khuzestan province and at a distance of 15 km east from the suburbs of Ahwaz. In order to determine the mechanical properties, the experimental tools such as measuring the thickness and static simulations based on the actual load were used. In addition, the metallurgical studies were used to achieve a rate of corrosion of pipes in the river and in the river bed. The aim of this project is to determine the remaining life of the bridge using mechanical and metallurgical studies.

Keywords: FEM, stress, corrosion, bridge

Procedia PDF Downloads 441
3441 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water

Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang

Abstract:

Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.

Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature

Procedia PDF Downloads 107
3440 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium

Authors: P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.

Keywords: Al6061, graphite, passivation, red mud, vortex

Procedia PDF Downloads 506
3439 Corrosion Protective Coatings in Machines Design

Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi

Abstract:

During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.

Keywords: coatings, corrosion, PVD, stainless steel

Procedia PDF Downloads 121
3438 The Comparison of Chromium Ions Release Stainless Steel 18-8 between Artificial Saliva and Black Tea Leaves Extracts

Authors: Nety Trisnawaty, Mirna Febriani

Abstract:

The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is black tea leaves extracts. To explain the comparison of chromium ions release for stainlees steel between artificial saliva and black tea leaves extracts. In this research we used artificial saliva, black tea leaves extracts, stainless steel wire and using Atomic Absorption Spectrophometric testing machine. The samples were soaked for 1, 3, 7 and 14 days in the artificial saliva and black tea leaves extracts. The results showed the difference of chromium ion release soaked in artificial saliva and black tea leaves extracts on days 1, 3, 7 and 14. Statistically, calculation with independent T-test with p < 0,05 showed a significant difference. The longer the duration of days, the more ion chromium were released. The conclusion of this study shows that black tea leaves extracts can inhibit the corrosion rate of stainless steel wires.

Keywords: chromium ion, stainless steel, artificial saliva, black tea leaves extracts

Procedia PDF Downloads 245
3437 Titanium-Aluminium Oxide Coating on Aluminized Steel

Authors: Fuyan Sun, Guang Wang, Xueyuan Nie

Abstract:

In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminium oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviours of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behaviour of the coating material.

Keywords: titanium-aluminum oxide, plasma electrolytic oxidation, corrosion, wear, thermal property

Procedia PDF Downloads 329
3436 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater

Authors: N. Hammouda, K. Belmokre

Abstract:

The paints are used extensively today in the industry to protect the metallic structures of the aggressive environments. This work is devoted to the study of corrosion resistance and aging behavior of a paint coating providing external protection for oil tankers. To avoid problems related to corrosion of these vessels, two protection modes are provided: An electro chemical active protection (cathodic protection of the hull). A passive protection by external painting. Investigations are conducted using stationary and non-stationary electro chemical tools such as electro chemical impedance spectroscopy has allowed us to characterize the protective qualities of these films. The application of the EIS on our damaged in-situ painting shows the existence of several capacitive loops which is an indicator of the failure of our tested paint. Microscopic analysis (micrograph) helped bring essential elements in understanding the degradation of our paint condition and immersion training corrosion products.

Keywords: epoxy paints, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 364
3435 Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers

Authors: K. S. Ghosh, Sagnik Bose, Kapil Tripati

Abstract:

Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features.

Keywords: AA 2014 and AA 2024 Al-C-Mg alloy, artificial ageing, potentiodynamic polarization, TEM micrographs, stress corrosion cracking (SCC)

Procedia PDF Downloads 298
3434 EIS Study of the Corrosion Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water

Authors: Nadia Hammouda, Kamel Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water

Procedia PDF Downloads 348
3433 Corrosion Behavior of Austempered Ductile Iron Microalloyed with Boron in Rainwater

Authors: S. Gvazava, N. Khidasheli, V. Tediashvili, M. Donadze

Abstract:

The work presented in this paper studied the of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in rainwater. A range of structural states of the metal matrix was obtained by changing the regimes of thermal treantments of a high-strength cast iron. The specimens were austenised at 900 0C for 30, 60, 90, 120 minutes. Afterwards, isothermal quenching was performed at 280 and 400 0C for40 seconds. The study was carried out using weight-change (WC), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM-EDS). According to the results, corrosion resistance of the boron microallyedbainitic ADI greatly depends on the type of the bainitic matrix and the amount of the retained austenite, which is driven by diffusion permeability of interphase and intergrain boundaries.

Keywords: austempered ductile iron, corrosion behaviour, retained austenite, corrosion rate, interphase boundary, upper bainite, lower bainite

Procedia PDF Downloads 96
3432 Influence of Different Thicknesses on Mechanical and Corrosion Properties of a-C:H Films

Authors: S. Tunmee, P. Wongpanya, I. Toda, X. L. Zhou, Y. Nakaya, N. Konkhunthot, S. Arakawa, H. Saitoh

Abstract:

The hydrogenated amorphous carbon films (a-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like peaks, representative of the a-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the a-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values show the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electro chemical properties showed that the a-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited a-C:H films exhibited excellent mechanical properties and corrosion resistance.

Keywords: thickness, mechanical properties, electrochemical corrosion properties, a-C:H film

Procedia PDF Downloads 419
3431 Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment

Authors: Serge Mudinga Lemika, Samuel Olukayode Akinwamide, Aribo Sunday, Babatunde Abiodun Obadele, Peter Apata Olubambi

Abstract:

Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting.

Keywords: duplex stainless steel, hardness, nanoceramics, spark plasma sintering

Procedia PDF Downloads 272
3430 Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel

Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik

Abstract:

In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments.

Keywords: TiO₂, CP-Ti, corrosion properties, thermal oxidation, plasma oxidation, sol-gel

Procedia PDF Downloads 252
3429 A Density Functional Theory Computational Study on the Inhibiting Action of Some Derivatives of 1,8-Bis(Benzylideneamino)Naphthalene against Aluminum Corrosion

Authors: Taher S. Ababneh, Taghreed M. A. Jazzazi, Tareq M. A. Alshboul

Abstract:

The inhibiting action against aluminum corrosion by three derivatives of 1,8-bis (benzylideneamino) naphthalene (BN) Schiff base has been investigated by means of DFT quantum chemical calculations at the B3LYP/6-31G(d) level of theory. The derivatives (CBN, NBN and MBN) were prepared from the condensation reaction of 1,8-diaminonaphthalene with substituted benzaldehyde (4-CN, 3-NO₂ and 3,4-(OMe)₂, respectively). Calculations were conducted to study the adsorption of each Schiff base on aluminum surface to evaluate its potential as a corrosion inhibitor. The computational structural features and electronic properties of each derivative such as relative energies and energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been reported. Thermodynamic functions and quantum chemical parameters such as the hardness of the inhibitor, the softness and the electrophilicity index were calculated to determine the derivative of the highest inhibition efficiency.

Keywords: corrosion, aluminum, DFT calculation, 1, 8-diaminonaphthalene, benzaldehyde

Procedia PDF Downloads 311
3428 Improvement of Fatigue and Fatigue Corrosion Resistances of Turbine Blades Using Laser Cladding

Authors: Sami I. Jafar, Sami A. Ajeel, Zaman A. Abdulwahab

Abstract:

The turbine blades used in electric power plants are made of low alloy steel type 52. These blades will be subjected to fatigue and also at other times to fatigue corrosion with aging time. Due to their continuous exposure to cyclic rotational stresses in corrosive steam environments, The current research aims to deal with this problem using the laser cladding method for low alloy steel type 52, which works to re-compose the metallurgical structure and improve the mechanical properties by strengthening the resulting structure, which leads to an increase in fatigue and wears resistance, therefore, an increase in the life of these blades is observed.

Keywords: fatigue, fatigue corrosion, turbine blades, laser cladding

Procedia PDF Downloads 168
3427 Benzimidazole as Corrosion Inhibitor for Heat Treated 6061 Al-SiCp Composite in Acetic Acid

Authors: Melby Chacko, Jagannath Nayak

Abstract:

6061 Al-SiCp composite was solutionized at 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed onto the surface of composite by mixed adsorption where chemisorption is predominant.

Keywords: 6061 Al-SiCp composite, T6 treatment, corrosion inhibition, chemisorption

Procedia PDF Downloads 363
3426 Investigation of Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection: The Modified Voltammetry Technique

Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behaviour of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP, which was only applied on two of the three coupons at the protection potential -0.8 V vs Cu/CuSO₄ for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP, while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from the ohmic drop. Voltammetry was finally performed on the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduced the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect from the decreased potential and an induced effect associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy

Procedia PDF Downloads 34
3425 Dynamic Synthesis of a Flexible Multibody System

Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui

Abstract:

This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.

Keywords: dynamic response, evolutionary genetic algorithm, flexible bodies, optimization

Procedia PDF Downloads 288
3424 Effect of Hot Extrusion on the Mechanical and Corrosion Properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn Alloys for Medical Application

Authors: V. E. Bazhenov, A. V. Li, A. A. Komissarov, A. V. Koltygin, S. A. Tavolzhanskii, O. O. Voropaeva, A. M. Mukhametshina, A. A. Tokar, V. A. Bautin

Abstract:

Magnesium-based alloys are considered as effective materials in the development of biodegradable implants. The magnesium alloys containing Mg, Zn, Ca as an alloying element are the subject of the particular interest. These elements are the nutrients for the human body, which provide their high biocompatibility. In this work, we investigated the effect of severe plastic deformation (SPD) on the mechanical and corrosion properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn alloys containing from 2 to 4 wt.% Zn; 0.7 wt.% Ca and up to 1 wt.% Mn. Hot extrusion was used as a method of intensive plastic deformation. The temperature of hot extrusion was set to 220 °C and 300 °C. Metallographic analysis after hot extrusion shows that the grain size in the studied alloys depends on the deformation temperature. The grain size for all of investigated alloys is in the range from 3 to 7 microns, and 3 μm corresponds to the extrusion temperature of 220 °C. Analysis of mechanical properties after extrusion shows that extrusion at a temperature of 220 °C and alloying with Mn increase the strength characteristics and decrease the ductility of studied alloys. A slight anisotropy of properties in the longitudinal and transverse directions was also observed. Measurements of corrosion properties revealed that the addition of Mn to Mg-Zn-Ca alloys reduces the corrosion rate. On the other hand, increasing the Zn content in alloys increases the corrosion rate. The extrusion temperature practically does not affect the corrosion rate. Acknowledgement: The authors gratefully acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No K2-2019-008), implemented by a governmental decree dated 16th of March 2013, N 211.

Keywords: biocompatibility, hot extrusion, magnesium alloys, severe plastic deformation, properties

Procedia PDF Downloads 80
3423 The Effectiveness of Cathodic Protection on Microbiologically Influenced Corrosion Control

Authors: S. Taghavi Kalajahi, A. Koerdt, T. Lund Skovhus

Abstract:

Cathodic protection (CP) is an electrochemical method to control and manage corrosion in different industries and environments. CP which is widely used, especially in buried and sub-merged environments, which both environments are susceptible to microbiologically influenced corrosion (MIC). Most of the standards recommend performing CP using -800 mV, however, if MIC threats are high or sulfate reducing bacteria (SRB) is present, the recommendation is to use more negative potentials for adequate protection of the metal. Due to the lack of knowledge and research on the effectiveness of CP on MIC, to the author’s best knowledge, there is no information about what MIC threat is and how much more negative potentials should be used enabling adequate protection and not overprotection (due to hydrogen embrittlement risk). Recently, the development and cheaper price of molecular microbial methods (MMMs) open the door for more effective investigations on the corrosion in the presence of microorganisms, along with other electrochemical methods and surface analysis. In this work, using MMMs, the gene expression of SRB biofilm under different potentials of CP will be investigated. The specific genes, such as pH buffering, metal oxidizing, etc., will be compared at different potentials, enabling to determine the precise potential that protect the metal effectively from SRB. This work is the initial step to be able to standardize the recommended potential under MIC condition, resulting better protection for the infrastructures.

Keywords: cathodic protection, microbiologically influenced corrosion, molecular microbial methods, sulfate reducing bacteria

Procedia PDF Downloads 67
3422 Conversion of Carcinogenic Liquid-Wastes of Poly Vinyl Chloride (PVC) Industry to ‎an Environmentally Safe Product: Corrosion Inhibitor and Biocide

Authors: Mohamed A. Hegazy

Abstract:

Most of Poly Vinyl Chloride (PVC) petrochemical companies produce huge amount of byproduct which characterized as carcinogenic liquid-wastes, insoluble in water, highly corrosive and highly offensive. This byproduct is partially use, a small part, in the production of hydrochloric acid and the huge part is a waste. Therefore, the aim of this work was to conversion of such PVC wastes, to an environmentally safe product that act as a corrosion Inhibitor for metals in ‎aqueous media and as a biocide for microorganisms. This conversion method was accomplished mainly to protect the environment and to produce high economic value-products. The conversion process was established and the final product was tested for the toxicity, water solubility in comparison to the crude product. Furthermore, the end product was tested as a corrosion inhibitor in 1M HCl and as a broad-spectrum biocide against standard microbial strains and against the environmentally isolated Sulfate-reducing bacteria (SRB) microbial community.

Keywords: PVC, surfactant, corrosion inhibitor, biocide, SRB

Procedia PDF Downloads 96
3421 Evaluation of Pelargonium Extract and Oil as Eco-Friendly Corrosion Inhibitor for Steel in Acidic Chloride Solutions and Pharmacological Properties

Authors: Ahmed Chetouani

Abstract:

Corrosion is a natural occurring process where it can be defined as the deterioration of materials properties due to its interaction with its environment. Corrosion can lead to failures in plant infrastructure and machines which are usually costly to repair. In terms of loss of contaminated products which will cause environmental damage and possibly costly in terms of human health. The driving force that causes metals to corrode is due to the natural consequence of their temporary existence in metallic form. There is a growing trend in utilizing plant extracts and pharmaceutical compounds as corrosion inhibitors. Exquisite identification of the essential oil of aerial parts of Pelargonium was obtained using hydrodistillation and identification using GC (gas chromatography) and GC/MS (gas chromatography-mass spectrometry). The oil was predominated by Citronellol (22.8%). The inhibitory effect of essential oil and extract of Pelargonium was estimated on the corrosion of mild steel in 1M hydrochloric acid (HCl) using weight loss, Electrochemical Impedance Spectroscopy (EIS) and Tafel polarization curves. Inhibition was found to increase with increasing concentration of the essential oil and extract of Pelargonium. The effect of temperature on the corrosion behaviour of mild steel in 1M HCl with addition of essential oil and extract was also studied and the thermodynamic parameters were determined and discussed. Values of inhibition efficiency were calculated from weight loss, Tafel polarization curves, and EIS. All results are in good agreement. Polarization curves showed that essential oil and extract of Pelargonium behave as mixed type inhibitors in hydrochloric acid. The results obtained showed that the essential oil and extract of Pelargonium could serve as an effective inhibitor of the corrosion of mild steel in Hydrochloric acid solution. To avoid any surprise of toxicity, the majority compounds have been studied by using POM analyses.

Keywords: corrosion inhibition, mild steel, pelargonium oil, extract, electrochemical system, hydrodistillation, side effects, POM Analyses

Procedia PDF Downloads 371
3420 Inhibition of the Corrosion of Copper in 0.5 NaCl Solutions by Aqueous Extract and Hydrolysis Acid of Olive Leaf Extract

Authors: Chahla Rahal, Philippe Refait

Abstract:

Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.

Keywords: olive leaf extract, oleuropein, voltammetry, copper, corrosion, HPLC, EIS

Procedia PDF Downloads 273
3419 Surface Modification of SUS-304 Using Nitriding Treatment for Application of Bipolar Plates of Proton Exchange Membrane Fuel Cells

Authors: Wei-Ru Chang, Jenn-Jiang Hwang, Zen-Ting Hsiao, Shu-Feng Lee

Abstract:

Proton exchange membrane (PEM) fuel cells are widely used in electrical systems as an economical, low-polluting energy source. This study investigates the effects of PEMFC gas nitriding treatment on metal bipolar plates. The test material was SUS304 stainless steel. The study explored five different pretreatment processes, varying the corrosion resistance and electrical conductivity conditions. The most effective process was industrial acid washing, followed by heating to 500 °C. Under the condition, the corrosion current density was 8.695 μA, significantly lower than that of the untreated pretreatment sample flakes, which was measured as 38.351 μA.

Keywords: nitriding, bipolar, 304, corrosion, resistance, pretreatment

Procedia PDF Downloads 1051
3418 The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath

Authors: Chun-Ying Lee, Mei-Wen Wu, Li-Yi Cheng, Chiang-Ho Cheng

Abstract:

This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.

Keywords: supercritical CO2, zinc-electroplating, sodium fluoride, electroplating

Procedia PDF Downloads 538
3417 Evaluation of Corrosion Caused by Biogenic Sulfuric Acid (BSA) on the Concrete Structures of Sewerage Systems: Chemical Tests

Authors: M. Cortés, E. Vera, O. Rojas

Abstract:

The research studies of the kinetics of the corrosion process that attacks concrete and occurs within sewerage systems agree on the amount of variables that interfere in the process. This study aims to check the impact of the pH levels of the corrosive environment and the concrete surface, the concentrations of chemical sulfuric acid, and in turn, measure the resistance of concrete to this attack under controlled laboratory conditions; it also aims to contribute to the development of further research related to the topic, in order to compare the impact of biogenic sulfuric acid and chemical sulfuric acid involvement on concrete structures, especially in scenarios such as sewerage systems.

Keywords: acid sulfuric, concrete, corrosion, biogenic

Procedia PDF Downloads 349
3416 Olive Leaf Extract as Natural Corrosion Inhibitor for Pure Copper in 0.5 M NaCl Solution: A Study by Voltammetry around OCP

Authors: Chahla Rahal, Philippe Refait

Abstract:

Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.

Keywords: Olive leaf extract, Oleuropein, hydroxytyrosol, elenolic acid , Copper, Corrosion, HPLC/DAD, Polarisation, EIS

Procedia PDF Downloads 226