Search results for: combined heat
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5281

Search results for: combined heat

5161 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler

Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian

Abstract:

Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.

Keywords: fin wave angle, tube, intercooler, optimum, performance

Procedia PDF Downloads 348
5160 Exergy Losses Relation with Driving Forces in Heat Transfer Process

Authors: S. Ali Ashrafizadeh, M. Amidpour, N. Hedayat

Abstract:

Driving forces along with transfer coefficient affect on heat transfer rate, on the other hand, with regard to the relation of these forces with irriversibilities they are effective on exergy losses. Therefore, the driving forces can be used as a relation between heat transfer rate, transfer coefficients and exergy losses. In this paper, first, the relation of the exergetic efficiency and resistant forces is obtained, next the relation between exergy efficiency, relative driving force, heat transfer rate and heat resistances is considered. In all cases, results are argued graphically. Finally, a case study inspected by obtained results.

Keywords: heat transfer, exergy losses, exergetic efficiency, driving forces

Procedia PDF Downloads 578
5159 A Critical Appraisal of CO₂ Entrance Pressure with Heat

Authors: Abrar Al-Mutairi, Talal Al-Bazali

Abstract:

In this study, changes in capillary entry pressure of shale, as it interacts with CO₂, under different temperatures (25 °C to 250 °C) have been investigated. The combined impact of temperature and petrophysical properties (water content, water activity, permeability and porosity) of shale was also addressed. Results showed that the capillary entry pressure of shale when it interacted with CO₂ was highly affected by temperature. In general, increasing the temperature decreased capillary entry pressure of shale. We believe that pore dilation, where pore throat size expands due to the application of heat, may have caused this decrease in capillary entry pressure of shale. However, in some cases we found that at higher temperature some shale samples showed that the temperature activated clay swelling may have caused an apparent decrease in pore throat radii of shale which translates into higher capillary entry pressure of shale. Also, our results showed that there is no distinct relationship between shale’s water content, water activity, permeability, and porosity on the capillary entry pressure of shale samples as it interacted with CO₂ at different temperatures.

Keywords: heat, threshold pressure, CO₂ sequestration, shale

Procedia PDF Downloads 85
5158 Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel

Authors: Arvind Mittal, Rajesh Gupta

Abstract:

Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs.

Keywords: microstructure, mechanical properties, shield metal arc welded, duplex stainless steel

Procedia PDF Downloads 256
5157 Heat Transfer Investigation in a Dimple Plate Heat Exchanger Using Ionic Liquid and Ionanofluid

Authors: Divya P. Soman, S. Karthika, P. Kalaichelvi, T. K. Radhakrishnan

Abstract:

Heat transfer characteristics of ionic liquid solution as cold fluid in plate heat exchanger with dimple plate geometry was studied. The ionic liquid solution used in this study was 1-butyl-3-methylimidazolium bromide in water. The present experimental study is to understand the heat transfer behavior of different 1-butyl-3-methylimidazolium bromide concentrations (0.1 and 0.2% w/w) in water. In addition, the heat transfer activity of ionanofluid as cold fluid was investigated. The ionanofluid was prepared by dispersing 0.3% w/w Al2O3 in the ionic liquid solution as base fluid. Experiments were also conducted to determine thermophysical properties of ionanofluid. The empirical correlations as a function of temperature were developed to predict the thermophysical properties. Finally, the heat transfer performance of ionic liquid solution, ionanofluid, nanofluid and water were compared. The impact of hot fluid’s (water) Reynolds number on overall heat transfer coefficient and Nusselt number of cold fluids were analyzed. The nanofluid and ionanofluid were found to possess better heat transfer behavior than water and ionic liquid solution. Heat transfer augmentation was observed for ionanofluid when compared with the base fluid (0.1% w/w ionic liquid solution).

Keywords: ionic liquid, nanofluid, ionanofluid, dimple plate heat exchanger, Nusselt number, overall heat transfer coefficient

Procedia PDF Downloads 107
5156 Numerical Study of Natural Convection of a Localized Heat Source at the up of a Nanofluid-Filled Enclosure

Authors: Marziyeh Heydari, Hossein Shokouhmand

Abstract:

This article presents a numerical study of natural convection of a heat source embedded on the up wall of an enclosure filled with nanofluid. The bottom and vertical walls of the enclosure are maintained at a relatively low temperature. The type of nanofluid and solid volume fraction of nanoparticle on the heat transfer performance is studied. The results indicated that adding nanoparticle into pure paraffin improves heat transfer. The results are presented over a wide range of Rayleigh numbers(Ra=〖10〗^3 〖-10〗^5), the volume fraction of nanoparticles (0≤ɸ≤0.4%). For an enclosure, the Nusselt number of a cu-paraffin nanofluid was reduced by increasing the volume fraction of nanoparticles above 0.2%.

Keywords: nanofluid, heat transfer, heat source, enclosure

Procedia PDF Downloads 276
5155 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing

Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang

Abstract:

With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.

Keywords: heat island effect, neural network, comprehensive evaluation, visualization

Procedia PDF Downloads 105
5154 Comparative Analysis of Internal Combustion Engine Cooling Fins Using Ansys Software

Authors: Aakash Kumar R. G., Anees K. Ahamed, Raj M. Mohan

Abstract:

Effective engine cooling can improve the engine’s life and efficacy. The design of the fin of the cylinder head and block determines the cooling mechanism of air cooled engine. The heat conduction takes place through the engine parts and convection of heat from the surface of the fins takes place with air as the heat transferring medium. The air surrounding the cooling fins helps in removal of heat built up by the air cooled engine. If the heat removal rate is inadequate, it will result in lower engine efficiency and high thermal stresses in the engine. The main drawback of the air cooled engine is the low heat transfer rate of the cooling fins .This work is based on scrutiny of previous researches that involves enhancing of heat transfer rate of cooling fins. The current research is about augmentation of heat transfer rate of longitudinal rectangular fin profiles by varying the length of the fin and diameter of holes on the fins. Thermal and flow analysis is done for two different models of fins. One is simple fin without holes and the other is perforated (consist of holes). It can be inferred from the research that the fins with holes have a higher fin efficiency than the fins without holes. The geometry of the fin is done in CREO. The heat transfer analysis is done using ANSYS software.

Keywords: fins, heat transfer, perforated fins, thermal analysis, thermal flux

Procedia PDF Downloads 346
5153 Experimental and Numerical Investigation of Heat Transfer in THTL Test Loop Shell and Tube Heat Exchanger

Authors: M. Moody, R. Mahmoodi, A. R. Zolfaghari, A. Aminottojari

Abstract:

In this study, flow inside the shell side of a shell-and-tube heat exchanger is simulated numerically for laminar and turbulent flows in both steady state and transient mode. Governing equations of fluid flow are discrete using finite volume method and central difference scheme and solved with simple algorithm which is staggered grid by using MATLAB programming language. The heat transfer coefficient is obtained using velocity field from equation Dittus-Bolter. In comparison with, heat exchanger is simulated with ANSYS CFX software and experimental data measured in the THTL test loop. Numerical results obtained from the study show good agreement with experimental data and ANSYS CFX results. In addition, by deliberation the effect of the baffle spacing and the baffle cut on the heat transfer rate for turbulent flow, it is illustrated that the heat transfer rate depends on the baffle spacing and the baffle cut directly. In other word in spied of large turbulence, if these two parameters are not selected properly in the heat exchanger, the heat transfer rate can reduce.

Keywords: shell-and-tube heat exchanger, flow and heat transfer, laminar and turbulence flow, turbulence model, baffle spacing, baffle cut

Procedia PDF Downloads 516
5152 CFD Simulation of Forced Convection Nanofluid Heat Transfer in the Automotive Radiator

Authors: Sina Movafagh, Younes Bakhshan

Abstract:

Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated numerically. Different concentrations of nanofluids have been investigated by the addition of Al2O3 nano-particles into the water. Also, the effect of the inlet temperature of nanofluid on the performance of radiator is studied. Results show that with an increase of inlet temperature the outlet temperature and pressure drop along the radiator increase. Also, it has been observed that increase of nono-particle concentration will result in an increase in heat transfer rate within the radiator.

Keywords: heat transfer, nanofluid, car radiator, CFD simulation

Procedia PDF Downloads 276
5151 Entropy Generation Analysis of Cylindrical Heat Pipe Using Nanofluid

Authors: Morteza Ghanbarpour, Rahmatollah Khodabandeh

Abstract:

In this study, second law of thermodynamic is employed to evaluate heat pipe thermal performance. In fact, nanofluids potential to decrease the entropy generation of cylindrical heat pipes are studied and the results are compared with experimental data. Some cylindrical copper heat pipes of 200 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based Al2O3 nanofluids with volume concentrations of 1-5% as working fluids. Nanofluids are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles in a base liquid. These fluids have shown potential to enhance heat transfer properties of the base liquids used in heat transfer application. When the working fluid undergoes between different states in heat pipe cycle the entropy is generated. Different sources of irreversibility in heat pipe thermodynamic cycle are investigated and nanofluid effect on each of these sources is studied. Both experimental and theoretical studies reveal that nanofluid is a good choice to minimize the entropy generation in heat pipe thermodynamic cycle which results in higher thermal performance and efficiency of the system.

Keywords: heat pipe, nanofluid, thermodynamics, entropy generation, thermal resistance

Procedia PDF Downloads 437
5150 Analysis of Solar Thermal Power Plant in Algeria

Authors: M. Laissaoui

Abstract:

The present work has for objective the simulation of a hybrid solar combined cycle power plant, compared with combined cycle conventional (gas turbine and steam turbine), this type of power plants disposed an solar tour (heliostat field and volumetric receiver) insurant a part of the thermal energy necessary for the functioning of the gas turbine. This solar energy serves to feed with heat the combustion air of the gas turbine when he out of the compressor and the front entered the combustion chamber. The simulation of even central and made for three zones deferential to know the zone of Hassi R' mel, Bechare, and the zone of Messaad wilaya of El djelfa. The radiometric and meteorological data arise directly from the software meteonorme 7. The simulation of the energy performances is made by the software TRNSYS 16.1.

Keywords: concentrating solar power, heliostat, thermal, Algeria

Procedia PDF Downloads 440
5149 Heat Distribution Simulation on Transformer Using FEMM Software

Authors: N. K. Mohd Affendi, T. A. R. Tuan Abdullah, S. A. Syed Mustaffa

Abstract:

In power industry transformer is an important component and most of us familiar by the functioning principle of a transformer electrically. There are many losses occur during the operation of a transformer that causes heat generation. This heat, if not dissipated properly will reduce the lifetime and effectiveness of the transformer. Transformer cooling helps in maintaining the temperature rise of various paths. This paper proposed to minimize the ambient temperature of the transformer room in order to lower down the temperature of the transformer. A simulation has been made using finite element methods programs called FEMM (Finite Elements Method Magnetics) to create a virtual model based on actual measurement of a transformer. The generalization of the two-dimensional (2D) FEMM results proves that by minimizing the ambient temperature, the heat of the transformer is decreased. The modeling process and of the transformer heat flow has been presented.

Keywords: heat generation, temperature rise, ambient temperature, FEMM

Procedia PDF Downloads 356
5148 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators

Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan

Abstract:

Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.

Keywords: turbulators, heat exchanger, nanofluids, heat transfer enhancement

Procedia PDF Downloads 371
5147 Heat Capacity of a Soluble in Water Protein: Equilibrium Molecular Dynamics Simulation

Authors: A. Rajabpour, A. Hadizadeh Kheirkhah

Abstract:

Heat transfer is of great importance to biological systems in order to function properly. In the present study, specific heat capacity as one of the most important heat transfer properties is calculated for a soluble in water Lysozyme protein. Using equilibrium molecular dynamics (MD) simulation, specific heat capacities of pure water, dry lysozyme, and lysozyme-water solution are calculated at 300K for different weight fractions. It is found that MD results are in good agreement with ideal binary mixing rule at small weight fractions. Results of all simulations have been validated with experimental data.

Keywords: specific heat capacity, molecular dynamics simulation, lysozyme protein, equilibrium

Procedia PDF Downloads 276
5146 Strategies to Improve Heat Stress Tolerance in Chickpea and Dissecting the Cross Talk Mechanism

Authors: Renu Yadav, Sanjeev Kumar

Abstract:

In northern India, chickpea (Cicer arietinum L.) come across with terminal high-temperature stress during reproductive stage which leads to reduced yield. Hence, stable production of chickpea will depend on the development of new methods like ‘priming’ which allow improved adaptation to the drought and heat stress. In the present experiment, 11-day chickpea seedling was primed with mild drought stress and put on recovery stage by irrigating and finally 30-day seedlings were exposed to heat stress 38°C (4 hours), 35°C (8 hours) and 32°C (12 hours). To study the effect of combinatorial stress, heat and drought stress was applied simultaneously. Analyses of various physiological parameters like membrane damage assay, photosynthetic pigments, antioxidative enzyme, total sugars were estimated at all stages. To study the effect of heat stress on the metabolites of the plants, GC-MS and HPLC were performed, while at transcriptional level Real-Time PCR of predicted heat stress-related genes was done. It was concluded that the heat stress significantly affected the chickpea plant at physiological and molecular level in all the five varieties. Results also show less damaging effect in primed plants by increasing the activity of antioxidative enzymes and increased expression of heat shock proteins and heat shock factors.

Keywords: chickpea, combinatorial stress, heat stress, oxidative stress, priming, RT-PCR

Procedia PDF Downloads 125
5145 Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium

Authors: Hosein Shokoohmand, Mohamad Esmaeil Jomeh

Abstract:

The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease.

Keywords: Reynolds numbers, frequency of oscillatory flow, constant heat flux, mist flow

Procedia PDF Downloads 467
5144 A Novel Comparison Scheme for Thermal Conductivity Enhancement of Heat Transfer

Authors: Islam Tarek, Moataz Soliman

Abstract:

With the amazing development of nanoscience’s and the discovery of the unique properties of nanometric materials, the ideas of scientists and researchers headed to take advantage of this progress in various fields, and one of the most important of these areas is the field of heat transfer and benefit from it in saving energy used for heat transfer, so nanometric materials were used to improve the properties of heat transfer fluids and increase the efficiency of the liquid. In this paper, we will compare two types of heat transfer fluid, one industrial type (the base fluid is a mix of ethylene glycol and deionized water ) and another natural oils(the base fluid is a mix of jatropha oil and expired olive oil), explaining the method of preparing each of them, starting from the method of preparing CNT, collecting and sorting jatropha seeds, and the most appropriate method for extracting oil from them, and characterization the both of two fluids and when to use both.

Keywords: nanoscience, heat transfer, thermal conductivity, jatropha oil

Procedia PDF Downloads 185
5143 Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube

Authors: Shengjun Zhang, Xu Cheng, Feng Shen

Abstract:

The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data.

Keywords: non-condensable gas, condensation, heat transfer coefficient, heat and mass transfer analogy

Procedia PDF Downloads 315
5142 Analysis of the Environmental Impact of Selected Small Heat and Power Plants Operating in Poland

Authors: M. Stelmachowski, M. Wojtczak

Abstract:

The aim of the work was to assess the environmental impact of the selected small and medium-sized companies supplying heat and electricity to the cities with a population of about 50,000 inhabitants. Evaluation and comparison of the impact on the environment have been carried out for the three plants producing heat and two CHP plants with particular attention to emissions into the atmosphere and the impact of introducing a system of trading carbon emissions of these companies.

Keywords: CO2 emission, district heating, heat and power plant, impact on environment

Procedia PDF Downloads 447
5141 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi

Abstract:

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

Keywords: Fourier number, Nusselt number, Rayleigh number, steady state, transient

Procedia PDF Downloads 327
5140 Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow

Authors: Jason P. Michaud, Connor P. Speer, David A. Miller, David S. Nobes

Abstract:

An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of  50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.

Keywords: finned-tube heat exchangers, heat transfer correlations, pulsatile flow, computer radiators

Procedia PDF Downloads 480
5139 Simulation of Heat Exchanger Behavior during LOCA Accident in THTL Test Loop

Authors: R. Mahmoodi, A. R. Zolfaghari

Abstract:

In nuclear power plants, loss of coolant from the primary system is the type of reduced removed capacity that is given most attention; such an accident is referred as Loss of Coolant Accident (LOCA). In the current study, investigation of shell and tube THTL heat exchanger behavior during LOCA is implemented by ANSYS CFX simulation software in both steady state and transient mode of turbulent fluid flow according to experimental conditions. Numerical results obtained from ANSYS CFX simulation show good agreement with experimental data of THTL heat exchanger. The results illustrate that in large break LOCA as short term accident, heat exchanger could not fast response to temperature variables but in the long term, the temperature of shell side of heat exchanger will be increase.

Keywords: shell-and-tube heat exchanger, shell-side, CFD, flow and heat transfer, LOCA

Procedia PDF Downloads 405
5138 Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design

Authors: C. Patrascioiu

Abstract:

The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim® Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim® Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump.

Keywords: distillation, heat pump, simulation, unisim design

Procedia PDF Downloads 333
5137 Investigation of Heat Transfer of Nanofluids in Circular Microchannels

Authors: Bayram Sahin, Hourieh Bayramian, Emre Mandev, Murat Ceylan

Abstract:

In industrial applications, the demand for the enhancement of heat transfer is a common engineering problem. The use of additives to heat transfer fluid is a technique applied to enhance the heat transfer performance of base fluids. In this study, the thermal performance of nanofluids consisting of SiO2 particles and deionized water in circular microchannels was investigated experimentally. SiO2 nanoparticles with diameter of 15 nm were added to water to prepare nanofluids with 0.2% and 0.4% volume fractions. Heat transfer characteristics were calculated by using temperature, flow and pressure measurements. The thermal conductivity and viscosity values required for the calculations are measured separately. It is observed that the Nusselt number increases at the all volume fraction of particles, by increasing the Reynolds number and the volumetric ratios of the particles. The highest heat transfer enhancement is obtained at Re = 2160 and 0.4 % vol. by 14% under the condition of a constant pumping power.

Keywords: nanofluid, microchannel, heat transfer, SiO2-water nanofluid

Procedia PDF Downloads 357
5136 Variation in Total Iron and Zinc Concentration, Protein Quality, and Quantity of Maize Hybrids Grown under Abiotic Stress and Optimal Conditions

Authors: Tesfaye Walle Mekonnen

Abstract:

Maize is one of the most important staple food crops for most low-income households in the Sub-Saharan (SSA). Combined heat and drought stress is the major production threats that reduce the yield potential of biofortified maize and restrain various macro and micronutrient deficiencies highly prevalent in low-income people who rely solely on maize-based diets, SSA. This problem can be alleviated by crossing the biofortified inbred lines with different nutritional attributes, Fe, Zn, Protein, and Provitamin A, and developing agronomically superior and stable multi-nutrient maize of various genetic backgrounds. This aimed to understand the correlation between biofortified inbred lines per se and hybrid performance under combined heat and drought stress conditions (CSC). The experiment was conducted at CIMMYT, Zimbabwe, using α-lattice design with three replications. The hybrid effect was highly significant for zein fractions (α-, β-, γ- and δ-zein) zinc, (Zn), and iron (Fe) provitamin A, phytic acid, and grain yield. Under CSC, Fe, Zn concentration, provitamin A in grain and grain yield of hybrids were significantly decreased, however, the zein fraction content and phytic acid content increases in grain were increased under CSC. The phenotypic correlation between grain yield with Zn, Fe concentration, and Provitamin A in grain was strongly positive and higher under CSC than in well-watered conditions. The present investigation confirmed that under CSC, Fe, and Zn-enhanced hybrids could be forecasted to a certain scope based on the performance of and scientifically selected for desirable grain yield and related traits with CSC tolerance during hybrid development programs. In conclusion, the development of high-yielding and micronutrient-dense maize variety is possible under CSC, which could reduce the highly prevalent micronutrient in SSA.

Keywords: drought, Fe, heat, maize, protein, zein fractions, Zn

Procedia PDF Downloads 38
5135 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation

Procedia PDF Downloads 289
5134 Optimization of Fin Type and Fin per Inch on Heat Transfer and Pressure Drop of an Air Cooler

Authors: A. Falavand Jozaei, A. Ghafouri

Abstract:

Operation enhancement in an air cooler (heat exchanger) depends on the rate of heat transfer, and pressure drop. In this paper, for a given heat duty, study of the effects of FPI (fin per inch) and fin type (circular and hexagonal fins) on two parameters mentioned above is considered in an air cooler in Iran, Arvand petrochemical. A program in EES (Engineering Equations Solver) software moreover, Aspen B-JAC and HTFS+ software are used for this purpose to solve governing equations. At first the simulated results obtained from this program is compared to the experimental data for two cases of FPI. The effects of FPI from 3 to 15 over heat transfer (Q) to pressure drop ratio (Q/Δp ratio). This ratio is one of the main parameters in design, rating, and simulation heat exchangers. The results show that heat transfer (Q) and pressure drop increase with increasing FPI (fin per inch) steadily, and the Q/Δp ratio increases to FPI = 12 (for circular fins about 47% and for hexagonal fins about 69%) and then decreased gradually to FPI = 15 (for circular fins about 5% and for hexagonal fins about 8%), and Q/Δp ratio is maximum at FPI = 12. The FPI value selection between 8 and 12 obtained as a result to optimum heat transfer to pressure drop ratio. Also by contrast, between circular and hexagonal fins results, the Q/Δp ratio of hexagonal fins more than Q/Δp ratio of circular fins for FPI between 8 and 12 (optimum FPI).

Keywords: air cooler, circular and hexagonal fins, fin per inch, heat transfer and pressure drop

Procedia PDF Downloads 422
5133 Numerical and Experimental Study of Heat Transfer Enhancement with Metal Foams and Ultrasounds

Authors: L. Slimani, A. Bousri, A. Hamadouche, H. Ben Hamed

Abstract:

The aim of this experimental and numerical study is to analyze the effects of acoustic streaming generated by 40 kHz ultrasonic waves on heat transfer in forced convection, with and without 40 PPI aluminum metal foam. Preliminary dynamic and thermal studies were done with COMSOL Multiphase, to see heat transfer enhancement degree by inserting a 40PPI metal foam (10 × 2 × 3 cm) on a heat sink, after having determined experimentally its permeability and Forchheimer's coefficient. The results obtained numerically are in accordance with those obtained experimentally, with an enhancement factor of 205% for a velocity of 0.4 m/s compared to an empty channel. The influence of 40 kHz ultrasound on heat transfer was also tested with and without metallic foam. Results show a remarkable increase in Nusselt number in an empty channel with an enhancement factor of 37,5%, while no influence of ultrasound on heat transfer in metal foam presence.

Keywords: acoustic streaming, enhancing heat transfer, laminar flow, metal foam, ultrasound

Procedia PDF Downloads 112
5132 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development

Authors: Sreto Boljevic

Abstract:

In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.

Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES

Procedia PDF Downloads 171