Search results for: chip hotspots
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 375

Search results for: chip hotspots

45 Fischer Tropsch Synthesis in Compressed Carbon Dioxide with Integrated Recycle

Authors: Kanchan Mondal, Adam Sims, Madhav Soti, Jitendra Gautam, David Carron

Abstract:

Fischer-Tropsch (FT) synthesis is a complex series of heterogeneous reactions between CO and H2 molecules (present in the syngas) on the surface of an active catalyst (Co, Fe, Ru, Ni, etc.) to produce gaseous, liquid, and waxy hydrocarbons. This product is composed of paraffins, olefins, and oxygenated compounds. The key challenge in applying the Fischer-Tropsch process to produce transportation fuels is to make the capital and production costs economically feasible relative to the comparative cost of existing petroleum resources. To meet this challenge, it is imperative to enhance the CO conversion while maximizing carbon selectivity towards the desired liquid hydrocarbon ranges (i.e. reduction in CH4 and CO2 selectivities) at high throughputs. At the same time, it is equally essential to increase the catalyst robustness and longevity without sacrificing catalyst activity. This paper focuses on process development to achieve the above. The paper describes the influence of operating parameters on Fischer Tropsch synthesis (FTS) from coal derived syngas in supercritical carbon dioxide (ScCO2). In addition, the unreacted gas and solvent recycle was incorporated and the effect of unreacted feed recycle was evaluated. It was expected that with the recycle, the feed rate can be increased. The increase in conversion and liquid selectivity accompanied by the production of narrower carbon number distribution in the product suggest that higher flow rates can and should be used when incorporating exit gas recycle. It was observed that this process was capable of enhancing the hydrocarbon selectivity (nearly 98 % CO conversion), reducing improving the carbon efficiency from 17 % to 51 % in a once through process and further converting 16 % CO2 to liquid with integrated recycle of the product gas stream and increasing the life of the catalyst. Catalyst robustness enhancement has been attributed to the absorption of heat of reaction by the compressed CO2 which reduced the formation of hotspots and the dissolution of waxes by the CO2 solvent which reduced the blinding of active sites. In addition, the recycling the product gas stream reduced the reactor footprint to one-fourth of the once through size and product fractionation utilizing the solvent effects of supercritical CO2 were realized. In addition to the negative CO2 selectivities, methane production was also inhibited and was limited to less than 1.5%. The effect of the process conditions on the life of the catalysts will also be presented. Fe based catalysts are known to have a high proclivity for producing CO2 during FTS. The data of the product spectrum and selectivity on Co and Fe-Co based catalysts as well as those obtained from commercial sources will also be presented. The measurable decision criteria were the increase in CO conversion at H2:CO ratio of 1:1 (as commonly found in coal gasification product stream) in supercritical phase as compared to gas phase reaction, decrease in CO2 and CH4 selectivity, overall liquid product distribution, and finally an increase in the life of the catalysts.

Keywords: carbon efficiency, Fischer Tropsch synthesis, low GHG, pressure tunable fractionation

Procedia PDF Downloads 216
44 Antioxidant Activity of Some Important Indigenous Plant Foods of the North Eastern Region of India

Authors: L. Bidyalakshmi, R. Ananthan, T. Longvah

Abstract:

Antioxidants are substances that can prevent or delay oxidative damage of lipids, proteins and nucleic acids by reactive oxygen species. These help in lowering incidence of degenerative diseases such as cancer, arthritis, atherosclerosis, heart disease, inflammation, brain dysfunction and acceleration of the ageing process. The north eastern part of India falls among the global hotspots of biodiversity. Over the years, the local communities in the region have developed ingenious uses of many wild plants within their environment as food sources. Many of these less familiar foods form an integral part of the diet of these communities, and some are traditionally valued for its therapeutic effects. So the study was carried to estimate the antioxidant activity of some of these indigenous foods. Twenty-eight indigenous plant foods were studied for their antioxidant activity. Antioxidant activities were determined by using DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay, FRAP (Ferric Reducing Antioxidant Power) assay and SOSA (Super Oxide Scavenging Assay). Out of the twenty-eight plant foods, there were thirteen leafy vegetables, four fruits, five roots and tubers, four spices and two mushrooms. Water extract and methanol extract of the samples were used for the analysis. The leafy vegetable samples exhibited antioxidant capacity with IC50 ranging from 8-1414 mg/ml for lipid extract and 34-37878 mg/ml for aqueous extract in DPPH assay. Total FRAP value ranging from 58-1005 mmol FeSO4 Eq/100g of the sample, which is comparatively higher than the antioxidant capacity of some commonly consumed leafy vegetables. In SOSA, water extract of leafy vegetables show a range of 0.05-193.68 µmol ascorbic acid equivalent/g of the samples. While the methanol extract of the samples show 0.20-21.94 µmol Trolox equivalent/g of the samples. Polygonum barbatum, Wendlandia glabrata and Polygonum posumbu have higher antioxidant activity among the leafy vegetables analysed. Among the fruits, Rhus hookerii showed the highest antioxidant activities in both FRAP and SOSA methods while Spondias magnifera exhibited higher antioxidant activity in DPPH method. Alocasia cucullata exhibited higher antioxidant activity in DPPH and FRAP assays while Alpinia galanga showed higher antioxidant activity in SOSA assay when compared to the other samples of roots and tubers. Elsholtzia communis showed high antioxidant activity in all the three parameters among the spices. For the mushrooms, Pleurotus ostreatus exhibited higher antioxidant activity than Auricularia delicate in DPPH and SOSA. The samples analysed exhibited antioxidant activity at varying levels and some exhibited higher antioxidant activity than the commonly consumed foods. So consumption of these less familiar foods may play a role in preventing human disease in which free radicals are involved. Further studies on these food samples on phytonutrients and its contribution to the antioxidant activities are required.

Keywords: antioxidant activity, DPPH, FRAP, SOSA

Procedia PDF Downloads 252
43 The MicroRNA-2110 Suppressed Cell Proliferation and Migration Capacity in Hepatocellular Carcinoma Cells

Authors: Pelin Balcik Ercin

Abstract:

Introduction: ZEB transcription factor family member ZEB2, has a role in epithelial to mesenchymal transition during development and metastasis. The altered circulating extracellular miRNAs expression is observed in diseases, and extracellular miRNAs have an important role in cancer cell microenvironment. In ChIP-Seq study, the expression of miR-2110 was found to be regulated by ZEB2. In this study, the effects of miR2110 on cell proliferation and migration of hepatocellular carcinoma (HCC) cells were examined. Material and Methods: SNU398 cells transfected with mimic miR2110 (20nM) (HMI0375, Sigma-Aldrich) and negative control miR (HMC0002, Sigma-Aldrich). MicroRNA isolation was accomplished with miRVANA isolation kit according to manufacturer instructions. cDNA synthesis was performed expression, respectively, and calibrated with Ct of controls. The real-time quantitative PCR (RT-qPCR) reaction was performed using the TaqMan Fast Advanced Master Mix (Thermo Sci.). Ct values of miR2110 were normalized to miR-186-5p and miR16-5p for the intracellular gene. Cell proliferation analysis was analyzed with the xCELLigence RTCA System. Wound healing assay was analyzed with the ImageJ program and relative fold change calculated. Results: The mimic-miR-2110 transfected SNU398 cells nearly nine-fold (log2) more miR-2110 expressed compared to negative control transfected cells. The mimic-miR-2110 transfected HCC cell proliferation significantly inhibited compared to the negative control cells. Furthermore, miR-2110-SNU398 cell migration capacity was relatively four-fold decreased compared to negative control-miR-SNU398 cells. Conclusion: Our results suggest the miR-2110 inhibited cell proliferation and also miR-2110 negatively affect cell migration compared to control groups in HCC cells. These data suggest the complexity of microRNA EMT transcription factors regulation. These initial results are pointed out the predictive biomarker capacity of miR-2110 in HCC.

Keywords: epithelial to mesenchymal transition, EMT, hepatocellular carcinoma cells, micro-RNA-2110, ZEB2

Procedia PDF Downloads 91
42 Tea and Its Working Methodology in the Biomass Estimation of Poplar Species

Authors: Pratima Poudel, Austin Himes, Heidi Renninger, Eric McConnel

Abstract:

Populus spp. (poplar) are the fastest-growing trees in North America, making them ideal for a range of applications as they can achieve high yields on short rotations and regenerate by coppice. Furthermore, poplar undergoes biochemical conversion to fuels without complexity, making it one of the most promising, purpose-grown, woody perennial energy sources. Employing wood-based biomass for bioenergy offers numerous benefits, including reducing greenhouse gas (GHG) emissions compared to non-renewable traditional fuels, the preservation of robust forest ecosystems, and creating economic prospects for rural communities.In order to gain a better understanding of the potential use of poplar as a biomass feedstock for biofuel in the southeastern US, the conducted a techno-economic assessment (TEA). This assessment is an analytical approach that integrates technical and economic factors of a production system to evaluate its economic viability. the TEA specifically focused on a short rotation coppice system employing a single-pass cut-and-chip harvesting method for poplar. It encompassed all the costs associated with establishing dedicated poplar plantations, including land rent, site preparation, planting, fertilizers, and herbicides. Additionally, we performed a sensitivity analysis to evaluate how different costs can affect the economic performance of the poplar cropping system. This analysis aimed to determine the minimum average delivered selling price for one metric ton of biomass necessary to achieve a desired rate of return over the cropping period. To inform the TEA, data on the establishment, crop care activities, and crop yields were derived from a field study conducted at the Mississippi Agricultural and Forestry Experiment Station's Bearden Dairy Research Center in Oktibbeha County and Pontotoc Ridge-Flatwood Branch Experiment Station in Pontotoc County.

Keywords: biomass, populus species, sensitivity analysis, technoeconomic analysis

Procedia PDF Downloads 46
41 IL4/IL13 STAT6 Mediated Macrophage Polarization During Acute and Chronic Pancreatitis

Authors: Hager Elsheikh, Juliane Glaubitz, Frank Ulrich Weiss, Matthias Sendler

Abstract:

Aim: Acute pancreatitis (AP) and chronic pancreatitis (CP) are both accompanied by a prominent immune response which influences the course of disease. Whereas during AP the pro-inflammatory immune response dominates, during CP a fibroinflammatory response regulates organ remodeling. The transcription factor signal transducer and activator of transcription 6 (STAT6) is a crucial part of the Type 2 immune response. Here we investigate the role of STAT6 in a mouse model of AP and CP. Material and Methods: AP was induced by hourly repetitive i.p. injections of caerulein (50µg/kg/bodyweight) in C57Bl/6 J and STAT6-/- mice. CP was induced by repetitive caerulein injections 6 times a day, 3 days a week over 4 weeks. Disease severity was evaluated by serum amylase/lipase measurement, H&E staining of pancreas. Pancreatic infiltrate was characterized by immunofluorescent labeling of CD68, CD206, CCR2, CD4 and CD8. Pancreas fibrosis was evaluated by Azan blue staining. qRT-PCR was performed of Arg1, Nos2, Il6, Il1b, Col3a, Socs3 and Ym1. Affymetrix chip array analyses were done to illustrate the IL4/IL13/STAT6 signaling in bone marrow derived macrophages. Results: AP severity is mitigated in STAT6-/- mice, as shown by decreased serum amylase and lipase, as well as histological damage. CP mice surprisingly showed only slightly reduced fibrosis of the pancreas. Also staining of CD206 a classical marker of alternatively activated macrophages showed no decrease of M2-like polarization in the absence of STAT6. In contrast, transcription profile analysis in BMDM showed complete blockade of the IL4/IL13 pathway in STAT6-/- animals. Conclusion: STAT6 signaling pathway is protective during AP and mitigates the pancreatic damage. During chronic pancreatitis the IL4/IL13 – STAT6 axisis involved in organ fibrogenesis. Notably, fibrosis is not dependent on a single signaling pathway, and alternative macrophage activation is also complex and involves different subclasses (M2a, M2b, M2c and M2d) which could be independent of the IL4/IL13 STAT6 axis.

Keywords: chronic pancreatitis, macrophages, IL4/IL13, Type immune response

Procedia PDF Downloads 19
40 Innocent Victims and Immoral Women: Sex Workers in the Philippines through the Lens of Mainstream Media

Authors: Sharmila Parmanand

Abstract:

This paper examines dominant media representations of prostitution in the Philippines and interrogates sex workers’ interactions with the media establishment. This analysis of how sex workers are constituted in media, often as both innocent victims and immoral actors, contributes to an understanding of public discourse on sex work in the Philippines, where decriminalisation has recently been proposed and sex workers are currently classified as potential victims under anti-trafficking laws but also as criminals under the penal code. The first part is an analysis of media coverage of two prominent themes on prostitution: first, raid and rescue operations conducted by law enforcement; and second, prostitution on military bases and tourism hotspots. As a result of pressure from activists and international donors, these two themes often define the policy conversations on sex work in the Philippines. The discourses in written and televised news reports and documentaries from established local and international media sources that address these themes are explored through content analysis. Conclusions are drawn based on specific terms commonly used to refer to sex workers, how sex workers are seen as performing their cultural roles as mothers and wives, how sex work is depicted, associations made between sex work and public health, representations of clients and managers and ‘rescuers’ such as the police, anti-trafficking organisations, and faith-based groups, and which actors are presumed to be issue experts. Images of how prostitution is used as a metaphor for relations between the Philippines and foreign nations are also deconstructed, along with common tropes about developing world female subjects. In general, sex workers are simultaneously portrayed as bad mothers who endanger their family’s morality but also as long-suffering victims who endure exploitation for the sake of their children. They are also depicted as unclean, drug-addicted threats to public health. Their managers and clients are portrayed as cold, abusive, and sometimes violent, and their rescuers as moral and altruistic agents who are essential for sex workers’ rehabilitation and restoration as virtuous citizens. The second part explores sex workers’ own perceptions of their interactions with media, through interviews with members of the Philippine Sex Workers Collective, a loose organisation of sex workers around the Philippines. They reveal that they are often excluded by media practitioners and that they do not feel that they have space for meaningful self-revelation about their work when they do engage with journalists, who seem to have an overt agenda of depicting them as either victims or women of loose morals. In their assessment, media narratives do not necessarily reflect their lived experiences, and in some cases, coverage of rescues and raid operations endangers their privacy and instrumentalises their suffering. Media representations of sex workers may produce subject positions such as ‘victims’ or ‘criminals’ and legitimize specific interventions while foreclosing other ways of thinking. Further, in light of media’s power to reflect and shape public consciousness, it is a valuable academic and political project to examine whether sex workers are able to assert agency in determining how they are represented.

Keywords: discourse analysis, news media, sex work, trafficking

Procedia PDF Downloads 352
39 Comfort Sensor Using Fuzzy Logic and Arduino

Authors: Samuel John, S. Sharanya

Abstract:

Automation has become an important part of our life. It has been used to control home entertainment systems, changing the ambience of rooms for different events etc. One of the main parameters to control in a smart home is the atmospheric comfort. Atmospheric comfort mainly includes temperature and relative humidity. In homes, the desired temperature of different rooms varies from 20 °C to 25 °C and relative humidity is around 50%. However, it varies widely. Hence, automated measurement of these parameters to ensure comfort assumes significance. To achieve this, a fuzzy logic controller using Arduino was developed using MATLAB. Arduino is an open source hardware consisting of a 24 pin ATMEGA chip (atmega328), 14 digital input /output pins and an inbuilt ADC. It runs on 5v and 3.3v power supported by a board voltage regulator. Some of the digital pins in Aruduino provide PWM (pulse width modulation) signals, which can be used in different applications. The Arduino platform provides an integrated development environment, which includes support for c, c++ and java programming languages. In the present work, soft sensor was introduced in this system that can indirectly measure temperature and humidity and can be used for processing several measurements these to ensure comfort. The Sugeno method (output variables are functions or singleton/constant, more suitable for implementing on microcontrollers) was used in the soft sensor in MATLAB and then interfaced to the Arduino, which is again interfaced to the temperature and humidity sensor DHT11. The temperature-humidity sensor DHT11 acts as the sensing element in this system. Further, a capacitive humidity sensor and a thermistor were also used to support the measurement of temperature and relative humidity of the surrounding to provide a digital signal on the data pin. The comfort sensor developed was able to measure temperature and relative humidity correctly. The comfort percentage was calculated and accordingly the temperature in the room was controlled. This system was placed in different rooms of the house to ensure that it modifies the comfort values depending on temperature and relative humidity of the environment. Compared to the existing comfort control sensors, this system was found to provide an accurate comfort percentage. Depending on the comfort percentage, the air conditioners and the coolers in the room were controlled. The main highlight of the project is its cost efficiency.

Keywords: arduino, DHT11, soft sensor, sugeno

Procedia PDF Downloads 278
38 Prevalence and Factors Associated With Concurrent Use of Herbal Medicine and Anti-retroviral Therapy Among HIV/Aids Patients Attending Selected HIV Clinics in Wakiso District

Authors: Nanteza Rachel

Abstract:

Background: Worldwide, there were 36.7 million people living with Human Immunodeficiency Virus (HIV) in 2015, up from 35 million at the end of 2013. Wakiso district is one of the hotspots for the Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) infection in Uganda, with the prevalence of 8.1 %. Herbal medicine has gained popularity among Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) patients as adjuvant therapy to reduce the adverse effects of ART. Regardless of the subsidized and physical availability of the Anti-Retroviral Therapy (ART), majority of Africans living with Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) resort to adding to their ART traditional medicine. Result found out from a pilot observation made by the PI that indicate 13 out of 30 People Living with AIDS(PLWA) who are attending Human Immunodeficiency Virus (HIV) clinics in Wakiso district reported to be using herbal preparations despite the fact that they were taking Anti Retro Viral (ARVs) this prompted this study to be done. Purpose of the study: To determine the prevalence and factors associated with concurrent use of herbal medicine and anti-retroviral therapy among HIV/AIDS patients attending selected HIV clinics in Wakiso district. Methodology: This was a cross sectional study with both quantitative data collection (use of a questionnaire) and qualitative data collection (key informants’ interviews). A mixed method of sampling was used, that is, purposive and random sampling. Purposive sampling was based on the location in the district and used to select 7 health facilities basing on the 7 health sub districts from Wakiso. Simple random sampling was used to select one HIV clinic from each of the 7 health sub districts. Furthermore, the study units were enrolled in to the study as they entered into the HIV clinics, and 105 respondents were interviewed. Both manual and computer packages (SPSS) were used to analyze the data Results: The prevalence of concurrent use of herbal medicine and ART was 38 (36.2%). Commonly HIV symptom treated with herbs was fever 27(71.1%), diarrhea 3(7.9%) and cough 2(5.3%). Commonly used herbs for fever (Omululuza (Vernonica amydalina), Ekigagi (Aloe sp), Nalongo (Justicia betonica Linn) while for diarrhea was Ntwatwa. The side effects also included; too much pain, itchy pain of HIV, aneamia,felt sick, loss/gain appetite, joint pain and bad dreams. Herbs used to sooth the side effects were; for aneamia was avocado leaves Parea Americana mill The significant factors associated with concurrent use of herbal medicine were being familiar with herbs and conventional medicine for management HIV symptoms being expensive. The other significant factor was exhibiting hostility to patients by health personnel providing HIV care. Conclusion: Herbal medicine is widely used by clients in HIV/AIDS care. Patients being familiar with herbs and conventional medicine being expensive were associated with concurrent use of herbal medicine and ART. The exhibition of hostility to the HIV/AIDS patients by the health care providers was also associated with concurrent use of herbal medicine and ART among HIV/AIDS patients.

Keywords: HIV patients, herbal medicine, antiretroviral therapy, factors associated

Procedia PDF Downloads 64
37 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics

Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose

Abstract:

Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.

Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium

Procedia PDF Downloads 123
36 Nature of Forest Fragmentation Owing to Human Population along Elevation Gradient in Different Countries in Hindu Kush Himalaya Mountains

Authors: Pulakesh Das, Mukunda Dev Behera, Manchiraju Sri Ramachandra Murthy

Abstract:

Large numbers of people living in and around the Hindu Kush Himalaya (HKH) region, depends on this diverse mountainous region for ecosystem services. Following the global trend, this region also experiencing rapid population growth, and demand for timber and agriculture land. The eight countries sharing the HKH region have different forest resources utilization and conservation policies that exert varying forces in the forest ecosystem. This created a variable spatial as well altitudinal gradient in rate of deforestation and corresponding forest patch fragmentation. The quantitative relationship between fragmentation and demography has not been established before for HKH vis-à-vis along elevation gradient. This current study was carried out to attribute the overall and different nature in landscape fragmentations along the altitudinal gradient with the demography of each sharing countries. We have used the tree canopy cover data derived from Landsat data to analyze the deforestation and afforestation rate, and corresponding landscape fragmentation observed during 2000 – 2010. Area-weighted mean radius of gyration (AMN radius of gyration) was computed owing to its advantage as spatial indicator of fragmentation over non-spatial fragmentation indices. Using the subtraction method, the change in fragmentation was computed during 2000 – 2010. Using the tree canopy cover data as a surrogate of forest cover, highest forest loss was observed in Myanmar followed by China, India, Bangladesh, Nepal, Pakistan, Bhutan, and Afghanistan. However, the sequence of fragmentation was different after the maximum fragmentation observed in Myanmar followed by India, China, Bangladesh, and Bhutan; whereas increase in fragmentation was seen following the sequence of as Nepal, Pakistan, and Afghanistan. Using SRTM-derived DEM, we observed higher rate of fragmentation up to 2400m that corroborated with high human population for the year 2000 and 2010. To derive the nature of fragmentation along the altitudinal gradients, the Statistica software was used, where the user defined function was utilized for regression applying the Gauss-Newton estimation method with 50 iterations. We observed overall logarithmic decrease in fragmentation change (area-weighted mean radius of gyration), forest cover loss and population growth during 2000-2010 along the elevation gradient with very high R2 values (i.e., 0.889, 0.895, 0.944 respectively). The observed negative logarithmic function with the major contribution in the initial elevation gradients suggest to gap filling afforestation in the lower altitudes to enhance the forest patch connectivity. Our finding on the pattern of forest fragmentation and human population across the elevation gradient in HKH region will have policy level implication for different nations and would help in characterizing hotspots of change. Availability of free satellite derived data products on forest cover and DEM, grid-data on demography, and utility of geospatial tools helped in quick evaluation of the forest fragmentation vis-a-vis human impact pattern along the elevation gradient in HKH.

Keywords: area-weighted mean radius of gyration, fragmentation, human impact, tree canopy cover

Procedia PDF Downloads 187
35 Creative Mathematically Modelling Videos Developed by Engineering Students

Authors: Esther Cabezas-Rivas

Abstract:

Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project.

Keywords: active learning, contextual teaching, models in differential equations, student-produced videos

Procedia PDF Downloads 122
34 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool

Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles

Abstract:

Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.

Keywords: QFN packages, exposed pads, junction temperature, thermal management and measurements

Procedia PDF Downloads 230
33 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing

Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou

Abstract:

The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.

Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation

Procedia PDF Downloads 79
32 Effect of Surfactant Concentration on Dissolution of Hydrodynamically Trapped Sparingly Soluble Oil Micro Droplets

Authors: Adil Mustafa, Ahmet Erten, Alper Kiraz, Melikhan Tanyeri

Abstract:

Work presented here is based on a novel experimental technique used to hydrodynamically trap oil microdroplets inside a microfluidic chip at the junction of microchannels known as stagnation point. Hydrodynamic trapping has been recently used to trap and manipulate a number of particles starting from microbeads to DNA and single cells. Benzyl Benzoate (BB) is used as droplet material. The microdroplets are trapped individually at stagnation point and their dissolution was observed. Experiments are performed for two concentrations (10mM or 10µM) of AOT surfactant (Docusate Sodium Salt) and two flow rates for each case. Moreover, experimental data is compared with Zhang-Yang-Mao (ZYM) model which studies dissolution of liquid microdroplets in the presence of a host fluid experiencing extensional creeping flow. Industrial processes like polymer blending systems in which heat or mass transport occurs experience extensional flow and an insight into these phenomena is of significant importance to many industrial processes. The experimental technique exploited here gives an insight into the dissolution of liquid microdroplets under extensional flow regime. The comparison of our experimental results with ZYM model reveals that dissolution of microdroplets at lower surfactant concentration (10µM) fits the ZYM model at saturation concentration (Cs) value reported in literature (Cs = 15×10⁻³Kg\m³) while for higher surfactant concentration (10mM) which is also above the critical micelle concentration (CMC) of surfactant (5mM) the data fits ZYM model at (Cs = 45×10⁻³Kg\m³) which is 3X times the value reported in literature. The difference in Cs value from the literature shows enhancement in dissolution rate of sparingly soluble BB microdroplets at surfactant concentrations higher than CMC. Enhancement in the dissolution of sparingly soluble materials is of great importance in pharmaceutical industry. Enhancement in the dissolution of sparingly soluble drugs is a key research area for drug design industry. The experimental method is also advantageous because it is robust and has no mechanical contact with droplets under study are freely suspended in the fluid as compared existing methods used for testing dissolution of drugs. The experiments also give an insight into CMC measurement for surfactants.

Keywords: extensional flow, hydrodynamic trapping, Zhang-Yang-Mao, CMC

Procedia PDF Downloads 319
31 Asparagus racemosus Willd for Enhanced Medicinal Properties

Authors: Ashok Kumar, Parveen Parveen

Abstract:

India is bestowed with an extremely high population of plant species with medicinal value and even has two biodiversity hotspots. Indian systems of medicine including Ayurveda, Siddha and Unani have historically been serving humankind across the world since time immemorial. About 1500 plant species have well been documented in Ayurvedic Nighantus as official medicinal plants. Additionally, several hundred species of plants are being routinely used as medicines by local people especially tribes living in and around forests. The natural resources for medicinal plants have unscientifically been over-exploited forcing rapid depletion in their genetic diversity. Moreover, renewed global interest in herbal medicines may even lead to additional depletion of medicinal plant wealth of the country, as about 95% collection of medicinal plants for pharmaceutical preparation is being carried out from natural forests. On the other hand, huge export market of medicinal and aromatic plants needs to be seriously tapped for enhancing inflow of foreign currency. Asparagus racemosus Willd., a member of family Liliaceae, is one of thirty-two plant species that have been identified as priority species for cultivation and conservation by the National Medicinal Plant Board (NMPB), Government of India. Though attention is being focused on standardization of agro-techniques and extraction methods, little has been designed on genetic improvement and selection of desired types with higher root production and saponin content, a basic ingredient of medicinal value. The saponin not only improves defense mechanisms and controls diabetes but the roots of this species promote secretion of breast milk, improved lost body weight and considered as an aphrodisiac. There is ample scope for genetic improvement of this species for enhancing productivity substantially, qualitatively and quantitatively. It is emphasized to select desired genotypes with sufficient genetic diversity for important economic traits. Hybridization between two genetically divergent genotypes could result in the synthesis of new F1 hybrids consisting of useful traits of both the parents. The evaluation of twenty seed sources of Asparagus racemosus assembled different geographical locations of India revelled high degree of variability for traits of economic importance. The maximum genotypic and phenotypic variance was observed for shoot height among shoot related traits and for root length among root related traits. The shoot height, genotypic variance, phenotypic variance, genotypic coefficient of variance, the phenotypic coefficient of variance was recorded to be 231.80, 3924.80, 61.26 and 1037.32, respectively, where those of the root length were 9.55, 16.80, 23.46 and 41.27, respectively. The maximum genetic advance and genetic gain were obtained for shoot height among shoot-related traits and root length among root-related traits. Index values were developed for all seed sources based on the four most important traits, and Panthnagar (Uttrakhand), Jodhpur (Rajasthan), Dehradun (Uttarakhand), Chandigarh (Punjab), Jammu (Jammu & Kashmir) and Solan (Himachal Pradesh) were found to be promising seed sources.

Keywords: asparagus, genetic, genotypes, variance

Procedia PDF Downloads 102
30 Evaluating Radiation Dose for Interventional Radiologists Performing Spine Procedures

Authors: Kholood A. Baron

Abstract:

While radiologist numbers specialized in spine interventional procedures are limited in Kuwait, the number of patients demanding these procedures is increasing rapidly. Due to this high demand, the workload of radiologists is increasing, which might represent a radiation exposure concern. During these procedures, the doctor’s hands are in very close proximity to the main radiation beam/ if not within it. The aim of this study is to measure the radiation dose for radiologists during several interventional procedures for the spine. Methods: Two doctors carrying different workloads were included. (DR1) was performing procedures in the morning and afternoon shifts, while (DR2) was performing procedures in the morning shift only. Comparing the radiation exposures that the hand of each doctor is receiving will assess radiation safety and help to set up workload regulations for radiologists carrying a heavy schedule of such procedures. Entrance Skin Dose (ESD) was measured via TLD (ThermoLuminescent Dosimetry) placed at the right wrist of the radiologists. DR1 was covering the morning shift in one hospital (Mubarak Al-Kabeer Hospital) and the afternoon shift in another hospital (Dar Alshifa Hospital). The TLD chip was placed in his gloves during the 2 shifts for a whole week. Since DR2 was covering the morning shift only in Al Razi Hospital, he wore the TLD during the morning shift for a week. It is worth mentioning that DR1 was performing 4-5 spine procedures/day in the morning and the same number in the afternoon and DR2 was performing 5-7 procedures/day. This procedure was repeated for 4 consecutive weeks in order to calculate the ESD value that a hand receives in a month. Results: In general, radiation doses that the hand received in a week ranged from 0.12 to 1.12 mSv. The ESD values for DR1 for the four consecutive weeks were 1.12, 0.32, 0.83, 0.22 mSv, thus for a month (4 weeks), this equals 2.49 mSv and calculated to be 27.39 per year (11 months-since each radiologist have 45 days of leave in each year). For DR2, the weekly ESD values are 0.43, 0.74, 0.12, 0.61 mSv, and thus, for a month, this equals 1.9 mSv, and for a year, this equals 20.9 mSv /year. These values are below the standard level and way below the maximum limit of 500 mSv per year (set by ICRP = International Council of Radiation Protection). However, it is worth mentioning that DR1 was a senior consultant and hence needed less fluoro-time during each procedure. This is evident from the low ESD values of the second week (0.32) and the fourth week (0.22), even though he was performing nearly 10-12 procedures in a day /5 days a week. These values were lower or in the same range as those for DR2 (who was a junior consultant). This highlighted the importance of increasing the radiologist's skills and awareness of fluoroscopy time effect. In conclusion, the radiation dose that radiologists received during spine interventional radiology in our setting was below standard dose limits.

Keywords: radiation protection, interventional radiology dosimetry, ESD measurements, radiologist radiation exposure

Procedia PDF Downloads 25
29 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application

Authors: Jeff Moussodji, Dominique Drouin

Abstract:

The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.

Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling

Procedia PDF Downloads 177
28 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays

Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir

Abstract:

Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.

Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis

Procedia PDF Downloads 85
27 Evaluation of the Influence of Graphene Oxide on Spheroid and Monolayer Culture under Flow Conditions

Authors: A. Zuchowska, A. Buta, M. Mazurkiewicz-Pawlicka, A. Malolepszy, L. Stobinski, Z. Brzozka

Abstract:

In recent years, graphene-based materials are finding more and more applications in biological science. As a thin, tough, transparent and chemically resistant materials, they appear to be a very good material for the production of implants and biosensors. Interest in graphene derivatives also resulted at the beginning of research about the possibility of their application in cancer therapy. Currently, the analysis of their potential use in photothermal therapy and as a drug carrier is mostly performed. Moreover, the direct anticancer properties of graphene-based materials are also tested. Nowadays, cytotoxic studies are conducted on in vitro cell culture in standard culture vessels (macroscale). However, in this type of cell culture, the cells grow on the synthetic surface in static conditions. For this reason, cell culture in macroscale does not reflect in vivo environment. The microfluidic systems, called Lab-on-a-chip, are proposed as a solution for improvement of cytotoxicity analysis of new compounds. Here, we present the evaluation of cytotoxic properties of graphene oxide (GO) on breast, liver and colon cancer cell line in a microfluidic system in two spatial models (2D and 3D). Before cell introduction, the microchambers surface was modified by the fibronectin (2D, monolayer) and poly(vinyl alcohol) (3D, spheroids) covering. After spheroid creation (3D) and cell attachment (2D, monolayer) the selected concentration of GO was introduced into microsystems. Then monolayer and spheroids viability/proliferation using alamarBlue® assay and standard microplate reader was checked for three days. Moreover, in every day of the culture, the morphological changes of cells were determined using microscopic analysis. Additionally, on the last day of the culture differential staining using Calcein AM and Propidium iodide were performed. We were able to note that the GO has an influence on all tested cell line viability in both monolayer and spheroid arrangement. We showed that GO caused higher viability/proliferation decrease for spheroids than a monolayer (this was observed for all tested cell lines). Higher cytotoxicity of GO on spheroid culture can be caused by different geometry of the microchambers for 2D and 3D cell cultures. Probably, GO was removed from the flat microchambers for 2D culture. Those results were also confirmed by differential staining. Comparing our results with the studies conducted in the macroscale, we also proved that the cytotoxic properties of GO are changed depending on the cell culture conditions (static/ flow).

Keywords: cytotoxicity, graphene oxide, monolayer, spheroid

Procedia PDF Downloads 102
26 Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows

Authors: Justo Rodriguez, Daming Chen, Amador M. Guzman

Abstract:

The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture.

Keywords: microchannel, stretching and folding, electro kinetic flow mixing, micro-analyzer

Procedia PDF Downloads 98
25 TARF: Web Toolkit for Annotating RNA-Related Genomic Features

Authors: Jialin Ma, Jia Meng

Abstract:

Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications.

Keywords: RNA-related genomic features, annotation, visualization, web server

Procedia PDF Downloads 181
24 Study of the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration Using Microfluidics

Authors: Nishanth Venugopal Menon, Chuah Yon Jin, Samantha Phey, Wu Yingnan, Zhang Ying, Vincent Chan, Kang Yuejun

Abstract:

Cell Migration is a vital phenomenon that the cells undergo in various physiological processes like wound healing, disease progression, embryogenesis, etc. Cell migration depends primarily on the chemical and physical cues available in the cellular environment. The chemical cue involves the chemokines secreted and gradients generated in the environment while physical cues indicate the impact of matrix properties like nanotopography and stiffness on the cells. Mesenchymal Stem Cells (MSCs) have been shown to have a role wound healing in vivo and its migration to the site of the wound has been shown to have a therapeutic effect. In the field of stem cell based tissue regeneration of bones and cartilage, one approach has been to introduce scaffold laden with MSCs into the site of injury to enable tissue regeneration. In this work, we have studied the combinatorial impact of the substrate physical properties on MSC migration. A microfluidic in vitro model was created to perform the migration studies. The microfluidic model used is a three compartment device consisting of two cell seeding compartments and one migration compartment. Four different PDMS substrates with varying substrate roughness, stiffness and hydrophobicity were created. Its surface roughness and stiffness was measured using Atomic Force Microscopy (AFM) while its hydrphobicity was measured from the water contact angle using an optical tensiometer. These PDMS substrates are sealed to the microfluidic chip following which the MSCs are seeded and the cell migration is studied over the period of a week. Cell migration was quantified using fluorescence imaging of the cytoskeleton (F-actin) to find out the area covered by the cells inside the migration compartment. The impact of adhesion proteins on cell migration was also quantified using a real-time polymerase chain reaction (qRT PCR). These results suggested that the optimal substrate for cell migration would be one with an intermediate level of roughness, stiffness and hydrophobicity. A higher or lower value of these properties affected cell migration negatively. These observations have helped us in understanding that different substrate properties need to be considered in tandem, especially while designing scaffolds for tissue regeneration as cell migration is normally impacted by the combinatorial impact of the matrix. These observations may lead us to scaffold optimization in future tissue regeneration applications.

Keywords: cell migration, microfluidics, in vitro model, stem cell migration, scaffold, substrate properties

Procedia PDF Downloads 530
23 Nondestructive Inspection of Reagents under High Attenuated Cardboard Box Using Injection-Seeded THz-Wave Parametric Generator

Authors: Shin Yoneda, Mikiya Kato, Kosuke Murate, Kodo Kawase

Abstract:

In recent years, there have been numerous attempts to smuggle narcotic drugs and chemicals by concealing them in international mail. Combatting this requires a non-destructive technique that can identify such illicit substances in mail. Terahertz (THz) waves can pass through a wide variety of materials, and many chemicals show specific frequency-dependent absorption, known as a spectral fingerprint, in the THz range. Therefore, it is reasonable to investigate non-destructive mail inspection techniques that use THz waves. For this reason, in this work, we tried to identify reagents under high attenuation shielding materials using injection-seeded THz-wave parametric generator (is-TPG). Our THz spectroscopic imaging system using is-TPG consisted of two non-linear crystals for emission and detection of THz waves. A micro-chip Nd:YAG laser and a continuous wave tunable external cavity diode laser were used as the pump and seed source, respectively. The pump beam and seed beam were injected to the LiNbO₃ crystal satisfying the noncollinear phase matching condition in order to generate high power THz-wave. The emitted THz wave was irradiated to the sample which was raster scanned by the x-z stage while changing the frequencies, and we obtained multispectral images. Then the transmitted THz wave was focused onto another crystal for detection and up-converted to the near infrared detection beam based on nonlinear optical parametric effects, wherein the detection beam intensity was measured using an infrared pyroelectric detector. It was difficult to identify reagents in a cardboard box because of high noise levels. In this work, we introduce improvements for noise reduction and image clarification, and the intensity of the near infrared detection beam was converted correctly to the intensity of the THz wave. A Gaussian spatial filter is also introduced for a clearer THz image. Through these improvements, we succeeded in identification of reagents hidden in a 42-mm thick cardboard box filled with several obstacles, which attenuate 56 dB at 1.3 THz, by improving analysis methods. Using this system, THz spectroscopic imaging was possible for saccharides and may also be applied to cases where illicit drugs are hidden in the box, and multiple reagents are mixed together. Moreover, THz spectroscopic imaging can be achieved through even thicker obstacles by introducing an NIR detector with higher sensitivity.

Keywords: nondestructive inspection, principal component analysis, terahertz parametric source, THz spectroscopic imaging

Procedia PDF Downloads 147
22 Association of Nuclear – Mitochondrial Epistasis with BMI in Type 1 Diabetes Mellitus Patients

Authors: Agnieszka H. Ludwig-Slomczynska, Michal T. Seweryn, Przemyslaw Kapusta, Ewelina Pitera, Katarzyna Cyganek, Urszula Mantaj, Lucja Dobrucka, Ewa Wender-Ozegowska, Maciej T. Malecki, Pawel Wolkow

Abstract:

Obesity results from an imbalance between energy intake and its expenditure. Genome-Wide Association Study (GWAS) analyses have led to discovery of only about 100 variants influencing body mass index (BMI), which explain only a small portion of genetic variability. Analysis of gene epistasis gives a chance to discover another part. Since it was shown that interaction and communication between nuclear and mitochondrial genome are indispensable for normal cell function, we have looked for epistatic interactions between the two genomes to find their correlation with BMI. Methods: The analysis was performed on 366 T1DM patients using Illumina Infinium OmniExpressExome-8 chip and followed by imputation on Michigan Imputation Server. Only genes which influence mitochondrial functioning (listed in Human MitoCarta 2.0) were included in the analysis – variants of nuclear origin (MAF > 5%) in 1140 genes and 42 mitochondrial variants (MAF > 1%). Gene expression analysis was performed on GTex data. Association analysis between genetic variants and BMI was performed with the use of Linear Mixed Models as implemented in the package 'GENESIS' in R. Analysis of association between mRNA expression and BMI was performed with the use of linear models and standard significance tests in R. Results: Among variants involved in epistasis between mitochondria and nucleus we have identified one in mitochondrial transcription factor, TFB2M (rs6701836). It interacted with mitochondrial variants localized to MT-RNR1 (p=0.0004, MAF=15%), MT-ND2 (p=0.07, MAF=5%) and MT-ND4 (p=0.01, MAF=1.1%). Analysis of the interaction between nuclear variant rs6701836 (nuc) and rs3021088 localized to MT-ND2 mitochondrial gene (mito) has shown that the combination of the two led to BMI decrease (p=0.024). Each of the variants on its own does not correlate with higher BMI [p(nuc)=0.856, p(mito)=0.116)]. Although rs6701836 is intronic, it influences gene expression in the thyroid (p=0.000037). rs3021088 is a missense variant that leads to alanine to threonine substitution in the MT-ND2 gene which belongs to complex I of the electron transport chain. The analysis of the influence of genetic variants on gene expression has confirmed the trend explained above – the interaction of the two genes leads to BMI decrease (p=0.0308). Each of the mRNAs on its own is associated with higher BMI (p(mito)=0.0244 and p(nuc)=0.0269). Conclusıons: Our results show that nuclear-mitochondrial epistasis can influence BMI in T1DM patients. The correlation between transcription factor expression and mitochondrial genetic variants will be subject to further analysis.

Keywords: body mass index, epistasis, mitochondria, type 1 diabetes

Procedia PDF Downloads 149
21 Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation

Authors: Virendra Nath, Vipin Kumar

Abstract:

Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential.

Keywords: computational, diabetes, PPAR, simulation

Procedia PDF Downloads 71
20 An Analysis of LoRa Networks for Rainforest Monitoring

Authors: Rafael Castilho Carvalho, Edjair de Souza Mota

Abstract:

As the largest contributor to the biogeochemical functioning of the Earth system, the Amazon Rainforest has the greatest biodiversity on the planet, harboring about 15% of all the world's flora. Recognition and preservation are the focus of research that seeks to mitigate drastic changes, especially anthropic ones, which irreversibly affect this biome. Functional and low-cost monitoring alternatives to reduce these impacts are a priority, such as those using technologies such as Low Power Wide Area Networks (LPWAN). Promising, reliable, secure and with low energy consumption, LPWAN can connect thousands of IoT devices, and in particular, LoRa is considered one of the most successful solutions to facilitate forest monitoring applications. Despite this, the forest environment, in particular the Amazon Rainforest, is a challenge for these technologies, requiring work to identify and validate the use of technology in a real environment. To investigate the feasibility of deploying LPWAN in remote water quality monitoring of rivers in the Amazon Region, a LoRa-based test bed consisting of a Lora transmitter and a LoRa receiver was set up, both parts were implemented with Arduino and the LoRa chip SX1276. The experiment was carried out at the Federal University of Amazonas, which contains one of the largest urban forests in Brazil. There are several springs inside the forest, and the main goal is to collect water quality parameters and transmit the data through the forest in real time to the gateway at the uni. In all, there are nine water quality parameters of interest. Even with a high collection frequency, the amount of information that must be sent to the gateway is small. However, for this application, the battery of the transmitter device is a concern since, in the real application, the device must run without maintenance for long periods of time. With these constraints in mind, parameters such as Spreading Factor (SF) and Coding Rate (CR), different antenna heights, and distances were tuned to better the connectivity quality, measured with RSSI and loss rate. A handheld spectrum analyzer RF Explorer was used to get the RSSI values. Distances exceeding 200 m have soon proven difficult to establish communication due to the dense foliage and high humidity. The optimal combinations of SF-CR values were 8-5 and 9-5, showing the lowest packet loss rates, 5% and 17%, respectively, with a signal strength of approximately -120 dBm, these being the best settings for this study so far. The rains and climate changes imposed limitations on the equipment, and more tests are already being conducted. Subsequently, the range of the LoRa configuration must be extended using a mesh topology, especially because at least three different collection points in the same water body are required.

Keywords: IoT, LPWAN, LoRa, coverage, loss rate, forest

Procedia PDF Downloads 52
19 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas

Authors: Julien Caudeville, Muriel Ismert

Abstract:

Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.

Keywords: health risk, environment, composite indicator, hotspot areas

Procedia PDF Downloads 221
18 Genome-Wide Homozygosity Analysis of the Longevous Phenotype in the Amish Population

Authors: Sandra Smieszek, Jonathan Haines

Abstract:

Introduction: Numerous research efforts have focused on searching for ‘longevity genes’. However, attempting to decipher the genetic component of the longevous phenotype have resulted in limited success and the mechanisms governing longevity remain to be explained. We conducted a genome-wide homozygosity analysis (GWHA) of the founder population of the Amish community in central Ohio. While genome-wide association studies using unrelated individuals have revealed many interesting longevity associated variants, these variants are typically of small effect and cannot explain the observed patterns of heritability for this complex trait. The Amish provide a large cohort of extended kinships allowing for in depth analysis via family-based approach excellent population due to its. Heritability of longevity increases with age with significant genetic contribution being seen in individuals living beyond 60 years of age. In our present analysis we show that the heritability of longevity is estimated to be increasing with age particularly on the paternal side. Methods: The present analysis integrated both phenotypic and genotypic data and led to the discovery of a series of variants, distinct for stratified populations across ages and distinct for paternal and maternal cohorts. Specifically 5437 subjects were analyzed and a subset of 893 successfully genotyped individuals was used to assess CHIP heritability. We have conducted the homozygosity analysis to examine if homozygosity is associated with increased risk of living beyond 90. We analyzed AMISH cohort genotyped for 614,957 SNPs. Results: We delineated 10 significant regions of homozygosity (ROH) specific for the age group of interest (>90). Of particular interest was ROH on chromosome 13, P < 0.0001. The lead SNPs rs7318486 and rs9645914 point to COL4A2 and our lead SNP. COL25A1 encodes one of the six subunits of type IV collagen, the C-terminal portion of the protein, known as canstatin, is an inhibitor of angiogenesis and tumor growth. COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities. The second region of interest points to IRS2. Furthermore we built a classifier using the obtained SNPs from the significant ROH region with 0.945 AUC giving ability to discriminate between those living beyond to 90 years of age and beyond. Conclusion: In conclusion our results suggest that a history of longevity does indeed contribute to increasing the odds of individual longevity. Preliminary results are consistent with conjecture that heritability of longevity is substantial when we start looking at oldest fifth and smaller percentiles of survival specifically in males. We will validate all the candidate variants in independent cohorts of centenarians, to test whether they are robustly associated with human longevity. The identified regions of interest via ROH analysis could be of profound importance for the understanding of genetic underpinnings of longevity.

Keywords: regions of homozygosity, longevity, SNP, Amish

Procedia PDF Downloads 206
17 Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma

Authors: Aoxue Yang, Weili Tian, Haikun Liu

Abstract:

Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Glucocorticoids (GCs) are used to treat GBM-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and BTSCs. Identifying markers specifically expressed by brain tumor stem cells (BTSCs) may enable specific therapies that spare their regular tissue-resident counterparts. By ribosome profiling analysis, we have identified that glycerol-3-phosphate dehydrogenase 1 (GPD1) is expressed by dormant BTSCs but not by NSCs. Through different stress-induced experiments in vitro, we found that only dexamethasone (DEXA) can significantly increase the expression of GPD1 in NSCs. Adversely, mifepristone (MIFE) which is classified as glucocorticoid receptors antagonists, could decrease GPD1 protein level and weaken the proliferation and stemness in BTSCs. Furthermore, DEXA can induce GPD1 expression in tumor-bearing mice brains and shorten animal survival, whereas MIFE has a distinct adverse effect that prolonged mice lifespan. Knocking out GR in NSC can block the upregulation of GPD1 inducing by DEXA, and we find the specific sequences on GPD1 promotor combined with GR, thus improving the efficiency of GPD1 transcription from CHIP-Seq. Moreover, GR and GPD1 are highly co-stained on GBM sections obtained from patients and mice. All these findings confirmed that GR could regulate GPD1 and loss of GPD1 Impairs Multiple Pathways Important for BTSCs Maintenance GPD1 is also a critical enzyme regulating glycolysis and lipid synthesis. We observed that DEXA and MIFE could change the metabolic profiles of BTSCs by regulating GPD1 to shift the transition of cell dormancy. Our transcriptome and lipidomics analysis demonstrated that cell cycle signaling and phosphoglycerides synthesis pathways contributed a lot to the inhibition of GPD1 caused by MIFE. In conclusion, our findings raise concern that treatment of GBM with GCs may compromise the efficacy of chemotherapy and contribute to BTSC dormancy. Inhibition of GR can dramatically reduce GPD1 and extend the survival duration of GBM-bearing mice. The molecular link between GPD1 and GR may give us an attractive therapeutic target for glioblastoma.

Keywords: cancer stem cell, dormancy, glioblastoma, glycerol-3-phosphate dehydrogenase 1, glucocorticoid receptor, dexamethasone, RNA-sequencing, phosphoglycerides

Procedia PDF Downloads 97
16 Aberrant Acetylation/Methylation of Homeobox (HOX) Family Genes in Cumulus Cells of Infertile Women with Polycystic Ovary Syndrome (PCOS)

Authors: P. Asiabi, M. Shahhoseini, R. Favaedi, F. Hassani, N. Nassiri, B. Movaghar, L. Karimian, P. Eftekhariyazdi

Abstract:

Introduction: Polycystic Ovary Syndrome is a common gynecologic disorder. Many factors including environment, metabolism, hormones and genetics are involved in etiopathogenesis of PCOS. Of genes that have altered expression in human reproductive system disorders are HOX family genes which act as transcription factors in regulation of cell proliferation, differentiation, adhesion and migration. Since recent evidences consider epigenetic factors as causative mechanisms of PCOS, evaluation of association between known epigenetic marks of acetylation/methylation of histone 3 (H3K9ac/me) with regulatory regions of these genes can represent better insight about PCOS. In the current study, cumulus cells (CCs) which have critical roles during folliculogenesis, oocyte maturation, ovulation and fertilization were aimed to monitor epigenetic alterations of HOX genes. Material and methods: CCs were collected from 20 PCOS patients and 20 fertile women (18-36 year) with male infertility problems referred to the Royan Institute to have ICSI under GnRH antagonist protocol. Informed consents were obtained from the participants. Thirty six hours after hCG injection, ovaries were punctured and cumulus oocyte complexes were dissected. Soluble chromatin were extracted from CCs and Chromatin Immune precipitation (ChIP) coupled with Real Time PCR was performed to quantify the epigenetic marks of histone H3K9 acetylation/methylation (H3K9ac/me) on regulatory regions of 15 members of HOX genes from A-D subfamily. Results: Obtained data showed significant increase of H3K9ac epigenetic mark on regulatory regions of HOXA1, HOXB2, HOXC4, HOXD1, HOXD3 and HOXD4 (P < 0.01) and HOXC5 (P < 0.05) and also significant decrease of H3K9ac into regulatory regions of HOXA2, HOXA4, HOXA5, HOXB1 and HOXB5 (P < 0.01) and HOXB3 (P<0.05) in PCOS patients vs. control group. On the other side, there was a significant decrease in incorporation of H3K9me level on regulatory region of HOXA2, HOXA3, HOXA4, HOXA5, HOXB3 and HOXC4 (P≤0.01) and HOXB5 (P < 0.05) in PCOS patients vs. control group. This epigenetic mark (H3K9me2) has significant increase on regulatory region of HOXB1, HOXB2, HOXC5, HOXD1, HOXD3 and HOXD4 (P ≤ 0.01) and HOXB4 (P < 0.05) in patients vs. control group. There were no significant changes in acetylation/methylation levels of H3K9 on regulatory regions of the other studied genes. Conclusion: Current study suggests that epigenetic alterations of HOX genes can be correlated with PCOS and consequently female infertility. This finding might offer additional definitions of PCOS, and eventually provides insight for novel treatments with epidrugs for this disease.

Keywords: epigenetic, HOX genes, PCOS, female infertility

Procedia PDF Downloads 291