Search results for: biosynthesis pathways
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 777

Search results for: biosynthesis pathways

207 Identification of Fluorinated Methylsiloxanes in Environmental Matrices Near a Manufacturing Plant in Eastern China

Authors: Liqin Zhi, Lin Xu, Wenxia Wei, Yaqi Cai

Abstract:

Recently, replacing some of the methyl groups in polydimethylsiloxanes with other functional groups has been extensively explored to obtain modified polymethylsiloxanes with special properties that enable new industrial applications. Fluorinated polysiloxanes, one type of these modified polysiloxanes, are based on a siloxane backbone with fluorinated groups attached to the side chains of polysiloxanes. As a commercially significant material, poly[methyl(trifluoropropyl)siloxane] (PMTFPS) has sufficient fluorine content to be useful as a fuel-and oil-resistant elastomer, which combines both the chemical and solvent resistance of fluorocarbons and the wide temperature range applicability of organosilicones. PMTFPS products can be used in many applications in which resistance to fuel, oils and hydrocarbon solvents is required, including use as lubricants in bearings, sealants, and elastomers for aerospace and automotive fuel systems. Fluorinated methylsiloxanes, a type of modified methylsiloxane, include tris(trifluoropropyl)trimethylcyclotrisiloxane (D3F) and tetrakis(trifluoropropyl)tetramethylcyclotetrasiloxane (D4F), both of which contain trifluoropropyl groups in the side chains of cyclic methylsiloxanes. D3F, as an important monomer in the manufacture of PMTFPS, is often present as an impurity in PMTFPS. In addition, the synthesis of PMTFPS from D3F could form other fluorinated methylsiloxanes with low molecular weights (such as D4F). The yearly demand and production volumes of D3F increased rapidly all over world. Fluorinated methylsiloxanes might be released into the environment via different pathways during the production and application of PMTFPS. However, there is a lack of data concerning the emission, environmental occurrence and potential environmental impacts of fluorinated methylsiloxanes. Here, we report fluorinated methylsiloxanes (D3F and D4F) in surface water and sediment samples collected near a fluorinated methylsiloxane manufacturing plant in Weihai, China. The concentrations of D3F and D4F in surface water ranged from 3.29 to 291 ng/L and from 7.02 to 168 ng/L, respectively. The concentrations of D3F and D4F in sediment ranged from 11.8 to 5478 ng/g and from 17.2 to 6277 ng/g, respectively. In simulation experiment, the half-lives of D3F and D4F at different pH values (5.2, 6.4, 7.2, 8.3 and 9.2) varied from 80.6 to 154 h and from 267 to 533 h respectively. CF₃(CH₂)₂MeSi(OH)₂ was identified as one of the main hydrolysis products of fluorinated methylsiloxanes. It was also detected in the river samples at concentrations of 72.1-182.9 ng/L. In addition, the slow rearrangement of D3F (spiked concentration = 500 ng/L) to D4F (concentration = 11.0-22.7 ng/L) was also found during 336h hydrolysis experiment.

Keywords: fluorinated methylsiloxanes, environmental matrices, hydrolysis, sediment

Procedia PDF Downloads 94
206 Elevated Reductive Defluorination of Branched Per and Polyfluoroalkyl Substances by Soluble Metal-Porphyrins and New Mechanistic Insights on the Degradation

Authors: Jun Sun, Tsz Tin Yu, Maryam Mirabediny, Matthew Lee, Adele Jones, Denis M. O’Carroll, Michael J. Manefield, Björn Åkermark, Biswanath Das, Naresh Kumar

Abstract:

Reductive defluorination has emerged as a sustainable approach to clean water from Per and polyfluoroalkyl substances (PFASs), also known as forever organic containments. For last few decades, nano zero valent metals (nZVMs) have been intensively applied in the reductive remediation of groundwater contaminated with chlorinated organic compounds due to its low redox potential, easy application, and low production cost. However, there is inadequate information on the effective reductive defluorination of linear or branched PFAS using nZVMs as reductants because of the lack of suitable catalysts. CoII-5,10,15,20-Tetraphenyl-21H,23H-porphyrin (CoTPP) has been recently reported for effective catalyzing reductive defluorination of branched (br-) perfluorooctane sulfonate (PFOS) by using TiIII citrate as reductant. However, the low water solubility of CoTPP limited its applicability. Here, we explored a series of structurally related soluble cobalt porphyrin catalysts based on our previously reported best performing CoTPP. All soluble porphyrins [[meso-tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·₇H₂O (CoTCPP), [[meso-tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso-tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)₄·₄H₂O (CoTMpyP) displayed better defluorination efficiencies than CoTPP. Especially, CoTMpyP presented the best defluorination efficiency for br-PFOS (94 %), branched perfluorooctanoic acid (PFOA) (89 %), and 3,7-Perfluorodecanoic acid (PFDA) (60 %) after 1 day at 70 0C. CoTMpyP-nZn0 system showed 88-164 times higher defluorination rate than VB12-nZn0 system in terms of all investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature, demonstrating the potential prospect for in-situ reductive systems. Based on the analysis of the intermediate products, the calculated bond dissociation energies (BDEs) and possible first interaction between CoTMpyP and PFAS, degradation pathways of 3,7-PFDA and 6-PFOS are proposed.

Keywords: cationic, soluble porphyrin, cobalt, vitamin b12, pfas, reductive defluorination

Procedia PDF Downloads 53
205 Moderation Role of Effects of Forms of Upward versus Downward Counterfactual Reasoning on Gambling Cognition and Decision of Nigerians

Authors: Larry O. Awo, George N. Duru

Abstract:

There is growing public and mental health concerns over the availability of gambling platforms and shops in Nigeria and the high level of youth involvement in gambling. Early theorizing maintained that gambling involvement driven by the quest for resource gains. However, evidences show that the economic model of gambling tend to explain the involvement of the gambling business owners (sport lottery operators: SLOs) as most gamblers lose more than they win. This loss, according to the law of effect, ought to discourage decisions to gamble. However, the quest to recover loses has often initiated and prolonged gambling sessions. Therefore, the need to investigate mental contemplations (such as counterfactual reasoning (upward versus downward) of what “would, should, or could” have been, and feeling of the illusion of control; IOC) over gambling outcome as risk or protective factors in gambling decisions became pertinent. The present study sought to understand the differential contributions and conditional effects of upward versus downward counterfactual reasoning as pathways through which the association between IOC and gambling decision of Nigerian youths (N = 120, mean age = 18.05, SD = 3.81) could be explained. The study adopted a randomized group design, and data were obtained by means of stimulus material (the Gambling Episode; GE) and self-report measures of IOC and Gambling Decision. One-way analysis of variance (ANOVA) result showed that participants in the upward counterfactual reasoning group (M = 22.08) differed from their colleagues in the downward counterfactual reasoning group (M = 17.33) on the decision to gamble, and this difference was significant [F(1,112) = 23, P < .01]. HAYES PROCESS macro moderation analysis results showed that 1) IOC and upward counterfactual reasoning were positively associated with the decision to gamble (B = 14.21, t = 6.10, p < .01 and B = 7.22, t = 2.07, p < .01), 3) upward counterfactual reasoning did not moderate the association between IOC and gambling decision (p > .05), and 4) downward counterfactual reasoning negatively moderated the association between IOC and gambling decision (B = 07, t = 2.18, p < .05) such that the association was strong at a low level of downward counterfactual, but wane at high levels of downward counterfactual reasoning. The implication of these findings are that IOC and upward counterfactual reasoning were risk factors and promote gambling behavior, while downward counterfactual reasoning protects individuals from gambling activities. Thus, it is concluded that downward counterfactual reasoning strategies should be included in gambling therapy and treatment packages as it could diminish feelings of both IOC and negative feelings of missed positive outcomes and the urge to gamble.

Keywords: counterfactual reasoning, gambling cognition, gambling decision, nigeria, youths

Procedia PDF Downloads 81
204 Development of Antioxidant Rich Bakery Products by Applying Lysine and Maillard Reaction Products

Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár

Abstract:

Due to the rapidly growing number of conscious customers in the recent years, more and more people look for products with positive physiological effects which may contribute to the preservation of their health. In response to these demands Food Science Research Institute of Budapest develops and introduces into the market new functional foods of guaranteed positive effect that contain bioactive agents. New, efficient technologies are also elaborated in order to preserve the maximum biological effect of the produced foods. The main objective of our work was the development of new functional biscuits fortified with physiologically beneficial ingredients. Bakery products constitute the base of the food nutrients’ pyramid, thus they might be regarded as foodstuffs of the largest consumed quantity. In addition to the well-known and certified physiological benefits of lysine, as an essential amino acid, a series of antioxidant type compounds is formed as a consequence of the occurring Maillard-reaction. Progress of the evoked Maillard-reaction was studied by applying diverse sugars (glucose, fructose, saccharose, isosugar) and lysine at several temperatures (120-170°C). Interval of thermal treatment was also varied (10-30 min). The composition and production technologies were tailored in order to reach the maximum of the possible biological benefits, so as to the highest antioxidant capacity in the biscuits. Out of the examined sugar components, theextent of the Maillard-reaction-driven transformation of glucose was the most pronounced at both applied temperatures. For the precise assessment of the antioxidant activity of the products FRAP and DPPH methods were adapted and optimised. To acquire an authentic and extensive mechanism of the occurring transformations, Maillard-reaction products were identified, and relevant reaction pathways were revealed. GC-MS and HPLC-MS techniques were applied for the analysis of the 60 generated MRPs and characterisation of actual transformation processes. 3 plausible major transformation routes might have been suggested based on the analytical result and the deductive sequence of possible occurring conversions between lysine and the sugars.

Keywords: Maillard-reaction, lysine, antioxidant activity, GC-MS and HPLC-MS techniques

Procedia PDF Downloads 455
203 Chemicals to Remove and Prevent Biofilm

Authors: Cynthia K. Burzell

Abstract:

Aequor's Founder, a Marine and Medical Microbiologist, discovered novel, non-toxic chemicals in the ocean that uniquely remove biofilm in minutes and prevent its formation for days. These chemicals and over 70 synthesized analogs that Aequor developed can replace thousands of toxic biocides used in consumer and industrial products and, as new drug candidates, kill biofilm-forming bacteria and fungi Superbugs -the antimicrobial-resistant (AMR) pathogens for which there is no cure. Cynthia Burzell, PhD., is a Marine and Medical Microbiologist studying natural mechanisms that inhibit biofilm formation on surfaces in contact with water. In 2002, she discovered a new genus and several new species of marine microbes that produce small molecules that remove biofilm in minutes and prevent its formation for days. The molecules include new antimicrobials that can replace thousands of toxic biocides used in consumer and industrial products and can be developed into new drug candidates to kill the biofilm-forming bacteria and fungi -- including the antimicrobial-resistant (AMR) Superbugs for which there is no cure. Today, Aequor has over 70 chemicals that are divided into categories: (1) Novel natural chemicals. Lonza validated that the primary natural chemical removed biofilm in minutes and stated: "Nothing else known can do this at non-toxic doses." (2) Specialty chemicals. 25 of these structural analogs are already approved under the U.S. Environmental Protection Agency (EPA)'s Toxic Substances Control Act, certified as "green" and available for immediate sale. These have been validated for the following agro-industrial verticals: (a) Surface cleaners: The U.S. Department of Agriculture validated that low concentrations of Aequor's formulations provide deep cleaning of inert, nano and organic surfaces and materials; (b) Water treatments: NASA validated that one dose of Aequor's treatment in the International Space Station's water reuse/recycling system lasted 15 months without replenishment. DOE validated that our treatments lower energy consumption by over 10% in buildings and industrial processes. Future validations include pilot projects with the EPA to test efficacy in hospital plumbing systems. (c) Algae cultivation and yeast fermentation: The U.S. Department of Energy (DOE) validated that Aequor's treatment boosted biomass of renewable feedstocks by 40% in half the time -- increasing the profitability of biofuels and biobased co-products. DOE also validated increased yields and crop protection of algae under cultivation in open ponds. A private oil and gas company validated decontamination of oilfield water. (3) New structural analogs. These kill Gram-negative and Gram-positive bacteria and fungi alone, in combinations with each other, and in combination with low doses of existing, ineffective antibiotics (including Penicillin), "potentiating" them to kill AMR pathogens at doses too low to trigger resistance. Both the U.S. National Institutes for Health (NIH) and Department of Defense (DOD) has executed contracts with Aequor to provide the pre-clinical trials needed for these new drug candidates to enter the regulatory approval pipelines. Aequor seeks partners/licensees to commercialize its specialty chemicals and support to evaluate the optimal methods to scale-up of several new structural analogs via activity-guided fractionation and/or biosynthesis in order to initiate the NIH and DOD pre-clinical trials.

Keywords: biofilm, potentiation, prevention, removal

Procedia PDF Downloads 69
202 Multi-Omics Integrative Analysis Coupled to Control Theory and Computational Simulation of a Genome-Scale Metabolic Model Reveal Controlling Biological Switches in Human Astrocytes under Palmitic Acid-Induced Lipotoxicity

Authors: Janneth Gonzalez, Andrés Pinzon Velasco, Maria Angarita

Abstract:

Astrocytes play an important role in various processes in the brain, including pathological conditions such as neurodegenerative diseases. Recent studies have shown that the increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatorypathways in the brain. The use of synthetic neurosteroids such as tibolone has demonstrated neuro-protective mechanisms. However, broad studies with a systemic point of view on the neurodegenerative role of PA and the neuro-protective mechanisms of tibolone are lacking. In this study, we performed the integration of multi-omic data (transcriptome and proteome) into a human astrocyte genomic scale metabolic model to study the astrocytic response during palmitate treatment. We evaluated metabolic fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment under PA inflammation). We also applied a control theory approach to identify those reactions that exert more control in the astrocytic system. Our results suggest that PA generates a modulation of central and secondary metabolism, showing a switch in energy source use through inhibition of folate cycle and fatty acid β‐oxidation and upregulation of ketone bodies formation. We found 25 metabolic switches under PA‐mediated cellular regulation, 9 of which were critical only in the inflammatory scenario but not in the protective tibolone one. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a fundamental role in the (de)regulation of metabolic pathways that may increase neurotoxicity and represent potential treatment targets. Finally, the overall framework of our approach facilitates the understanding of complex metabolic regulation, and it can be used for in silico exploration of the mechanisms of astrocytic cell regulation, directing a more complex future experimental work in neurodegenerative diseases.

Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics

Procedia PDF Downloads 72
201 Update on Epithelial Ovarian Cancer (EOC), Types, Origin, Molecular Pathogenesis, and Biomarkers

Authors: Salina Yahya Saddick

Abstract:

Ovarian cancer remains the most lethal gynecological malignancy due to the lack of highly sensitive and specific screening tools for detection of early-stage disease. The OSE provides the progenitor cells for 90% of human ovarian cancers. Recent morphologic, immunohistochemical and molecular genetic studies have led to the development of a new paradigm for the pathogenesis and origin of epithelial ovarian cancer (EOC) based on a ualistic model of carcinogenesis that divides EOC into two broad categories designated Types I and II which are characterized by specific mutations, including KRAS, BRAF, ERBB2, CTNNB1, PTEN PIK3CA, ARID1A, and PPPR1A, which target specific cell signaling pathways. Type 1 tumors rarely harbor TP53. type I tumors are relatively genetically stable and typically display a variety of somatic sequence mutations that include KRAS, BRAF, PTEN, PIK3CA CTNNB1 (the gene encoding beta catenin), ARID1A and PPP2R1A but very rarely TP53 . The cancer stem cell (CSC) hypothesis postulates that the tumorigenic potential of CSCs is confined to a very small subset of tumor cells and is defined by their ability to self-renew and differentiate leading to the formation of a tumor mass. Potential protein biomarker miRNA, are promising biomarkers as they are remarkably stable to allow isolation and analysis from tissues and from blood in which they can be found as free circulating nucleic acids and in mononuclear cells. Recently, genomic anaylsis have identified biomarkers and potential therapeutic targets for ovarian cancer namely, FGF18 which plays an active role in controlling migration, invasion, and tumorigenicity of ovarian cancer cells through NF-κB activation, which increased the production of oncogenic cytokines and chemokines. This review summarizes update information on epithelial ovarian cancers and point out to the most recent ongoing research.

Keywords: epithelial ovarian cancers, somatic sequence mutations, cancer stem cell (CSC), potential protein, biomarker, genomic analysis, FGF18 biomarker

Procedia PDF Downloads 354
200 Novel p22-Monoclonal Antibody Based Blocking ELISA for the Detection of African Swine Fever Virus Antibodies in Serum

Authors: Ghebremedhin Tsegay, Weldu Tesfagaber, Yuanmao Zhu, Xijun He, Wan Wang, Zhenjiang Zhang, Encheng Sun, Jinya Zhang, Yuntao Guan, Fang Li, Renqiang Liu, Zhigao Bu, Dongming Zhao*

Abstract:

African swine fever (ASF) is a highly infectious viral disease of pigs, resulting in significant economic loss worldwide. As there is no approved vaccines and treatments, the control of ASF entirely depends on early diagnosis and culling of infected pigs. Thus, highly specific and sensitive diagnostic assays are required for accurate and early diagnosis of ASF virus (ASFV). Currently, only a few recombinant proteins have been tested and validated for use as reagents in ASF diagnostic assays. The most promising ones for ASFV antibody detection were p72, p30, p54, and pp62. So far, three ELISA kits based on these recombinant proteins have been commercialized. Due to the complex nature of the virus and variety forms of the disease, robust serodiagnostic assays are still required. ASFV p22 protein, encoded by KP177R gene, is located in the inner membrane of viral particle and appeared transiently in the plasma membrane early after virus infection. The p22 protein interacts with numerous cellular proteins, involved in processes of phagocytosis and endocytosis through different cellular pathways. However, p22 does not seem to be involved in virus replication or swine pathogenicity. In this study, E.coli expressed recombinant p22 protein was used to generate a monoclonal antibody (mAb), and its potential use for the development of blocking ELISA (bELISA) was evaluated. A total of 806 pig serum samples were tested to evaluate the bELISA. Acording the ROC (Reciever operating chracteristic) analysis, 100% sensitivity and 98.10% of specificity was recorded when the PI cut-off value was set at 47%. The novel assay was able to detect the antibodies as early as 9 days post infection. Finaly, a highly sensitive, specific and rapid novel p22-mAb based bELISA assay was developed, and optimized for detection of antibodies against genotype I and II ASFVs. It is a promising candidate for an early and acurate detection of the antibodies and is highly expected to have a valuable role in the containment and prevention of ASF.

Keywords: ASFV, blocking ELISA, diagnosis, monoclonal antibodies, sensitivity, specificity

Procedia PDF Downloads 52
199 Bio-Nanotechnology Approach of Nano-Size Iron Particles as Promising Iron Supplements: An Exploratory Study to Combat the Problems of Iron Fortification in Children and Pregnant Women of Rural India

Authors: Roshni Raha, Kavya P., Gayathri M.

Abstract:

India, with a humongous population, remains the world's poorest developing nation in terms of nutritional status, with iron deficiency anaemia (IDA) affecting the population. Despite efforts over the past decades, India's anaemia prevalence has not been reduced. Researchers are interested in developing therapies that will minimize the typical side effects of oral iron and optimize iron salts-based treatment through delivery methods based on the physiology of hepcidin regulation. However, they need to come up with iron therapies that will prevent making the infection worse. This article explores using bio-nanotechnology as the alternative, promising substitution of providing iron supplements for the treatment of diarrhoea and gut inflammation in kids and pregnant women. This article is an exploratory study using a literature survey and secondary research from review papers. In the realm of biotechnology, nanoparticles have become extremely famous due to unexpected variations in surface characteristics caused by particle size. Particle size distribution and shape exhibit unusual, enhanced characteristics when reduced to nanoscale. The article attempts to develop a model for a nanotechnology based solution in iron fortification to combat the problems of diarrhoea and gut inflammation. Certain dimensions that have been considered in the model include the size, shape, source, and biosynthesis of the iron nanoparticles. Another area of investigation addressed in the article is the cost-effective biocompatible production of these iron nanoparticles. Studies have demonstrated that a substantial reduction of metal ions to form nanoparticles from the bulk metal occurs in plants because of the presence of a wide diversity of biomolecules. Using this concept, the paper investigates the effectiveness and impact of how similar sources can be used for the biological synthesis of iron nanoparticles. Results showed that iron particles, when prepared in nano-metre size, offer potential advantages. When the particle size of the iron compound decreases and attains nano configuration, its surface area increases, which further improves its solubility in the gastric acid, leading to higher absorption, higher bioavailability, and producing the least organoleptic changes in food. It has no negative effects and possesses a safe, effective profile to reduce IDA. Considering all the parameters, it has been concluded that iron particles in nano configuration serve as alternative iron supplements for the complete treatment of IDA. Nanoparticles of ferric phosphate, ferric pyrophosphate, and iron oxide are the choices of iron supplements. From a sourcing perspective, the paper concludes green sources are the primary sources for the biological synthesis of iron nanoparticles. It will also be a cost-effective strategy since our goal is to treat the target population in rural India. Bio-nanotechnology serves as an alternative and promising substitution for iron supplements due to its low cost, excellent bioavailability, and strong organoleptic properties. One area of future research can be to explore the type of size and shape of iron nanoparticles that would be suitable for the different age groups of pregnant women and children and whether it would be influenced based on the topography in certain areas.

Keywords: anemia, bio-nanotechnology, iron-fortification, nanoparticle

Procedia PDF Downloads 46
198 Prediction of Cardiovascular Markers Associated With Aromatase Inhibitors Side Effects Among Breast Cancer Women in Africa

Authors: Jean Paul M. Milambo

Abstract:

Purpose: Aromatase inhibitors (AIs) are indicated in the treatment of hormone-receptive breast cancer in postmenopausal women in various settings. Studies have shown cardiovascular events in some developed countries. To date the data is sparce for evidence-based recommendations in African clinical settings due to lack of cancer registries, capacity building and surveillance systems. Therefore, this study was conducted to assess the feasibility of HyBeacon® probe genotyping adjunctive to standard care for timely prediction and diagnosis of Aromatase inhibitors (AIs) associated adverse events in breast cancer survivors in Africa. Methods: Cross sectional study was conducted to assess the knowledge of POCT among six African countries using online survey and telephonically contacted. Incremental cost effectiveness ratio (ICER) was calculated, using diagnostic accuracy study. This was based on mathematical modeling. Results: One hundred twenty-six participants were considered for analysis (mean age = 61 years; SD = 7.11 years; 95%CI: 60-62 years). Comparison of genotyping from HyBeacon® probe technology to Sanger sequencing showed that sensitivity was reported at 99% (95% CI: 94.55% to 99.97%), specificity at 89.44% (95% CI: 87.25 to 91.38%), PPV at 51% (95%: 43.77 to 58.26%), and NPV at 99.88% (95% CI: 99.31 to 100.00%). Based on the mathematical model, the assumptions revealed that ICER was R7 044.55. Conclusion: POCT using HyBeacon® probe genotyping for AI-associated adverse events maybe cost effective in many African clinical settings. Integration of preventive measures for early detection and prevention guided by different subtype of breast cancer diagnosis with specific clinical, biomedical and genetic screenings may improve cancer survivorship. Feasibility of POCT was demonstrated but the implementation could be achieved by improving the integration of POCT within primary health cares, referral cancer hospitals with capacity building activities at different level of health systems. This finding is pertinent for a future envisioned implementation and global scale-up of POCT-based initiative as part of risk communication strategies with clear management pathways.

Keywords: breast cancer, diagnosis, point of care, South Africa, aromatase inhibitors

Procedia PDF Downloads 53
197 Russian pipeline natural gas export strategy under uncertainty

Authors: Koryukaeva Ksenia, Jinfeng Sun

Abstract:

Europe has been a traditional importer of Russian natural gas for more than 50 years. In 2021, Russian state-owned company Gazprom supplied about a third of all gas consumed in Europe. The Russia-Europe mutual dependence in terms of natural gas supplies has been causing many concerns about the energy security of the two sides for a long period of time. These days the issue has become more urgent than ever considering recent Russian invasion in Ukraine followed by increased large-scale geopolitical conflicts, making the future of Russian natural gas supplies and global gas markets as well highly uncertain. Hence, the main purpose of this study is to get insight into the possible futures of Russian pipeline natural gas exports by a scenario planning method based on Monte-Carlo simulation within LUSS model framework, and propose Russian pipeline natural gas export strategies based on the obtained scenario planning results. The scenario analysis revealed that recent geopolitical disputes disturbed the traditional, longstanding model of Russian pipeline gas exports, and, as a result, the prospects and the pathways for Russian pipeline gas on the world markets will differ significantly from those before 2022. Specifically, our main findings show, that (i) the events of 2022 generated many uncertainties for the long-term future of Russian pipeline gas export perspectives on both western and eastern supply directions, including geopolitical, regulatory, economic, infrastructure and other uncertainties; (ii) according to scenario modelling results, Russian pipeline exports will face many challenges in the future, both on western and eastern directions. A decrease in pipeline gas exports will inevitably affect country’s natural gas production and significantly reduce fossil fuel export revenues, jeopardizing the energy security of the country; (iii) according to proposed strategies, in order to ensure the long-term stable export supplies in the changing environment, Russia may need to adjust its traditional export strategy by performing export flows and product diversification, entering new markets, adapting its contracting mechanism, increasing competitiveness and gaining a reputation of a reliable gas supplier.

Keywords: Russian natural gas, Pipeline natural gas, Uncertainty, Scenario simulation, Export strategy

Procedia PDF Downloads 32
196 The Need to Teach the Health Effects of Climate Change in Medical Schools

Authors: Ábrám Zoltán

Abstract:

Introduction: Climate change is now a major health risk, and its environmental and health effects have become frequently discussed topics. The consequences of climate change are clearly visible in natural disasters and excess deaths caused by extreme weather conditions. Global warming and the increasingly frequent extreme weather events have direct, immediate effects or long-term, indirect effects on health. For this reason, it is a need to teach the health effects of climate change in medical schools. Material and methods: We looked for various surveys, studies, and reports on the main pathways through which global warming affects health. Medical schools face the challenge of teaching the health implications of climate change and integrating knowledge about the health effects of climate change into medical training. For this purpose, there were organised World Café workshops for three target groups: medical students, academic staff, and practising medical doctors. Results: Among the goals of the research is the development of a detailed curriculum for medical students, which serves to expand their knowledge in basic education. At the same time, the project promotes the increase of teacher motivation and the development of methodological guidelines for university teachers; it also provides further training for practicing doctors. The planned teaching materials will be developed in a format suitable for traditional face-to-face teaching, as well as e-learning teaching materials. CLIMATEMED is a project based on the cooperation of six universities and institutions from four countries, the aim of which is to improve the curriculum and expand knowledge about the health effects of climate change at medical universities. Conclusions: In order to assess the needs, summarize the proposals, to develop the necessary strategy, World Café type, one-and-a-half to two-hour round table discussions will take place separately for medical students, academic staff, and practicing doctors. The CLIMATEMED project can facilitate the integration of knowledge about the health effects of climate change into curricula and can promote practical use. The avoidance of the unwanted effects of global warming and climate change is not only a public matter, but it is also a challenge to change our own lifestyle. It is the responsibility of all of us to protect the Earth's ecosystem and the physical and mental health of ourselves and future generations.

Keywords: climate change, health effects, medical schools, World Café, medical students

Procedia PDF Downloads 55
195 Designing Self-Healing Lubricant-Impregnated Surfaces for Corrosion Protection

Authors: Sami Khan, Kripa Varanasi

Abstract:

Corrosion is a widespread problem in several industries and developing surfaces that resist corrosion has been an area of interest since the last several decades. Superhydrophobic surfaces that combine hydrophobic coatings along with surface texture have been shown to improve corrosion resistance by creating voids filled with air that minimize the contact area between the corrosive liquid and the solid surface. However, these air voids can incorporate corrosive liquids over time, and any mechanical faults such as cracks can compromise the coating and provide pathways for corrosion. As such, there is a need for self-healing corrosion-resistance surfaces. In this work, the anti-corrosion properties of textured surfaces impregnated with a lubricant have been systematically studied. Since corrosion resistance depends on the area and physico-chemical properties of the material exposed to the corrosive medium, lubricant-impregnated surfaces (LIS) have been designed based on the surface tension, viscosity and chemistry of the lubricant and its spreading coefficient on the solid. All corrosion experiments were performed in a standard three-electrode cell using iron, which readily corrodes in a 3.5% sodium chloride solution. In order to obtain textured iron surfaces, thin films (~500 nm) of iron were sputter-coated on silicon wafers textured using photolithography, and subsequently impregnated with lubricants. Results show that the corrosion rate on LIS is greatly reduced, and offers an over hundred-fold improvement in corrosion protection. Furthermore, it is found that the spreading characteristics of the lubricant are significant in ensuring corrosion protection: a spreading lubricant (e.g., Krytox 1506) that covers both inside the texture, as well as the top of the texture, provides a two-fold improvement in corrosion protection as compared to a non-spreading lubricant (e.g., Silicone oil) that does not cover texture tops. To enhance corrosion protection of surfaces coated with a non-spreading lubricant, pyramid-shaped textures have been developed that minimize exposure to the corrosive solution, and a consequent twenty-fold increased in corrosion protection is observed. An increase in viscosity of the lubricant scales with greater corrosion protection. Finally, an equivalent cell-circuit model is developed for the lubricant-impregnated systems using electrochemical impedance spectroscopy. Lubricant-impregnated surfaces find attractive applications in harsh corrosive environments, especially where the ability to self-heal is advantageous.

Keywords: lubricant-impregnated surfaces, self-healing surfaces, wettability, nano-engineered surfaces

Procedia PDF Downloads 111
194 Potential Serological Biomarker for Early Detection of Pregnancy in Cows

Authors: Shveta Bathla, Preeti Rawat, Sudarshan Kumar, Rubina Baithalu, Jogender Singh Rana, Tushar Kumar Mohanty, Ashok Kumar Mohanty

Abstract:

Pregnancy is a complex process which includes series of events such as fertilization, formation of blastocyst, implantation of embryo, placental formation and development of fetus. The success of these events depends on various interactions which are synchronized by endocrine interaction between a receptive dam and competent embryo. These interactions lead to change in expression of hormones and proteins. But till date no protein biomarker is available which can be used to detect successful completion of these events. We employed quantitative proteomics approach to develop putative serological biomarker which has diagnostic applicability for early detection of pregnancy in cows. For this study, sera were collected from control (non-pregnant, n=6) and pregnant animals on successive days of pregnancy (7, 19, 45, n=6). The sera were subjected to depletion for removal of albumin using Norgen depletion kit. The tryptic peptides were labeled with iTRAQ. The peptides were pooled and fractionated using bRPLC over 80 min gradient. Then 12 fractions were injected to nLC for identification and quantitation in DDA mode using ESI. Identification using Mascot search revealed 2056 proteins out of which 352 proteins were differentially expressed. Twenty proteins were upregulated and twelve proteins were down-regulated with fold change > 1.5 and < 0.6 respectively (p < 0.05). The gene ontology studies of DEPs using Panther software revealed that majority of proteins are actively involved in catalytic activities, binding and enzyme regulatory activities. The DEP'S such as NF2, MAPK, GRIPI, UGT1A1, PARP, CD68 were further subjected to pathway analysis using KEGG and Cytoscape plugin Cluego that showed involvement of proteins in successful implantation, maintenance of pluripotency, regulation of luteal function, differentiation of endometrial macrophages, protection from oxidative stress and developmental pathways such as Hippo. Further efforts are continuing for targeted proteomics, western blot to validate potential biomarkers and development of diagnostic kit for early pregnancy diagnosis in cows.

Keywords: bRPLC, Cluego, ESI, iTRAQ, KEGG, Panther

Procedia PDF Downloads 430
193 Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology

Authors: Ozlem Oral, Emre Taskin, Aysel Yuce, Serap Dokmeci, Devrim Gozuacik

Abstract:

Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130).

Keywords: autophagy, Gaucher's disease, glucocerebrosidase, mutant fibroblasts

Procedia PDF Downloads 301
192 Analysis of Conditional Effects of Forms of Upward versus Downward Counterfactual Reasoning on Gambling Cognition and Decision of Nigerians

Authors: Larry O. Awo, George N. Duru

Abstract:

There are growing public and mental health concerns over the availability of gambling platforms and shops in Nigeria and the high level of youth involvement in gambling. Early theorizing maintained that gambling involvement was driven by a quest for resource gains. However, evidence shows that the economic model of gambling tends to explain the involvement of the gambling business owners (sport lottery operators: SLOs) as most gamblers lose more than they win. This loss, according to the law of effect, ought to discourage decisions to gamble. However, the quest to recover losses has often initiated prolonged gambling sessions. Therefore, the need to investigate mental contemplations (such as counterfactual reasoning (upward versus downward) of what “would, should, or could” have been, and feeling of the illusion of control; IOC) over gambling outcomes as risk or protective factors in gambling decisions became pertinent. The present study sought to understand the differential contributions and conditional effects of upward versus downward counterfactual reasoning as pathways through which the association between IOC and gambling decisions of Nigerian youths (N = 120, mean age = 18.05, SD = 3.81) could be explained. The study adopted a randomized group design, and data were obtained by means of stimulus material (the Gambling Episode; GE) and self-report measures of IOC and Gambling Decision. One-way analysis of variance (ANOVA) result showed that participants in the upward counterfactual reasoning group (M = 22.08) differed from their colleagues in the downward counterfactual reasoning group (M = 17.33) on the decision to gamble, and this difference was significant [F(1,112) = 23, P < .01]. HAYES PROCESS macro moderation analysis results showed that 1) IOC and upward counterfactual reasoning were positively associated with the decision to gamble (B = 14.21, t = 6.10, p < .01 and B = 7.22, t = 2.07, p <.05, respectively), 2) downward counterfactual reasoning was negatively associated with the decision to gamble more to recover losses (B = 10.03, t = 3.21, p < .01), 3) upward counterfactual reasoning did not moderate the association between IOC and gambling decision (p > .05), and 4) downward counterfactual reasoning negatively moderated the association between IOC and gambling decision (B = 07, t = 2.18, p < .05) such that the association was strong at the low level of downward counterfactual, but wane at high levels of downward counterfactual reasoning. The implication of these findings is that IOC and upward counterfactual reasoning were risk factors and promoted gambling behavior, while downward counterfactual reasoning protects individuals from gambling activities. Thus, it is concluded that downward counterfactual reasoning strategies should be included in gambling therapy and treatment packages as it could diminish feelings of both IOC and negative feelings of missed positive outcomes and the urge to gamble.

Keywords: counterfactual reasoning, gambling cognition, gambling decision, Nigeria, youths

Procedia PDF Downloads 66
191 ScRNA-Seq RNA Sequencing-Based Program-Polygenic Risk Scores Associated with Pancreatic Cancer Risks in the UK Biobank Cohort

Authors: Yelin Zhao, Xinxiu Li, Martin Smelik, Oleg Sysoev, Firoj Mahmud, Dina Mansour Aly, Mikael Benson

Abstract:

Background: Early diagnosis of pancreatic cancer is clinically challenging due to vague, or no symptoms, and lack of biomarkers. Polygenic risk score (PRS) scores may provide a valuable tool to assess increased or decreased risk of PC. This study aimed to develop such PRS by filtering genetic variants identified by GWAS using transcriptional programs identified by single-cell RNA sequencing (scRNA-seq). Methods: ScRNA-seq data from 24 pancreatic ductal adenocarcinoma (PDAC) tumor samples and 11 normal pancreases were analyzed to identify differentially expressed genes (DEGs) in in tumor and microenvironment cell types compared to healthy tissues. Pathway analysis showed that the DEGs were enriched for hundreds of significant pathways. These were clustered into 40 “programs” based on gene similarity, using the Jaccard index. Published genetic variants associated with PDAC were mapped to each program to generate program PRSs (pPRSs). These pPRSs, along with five previously published PRSs (PGS000083, PGS000725, PGS000663, PGS000159, and PGS002264), were evaluated in a European-origin population from the UK Biobank, consisting of 1,310 PDAC participants and 407,473 non-pancreatic cancer participants. Stepwise Cox regression analysis was performed to determine associations between pPRSs with the development of PC, with adjustments of sex and principal components of genetic ancestry. Results: The PDAC genetic variants were mapped to 23 programs and were used to generate pPRSs for these programs. Four distinct pPRSs (P1, P6, P11, and P16) and two published PRSs (PGS000663 and PGS002264) were significantly associated with an increased risk of developing PC. Among these, P6 exhibited the greatest hazard ratio (adjusted HR[95% CI] = 1.67[1.14-2.45], p = 0.008). In contrast, P10 and P4 were associated with lower risk of developing PC (adjusted HR[95% CI] = 0.58[0.42-0.81], p = 0.001, and adjusted HR[95% CI] = 0.75[0.59-0.96], p = 0.019). By comparison, two of the five published PRS exhibited an association with PDAC onset with HR (PGS000663: adjusted HR[95% CI] = 1.24[1.14-1.35], p < 0.001 and PGS002264: adjusted HR[95% CI] = 1.14[1.07-1.22], p < 0.001). Conclusion: Compared to published PRSs, scRNA-seq-based pPRSs may be used not only to assess increased but also decreased risk of PDAC.

Keywords: cox regression, pancreatic cancer, polygenic risk score, scRNA-seq, UK biobank

Procedia PDF Downloads 61
190 Qualitative Modeling of Transforming Growth Factor Beta-Associated Biological Regulatory Network: Insight into Renal Fibrosis

Authors: Ayesha Waqar Khan, Mariam Altaf, Jamil Ahmad, Shaheen Shahzad

Abstract:

Kidney fibrosis is an anticipated outcome of possibly all types of progressive chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) signaling pathway is responsible for production of matrix-producing fibroblasts and myofibroblasts in diseased kidney. In this study, a discrete model of TGF-beta (transforming growth factor) and CTGF (connective tissue growth factor) was constructed using Rene Thomas formalism to investigate renal fibrosis turn over. The kinetic logic proposed by Rene Thomas is a renowned approach for modeling of Biological Regulatory Networks (BRNs). This modeling approach uses a set of constraints which represents the dynamics of the BRN thus analyzing the pathway and predicting critical trajectories that lead to a normal or diseased state. The molecular connection between TGF-beta, Smad 2/3 (transcription factor) phosphorylation and CTGF is modeled using GenoTech. The order of BRN is CTGF, TGF-B, and SMAD3 respectively. The predicted cycle depicts activation of TGF-B (TGF-β) via cleavage of its own pro-domain (0,1,0) and presentation to TGFR-II receptor phosphorylating SMAD3 (Smad2/3) in the state (0,1,1). Later TGF-B is turned off (0,0,1) thereby activating SMAD3 that further stimulates the expression of CTGF in the state (1,0,1) and itself turns off in (1,0,0). Elevated CTGF expression reactivates TGF-B (1,1,0) and the cycle continues. The predicted model has generated one cycle and two steady states. Cyclic behavior in this study represents the diseased state in which all three proteins contribute to renal fibrosis. The proposed model is in accordance with the experimental findings of the existing diseased state. Extended cycle results in enhanced CTGF expression through Smad2/3 and Smad4 translocation in the nucleus. The results suggest that the system converges towards organ fibrogenesis if CTGF remains constructively active along with Smad2/3 and Smad 4 that plays an important role in kidney fibrosis. Therefore, modeling regulatory pathways of kidney fibrosis will escort to the progress of therapeutic tools and real-world useful applications such as predictive and preventive medicine.

Keywords: CTGF, renal fibrosis signaling pathway, system biology, qualitative modeling

Procedia PDF Downloads 152
189 Cross-sectional Developmental Trajectories of Executive Function and Relations to Theory of Mind in Autism Spectrum Disorder

Authors: Evangelia-Chrysanthi Kouklari, Evdokia Tagkouli, Vassiliki Ntre, Artemios Pehlivanidis, Stella Tsermentseli, Gerasimos Kolaitis, Katerina Papanikolaou

Abstract:

Executive Function (EF) is a set of goal-directed cognitive skills essentially needed in problem-solving and social behavior. Developmental EF research has indicated that EF emerges early in life and marks dramatic changes before the age of 5. Research evidence has suggested that it may continue to develop up to adolescence as well, following the development of the prefrontal cortex. Over the last decade, research evidence has suggested distinguished domains of cool and hot EF, but traditionally the development of EF in Autism Spectrum Disorder (ASD) has been examined mainly with tasks that address the “cool” cognitive aspects of EF. Thus, very little is known about the development of “hot” affective EF processes and whether the cross-sectional developmental pathways of cool and hot EF present similarities in ASD. Cool EF has also been proven to have a strong correlation with Theory of Mind (ToM) in young and middle childhood in typical development and in ASD, but information about the relationship of hot EF to ToM skills is minimal. The present study’s objective was to explore the age-related changes of cool and hot EF in ASD participants from middle childhood to adolescence, as well as their relationship to ToM. This study employed an approach of cross-sectional developmental trajectories to investigate patterns of cool and hot EF relative to chronological age within ASD. Eighty-two participants between 7 and 16 years of age were recruited to undertake measures that assessed cool EF (working memory, cognitive flexibility, planning & inhibition), hot EF (affective decision making & delay discounting) and ToM (false belief and mental state/emotion recognition). Results demonstrated that trajectories of all cool EF presented age-related changes in ASD (improvements with age). With regards to hot EF, affective decision-making presented age-related changes, but for delay discounting, there were no statistically significant changes found across younger and older ASD participants. ToM was correlated only to cool EF. Theoretical implications are discussed as the investigation of the cross-sectional developmental trajectories of the broader EF (cool and hot domains) may contribute to better defining cognitive phenotypes in ASD. These findings highlight the need to examine developmental trajectories of both hot and cool EF in research and clinical practice as they may aid in enhancing diagnosis or better-informed intervention programs.

Keywords: autism spectrum disorder, developmental trajectories, executive function, theory of mind

Procedia PDF Downloads 121
188 Investigation of Dry-Blanching and Freezing Methods of Fruits

Authors: Epameinondas Xanthakis, Erik Kaunisto, Alain Le-Bail, Lilia Ahrné

Abstract:

Fruits and vegetables are characterized as perishable food matrices due to their short shelf life as several deterioration mechanisms are being involved. Prior to the common preservation methods like freezing or canning, fruits and vegetables are being blanched in order to inactivate deteriorative enzymes. Both conventional blanching pretreatments and conventional freezing methods hide drawbacks behind their beneficial impacts on the preservation of those matrices. Conventional blanching methods may require longer processing times, leaching of minerals and nutrients due to the contact with the warm water which in turn leads to effluent production with large BOD. An important issue of freezing technologies is the size of the formed ice crystals which is also critical for the final quality of the frozen food as it can cause irreversible damage to the cellular structure and subsequently to degrade the texture and the colour of the product. Herein, the developed microwave blanching methodology and the results regarding quality aspects and enzyme inactivation will be presented. Moreover, heat transfer phenomena, mass balance, temperature distribution, and enzyme inactivation (such as Pectin Methyl Esterase and Ascorbic Acid Oxidase) of our microwave blanching approach will be evaluated based on measurements and computer modelling. The present work is part of the COLDμWAVE project which aims to the development of an innovative environmentally sustainable process for blanching and freezing of fruits and vegetables with improved textural and nutritional quality. In this context, COLDµWAVE will develop tailored equipment for MW blanching of vegetables that has very high energy efficiency and no water consumption. Furthermore, the next steps of this project regarding the development of innovative pathways in MW assisted freezing to improve the quality of frozen vegetables, by exploring in depth previous results acquired by the authors, will be presented. The application of MW assisted freezing process on fruits and vegetables it is expected to lead to improved quality characteristics compared to the conventional freezing. Acknowledgments: COLDμWAVE has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grand agreement No 660067.

Keywords: blanching, freezing, fruits, microwave blanching, microwave

Procedia PDF Downloads 237
187 Exploring the Applicability of a Rapid Health Assessment in India

Authors: Claudia Carbajal, Jija Dutt, Smriti Pahwa, Sumukhi Vaid, Karishma Vats

Abstract:

ASER Centre, the research and assessment arm of Pratham Education Foundation sees measurement as the first stage of action. ASER uses primary research to push and give empirical foundations to policy discussions at a multitude of levels. At a household level, common citizens use a simple assessment (a floor-level test) to measure learning across rural India. This paper presents the evidence on the applicability of an ASER approach to the health sector. A citizen-led assessment was designed and executed that collected information from young mothers with children up to a year of age. The pilot assessments were rolled-out in two different models: Paid surveyors and student volunteers. The survey covered three geographic areas: 1,239 children in the Jaipur District of Rajasthan, 2,086 in the Rae Bareli District of Uttar Pradesh, and 593 children in the Bhuj Block in Gujarat. The survey tool was designed to study knowledge of health-related issues, daily practices followed by young mothers and access to relevant services and programs. It provides insights on behaviors related to infant and young child feeding practices, child and maternal nutrition and supplementation, water and sanitation, and health services. Moreover, the survey studies the reasons behind behaviors giving policy-makers actionable pathways to improve implementation of social sector programs. Although data on health outcomes are available, this approach could provide a rapid annual assessment of health issues with indicators that are easy to understand and act upon so that measurements do not become an exclusive domain of experts. The results give many insights into early childhood health behaviors and challenges. Around 98% of children are breastfed, and approximately half are not exclusively breastfed (for the first 6 months). Government established diet diversity guidelines are met for less than 1 out of 10 children. Although most households are satisfied with the quality of drinking water, most tested households had contaminated water.

Keywords: citizen-led assessment, rapid health assessment, Infant and Young Children Feeding, water and sanitation, maternal nutrition, supplementation

Procedia PDF Downloads 142
186 Assesment of Genetic Fidelity of Micro-Clones of an Aromatic Medicinal Plant Murraya koenigii (L.) Spreng

Authors: Ramesh Joshi, Nisha Khatik

Abstract:

Murraya koenigii (L.) Spreng locally known as “Curry patta” or “Meetha neem” belonging to the family Rutaceae that grows wildly in Southern Asia. Its aromatic leaves are commonly used as the raw material for traditional medicinal formulations in India. The leaves contain essential oil and also used as a condiment. Several monomeric and binary carbazol alkaloids present in the various plant parts. These alkaloids have been reported to possess anti-microbial, mosquitocidal, topo-isomerase inhibition and antioxidant properties. Some of the alkaloids reported in this plant have showed anti carcinogenic and anti-diabetic properties. The conventional method of propagation of this tree is limited to seeds only, which retain their viability for only a short period. Hence, a biotechnological approach might have an advantage edging over traditional breeding as well as the genetic improvement of M. koenigii within a short period. The development of a reproducible regeneration protocol is the prerequisite for ex situ conservation and micropropagation. An efficient protocol for high frequency regeneration of in vitro plants of Murraya koenigii via different explants such as- nodal segments, intermodal segments, leaf, root segments, hypocotyle, cotyledons and cotyledonary node explants is described. In the present investigation, assessment of clonal fidelity in the micropropagated plantlets of Murraya koenigii was attempted using RAPD and ISSR markers at different pathways of plant tissue culture technique. About 20 ISSR and 40 RAPD primers were used for all the samples. Genomic DNA was extracted by CTAB method. ISSR primer were found to be more suitable as compared to RAPD for the analysis of clonal fidelity of M. koenigii. The amplifications however, were finally performed using RAPD, ISSR markers owing to their better performance in terms of generation of amplification products. In RAPD primer maximum 75% polymorphism was recorded in OPU-2 series which exhibited out of 04 scorable bands, three bands were polymorphic with a band range of size 600-1500 bp. In ISSR primers the UBC 857 showed 50% polymorphism with 02 band were polymorphic of band range size between 400-1000 bp.

Keywords: genetic fidelity, Murraya koenigii, aromatic plants, ISSR primers

Procedia PDF Downloads 471
185 Strengthening Functional Community-Provider Linkages: Lessons from the Challenge Initiative for Healthy Cities Program in Indore, India

Authors: Sabyasachi Behera, Shiv Kumar, Pramod Gautam, Anisur Rahman, Pawan Pathak, Rahul Bhadouria

Abstract:

Background: The increasing proportion of population especially urban poor and vulnerable groups or groups with specific needs, with health indicators worse than their rural counterparts in India face various issues related with availability and quality of health care. The reasons are myriad, starting from information and awareness of the community, especially, in a scenario wherein the needs and challenges of floating and migrant urban populations remain poorly understood. Weak linkages between health care facilities and slum dwellers and vulnerable populations hinder the improvement of health services for urban poor. Method: To address this issue, TCIHC program is helping health department of Indore city of Madhya Pradesh to establish a referral mechanism with a dual approach: at both community and facility level. The former is based on the premise of ‘building social capital’, i.e. norms and networks within a community facilitating collective action, helps improve the demand and supply of health services at appropriate levels of care (Minus 2: Accredited Social Health Activist and Community Health Groups; Minus 1: Urban Health Nutrition Days; Zero: Urban Primary Health Center; Plus 1: secondary facility with BEmONC services; Plus 2: secondary facilities with CEmONC services; Plus 3: tertiary level facility) for the urban poor. The latter focuses on encouraging the provision of all services at various levels of service delivery points and stakeholders to function in a coordinated manner to ensure better health service availability and coverage in underserved slum areas. Results: This initiative has enhanced the utilization of community based, primary and secondary level services through defined referral pathways that are clearly known to a community dweller. Conclusion: An ideal referral mechanism should begin with referral at the community level wherein services of a frontline health care provider are accessed by them at their door-step, causing no delay in both understanding and decision on the health issues faced by them.

Keywords: levels of care, linkages, referral mechanism, service delivery

Procedia PDF Downloads 119
184 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices

Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das

Abstract:

The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.

Keywords: terahertz, detector, responsivity, topological-semimetals

Procedia PDF Downloads 137
183 HIV-1 Nef Mediates Host Invasion by Differential Expression of Alpha-Enolase

Authors: Reshu Saxena, R. K. Tripathi

Abstract:

HIV-1 transmission and spread involves significant host-virus interaction. Potential targets for prevention of HIV-1 lies at the site of mucosal barriers. Thus a better understanding of how HIV-1 infects target cells at such sites and lead their invasion is required, with prime focus on the host determinants regulating HIV-1 spread. HIV-1 Nef is important for viral infectivity and pathogenicity. It promotes HIV-1 replication, facilitating immune evasion by interacting with various host factors and altering cellular pathways via multiple protein-protein interactions. In this study nef was sequenced from HIV-1 patients, and showed specific mutations revealing sequence variability in nef. To explore the difference in Nef functionality based on sequence variability we have studied the effects of HIV-1 Nef in human SupT1 T cell line and (THP-1) monocyte-macrophage cell lines through proteomics approach. 2D-Gel Electrophoresis in control and Nef-transfected SupT1 cells demonstrated several differentially expressed proteins with significant modulation of alpha-enolase. Through further studies, effects of Nef on alpha-enolase regulation were found to be cell lineage-specific, being stimulatory in macrophages/monocytes, inhibitory in T cells and without effect in HEK-293 cells. Cell migration and invasion studies were employed to determine biological function affected by Nef mediated regulation of alpha-enolase. Cell invasion was enhanced in THP-1 cells but was inhibited in SupT1 cells by wildtype nef. In addition, the modulation of enolase and cell invasion remained unaffected by a unique nef variant. These results indicated that regulation of alpha-enolase expression and invasive property of host cells by Nef is sequence specific, suggesting involvement of a particular motif of Nef. To precisely determine this site, we designed a heptapeptide including the suggested alpha-enolase regulating sequence of nef and a nef mutant with deletion of this site. Macrophages/monocytes being the major cells affected by HIV-1 at mucosal barriers, were particularly investigated by the nef mutant and peptide. Both the nef mutant and heptapeptide led to inhibition of enhanced enolase expression and increased invasiveness in THP-1 cells. Together, these findings suggest a possible mechanism of host invasion by HIV-1 through Nef mediated regulation of alpha-enolase and identifies a potential therapeutic target for HIV-1 entry at mucosal barriers.

Keywords: HIV-1 Nef, nef variants, host-virus interaction, tissue invasion

Procedia PDF Downloads 385
182 Marzuq Basin Palaeozoic Petroleum System

Authors: M. Dieb, T. Hodairi

Abstract:

In the Southwest Libya area, the Palaeozoic deposits are an important petroleum system, with Silurian shale considered a hydrocarbon source rock and Cambro-Ordovician recognized as a good reservoir. The Palaeozoic petroleum system has the greatest potential for conventional and is thought to represent the significant prospect of unconventional petroleum resources in Southwest Libya. Until now, the lateral and vertical heterogeneity of the source rock was not well evaluated, and oil-source correlation is still a matter of debate. One source rock, which is considered the main source potential in Marzuq Basin, was investigated for its uranium contents using gamma-ray logs, rock-eval pyrolysis, and organic petrography for their bulk kinetic characteristics to determine the petroleum potential qualitatively and quantitatively. Thirty source rock samples and fifteen oil samples from the Tannezzuft source rock were analyzed by Rock-Eval Pyrolysis, microscopely investigation, GC, and GC-MS to detect acyclic isoprenoids and aliphatic, aromatic, and NSO biomarkers. Geochemistry tools were applied to screen source and age-significant biomarkers to high-spot genetic relationships. A grating heterogeneity exists among source rock zones from different levels of depth with varying uranium contents according to gamma-ray logs, rock-eval pyrolysis results, and kinetic features. The uranium-rich Tannezzuft Formations (Hot Shales) produce oils and oil-to-gas hydrocarbons based on their richness, kerogen type, and thermal maturity. Biomarker results such as C₂₇, C₂₈, and C₂₉ steranes concentrations and C₂₄ tetracyclic terpane/C₂₉ tricyclic terpane ratios, with sterane and hopane ratios, are considered the most promising biomarker information in differentiating within the Silurian Shale Tannezzuft Formation and in correlating with its expelled oils. The Tannezzuft Hot Shale is considered the main source rock for oil and gas accumulations in the Cambro-Ordovician reservoirs within the Marzuq Basin. Migration of the generated and expelled oil and gas from the Tannezzuft source rock to the reservoirs of the Cambro-Ordovician petroleum system was interpreted to have occurred along vertical and lateral pathways along the faults in the Palaeozoic Strata. The Upper Tannezzuft Formation (cold shale) is considered the primary seal in the Marzuq Basin.

Keywords: heterogeneity, hot shale, kerogen, Silurian, uranium

Procedia PDF Downloads 28
181 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies

Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr

Abstract:

Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.

Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool

Procedia PDF Downloads 205
180 Neural Networks Underlying the Generation of Neural Sequences in the HVC

Authors: Zeina Bou Diab, Arij Daou

Abstract:

The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.

Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird

Procedia PDF Downloads 41
179 Cross-Cultural Collaboration Shaping Co-Creation Methodology to Enhance Disaster Risk Management Approaches

Authors: Jeannette Anniés, Panagiotis Michalis, Chrysoula Papathanasiou, Selby Knudsen

Abstract:

RiskPACC project aims to bring together researchers, practitioners, and first responders from nine European countries following a co-creation approach aiming to develop customised solutions to meet the needs of end-users. The co-creation workshops target to enhance the communication pathways between local civil protection authorities (CPAs) and citizens, in an effort to close the risk perception-action gap (RPAG). The participants in the workshops include a variety of stakeholders, as well as citizens, fostering the dialogue between the groups and supporting citizen participation in disaster risk management (DRM). The co-creation methodology in place implements co-design elements due to the integration of four ICT tools. Such ICT tools include web-based and mobile application technical solutions in different development stages, ranging from formulation and validation of concepts to pilot demonstrations. In total, seven different case studies are foreseen in RiskPACC. The workflow of the workshops is designed to be adaptive to every of the seven case study countries and their cultures’ particular needs. This work aims to provide an overview of the the preparation and the conduction of the workshops in which researchers and practitioners focused on mapping these different needs from the end users. The latter included first responders but also volunteers and citizens who actively participated in the co-creation workshops. The strategies to improve communication between CPAs and citizens themselves differ in the countries, and the modules of the co-creation methodology are adapted in response to such differences. Moreover, the project partners experienced how the structure of such workshops is perceived differently in the seven case studies. Therefore, the co-creation methodology itself is a design method underlying several iterations, which are eventually shaped by cross-cultural collaboration. For example, some case studies applied other modules according to the participatory group recruited. The participants were technical experts, teachers, citizens, first responders, or volunteers, among others. This work aspires to present the divergent approaches of the seven case studies implementing the co-creation methodology proposed, in response to different perceptions of the modules. An analysis of the adaptations and implications will also be provided to assess where the case studies’ objective of improving disaster resilience has been obtained.

Keywords: citizen participation, co-creation, disaster resilience, risk perception, ICT tools

Procedia PDF Downloads 53
178 GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains

Authors: Magdalena Smoktunowicz, Renata Wawrzyniak, Malgorzata Waleron, Krzysztof Waleron

Abstract:

Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum.

Keywords: GC-MS chromatograpfy, metabolomics, metabolism, pectobacterium strains, pectobacterium betavasculorum

Procedia PDF Downloads 43