Search results for: atmospheric effects
11223 Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations
Authors: Jossitt Williams Vargas Cruz, Aura Jazmín Pérez Ríos
Abstract:
The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation.Keywords: correlations, cosmic rays, sun, sunspots and variations.
Procedia PDF Downloads 7511222 Atmospheric Plasma Treatment to Improve Water and Oil Repellent Finishing for PET and PET/Spandex Fabrics
Authors: Mehtap Çalışkan, Nilüfer Yıldız Varan, Volkan Kaplan
Abstract:
In this study, the effects of an atmospheric plasma treatment on the durability of water and oil repellent finishes of PET and PET/Spandex fabrics were tested. Fabrics were treated with a low-frequency atmospheric pressure glow discharge. After plasma treatments, the water and oil repellent finishes were applied using pad-dry-cure method. It was observed that plasma treatments improved the durability finish for all fabrics.Keywords: atmospheric plasma, durable coating, oil repellency, PET/spandex fabrics, water repellency
Procedia PDF Downloads 41211221 Perturbative Analysis on a Lunar Free Return Trajectory
Authors: Emre Ünal, Hasan Başaran
Abstract:
In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission’s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6th order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial.Keywords: Apollo-13 trajectory, atmospheric drag, lunar trajectories, oblateness effect, perturbative effects, solar radiation pressure, third body perturbations
Procedia PDF Downloads 14811220 Urban Boundary Layer and Its Effects on Haze Episode in Thailand
Authors: S. Bualert, K. Duangmal
Abstract:
Atmospheric boundary layer shows effects of land cover on atmospheric characteristic in term of temperature gradient and wind profile. They are key factors to control atmospheric process such as atmospheric dilution and mixing via thermal and mechanical turbulent. Bangkok, ChiangMai, and Hatyai are major cities of central, southern and northern of Thailand, respectively. The different of them are location, geography and size of the city, Bangkok is the most urbanized city and classified as mega city compared to ChiangMai and HatYai, respectively. They have been suffering from air pollution episode such as transboundary haze. The worst period of the northern part of Thailand was occurred at the end of February through April of each year. The particulate matter less than 10 micrometer (PM10) concentrations were higher than Thai’s ambient air quality standard (120 micrograms per cubic meter) more than two times. Radiosonde technique and air pollutant (CO, PM10, TSP, O3, NOx) measurements were used to identify characteristics of urban boundary layer and air pollutions problems in the cities. Furthermore, air pollutant profiles showed good relationship to characteristic’s urban boundary layer especially on daytime temperature inversion on 29 February 2009 caused two times higher than normal concentrations of CO and particulate matter.Keywords: haze episode, micrometeorology, temperature inversion, urban boundary layer
Procedia PDF Downloads 25911219 Effects of Climate Change and Land Use, Land Cover Change on Atmospheric Mercury
Authors: Shiliang Wu, Huanxin Zhang
Abstract:
Mercury has been well-known for its negative effects on wildlife, public health as well as the ecosystem. Once emitted into atmosphere, mercury can be transformed into different forms or enter the ecosystem through dry deposition or wet deposition. Some fraction of the mercury will be reemitted back into the atmosphere and be subject to the same cycle. In addition, the relatively long lifetime of elemental mercury in the atmosphere enables it to be transported long distances from source regions to receptor regions. Global change such as climate change and land use/land cover change impose significant challenges for mercury pollution control besides the efforts to regulate mercury anthropogenic emissions. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from changes in climate and land use/land cover on the global budget of mercury as well as its atmospheric transport, chemical transformation, and deposition. We carry out a suite of sensitivity model simulations to separate the impacts on atmospheric mercury associated with changes in climate and land use/land cover. Both climate change and land use/land cover change are found to have significant impacts on global mercury budget but through different pathways. Land use/land cover change primarily increase mercury dry deposition in northern mid-latitudes over continental regions and central Africa. Climate change enhances the mobilization of mercury from soil and ocean reservoir to the atmosphere. Also, dry deposition is enhanced over most continental areas while a change in future precipitation dominates the change in mercury wet deposition. We find that 2000-2050 climate change could increase the global atmospheric burden of mercury by 5% and mercury deposition by up to 40% in some regions. Changes in land use and land cover also increase mercury deposition over some continental regions, by up to 40%. The change in the lifetime of atmospheric mercury has important implications for long-range transport of mercury. Our case study shows that changes in climate and land use and cover could significantly affect the source-receptor relationships for mercury.Keywords: mercury, toxic pollutant, atmospheric transport, deposition, climate change
Procedia PDF Downloads 49011218 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, error pointing, M-ary pulse position modulation, symbol error rate
Procedia PDF Downloads 28811217 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface
Procedia PDF Downloads 35411216 Atmospheric Circulation Drivers Of Nationally-Aggregated Wind Energy Production Over Greece
Authors: Kostas Philippopoulos, Chris G. Tzanis, Despina Deligiorgi
Abstract:
Climate change adaptation requires the exploitation of renewable energy sources such as wind. However, climate variability can affect the regional wind energy potential and consequently the available wind power production. The goal of the research project is to examine the impact of atmospheric circulation on wind energy production over Greece. In the context of synoptic climatology, the proposed novel methodology employs Self-Organizing Maps for grouping and classifying the atmospheric circulation and nationally-aggregated capacity factor time series for a 30-year period. The results indicate the critical effect of atmospheric circulation on the national aggregated wind energy production values and therefore address the issue of optimum distribution of wind farms for a specific region.Keywords: wind energy, atmospheric circulation, capacity factor, self-organizing maps
Procedia PDF Downloads 16211215 Effect of UV Radiation to Change the Properties of the Composite PA+GF
Authors: Lenka Markovičová, Viera Zatkalíková, Tomasz Garbacz
Abstract:
The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors.Keywords: composites with glass fibers, mechanical properties, polyamides, UV degradation
Procedia PDF Downloads 28811214 Major Mechanisms of Atmospheric Moisture Transport and Their Role in Precipitation Extreme Events in the Amazonia
Authors: Luis Gimeno, Rosmeri da Rocha, Raquel Nieto, Tercio Ambrizzi, Alex Ramos, Anita Drumond
Abstract:
The transport of moisture from oceanic sources to the continents represents the atmospheric branch of the water cycle, forming the connection between evaporation from the ocean and precipitation over the continents. In this regard two large scale dynamical/meteorological structures appear to play a key role, namely Low Level Jet (LLJ) systems and Atmospheric Rivers (ARs). The former are particularly important in tropical and subtropical regions; the latter is mostly confined to extratropical regions. A key question relates to the anomalies in the transport of moisture observed during natural hazards related to extremes of precipitation (i.e., drought or wet spells). In this study we will be focused on these two major atmospheric moisture transport mechanisms (LLJs and ARs) and its role in precipitation extreme events (droughts and wet spells) in the Amazonia paying particular attention to i) intensification (decreasing) of moisture transport by them and its role in wet spells (droughts), and ii) changes in their positions and occurrence with associated flooding and wet spells.Keywords: droughts, wet spells, amazonia, LLJs, atmospheric rivers
Procedia PDF Downloads 30211213 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer
Authors: Yilei Song, Linlin Tian, Ning Zhao
Abstract:
Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake
Procedia PDF Downloads 17411212 A Comparative Performance Evaluation of Modulation Schemes in FSOC Link Under Severe Atmospheric Conditions
Authors: Zakariya Ziyaulhaq Muhammad, Khurram Karim Qureshi, Naveed Iqbal
Abstract:
This study evaluates modulation schemes for free-space optical communications systems operating in severe atmospheric conditions. It also proposed a hybrid PPM-PSK modulation scheme and evaluated its performance in simulated environments with heavy weather-induced attenuations and turbulences. The study then compares its robustness and efficiency with other modulation techniques, such as pulse amplitude modulation (PAM), pulse position modulation (PPM), digital pulse interval modulation (DPIM), phase shift keying (PSK), duobinary (DB), and carrier-suppressed return-to-zero (CS-RZ), among others. We then evaluate performance metrics such as bit error rate (BER), channel quality factor (Q-factor), and minimum received power to ascertain the optimality of the suggested hybrid modulation scheme. Results show that the proposed scheme has the optimal performance in terms of the deliverables considered, followed by PSK, PAM, DB, PPM, DPIM, and CS-RZ in the considered adverse case scenarios.Keywords: atmospheric effects, BER, FSOC, hybrid modulation scheme, Q-factor, received power
Procedia PDF Downloads 011211 The Effect of Global Solar Variations on the Performance of n- AlGaAs/ p-GaAs Solar Cells
Authors: A. Guechi, M. Chegaar
Abstract:
This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%.The efficiency decrease with increasing atmospheric turbidity and air mass.Keywords: AlGaAs/GaAs, solar cells, environmental parameters, spectral variation, SMARTS
Procedia PDF Downloads 39711210 Determination of Iodine and Heavy Metals in Two Brands of Iodised Salt
Authors: Z. O. Apotiola, J. F. Fashakin
Abstract:
A study was conducted to investigate the storage stability of Mr Chef and Annapurna salts. The salts were bought from Mile 12 market in Lagos State and were stored for a period of six months. The stability of the iodine content was then investigated by storing some at ambient temperature (24-30oC) and some at atmospheric temperature (21-35 oC), and from each storage condition, a sample each was taken every month to analyze for the iodine and moisture contents. The result shows that there was a significant difference between Mr Chef and the standard and Annapurna and the standard. The iodine content of Mr Chef stored at ambient and atmospheric temperature decreases progressively from 48.70±0.00-37.00±0.00 and 47.60±0.00-11.60±0.00 respectively. And that of Annapurna at both ambient and atmospheric temperature also decreases progressively from 47.60±0.00-36.60±0.00 and 47.60±0.00-10.60±0.00 respectively. Also, the moisture content of both salts at the zero month to the sixth month both at room temperature and atmospheric temperature increases from 1.11±0.00-1.70±0.00 and 1.11±0.00-2.40±0.00 respectively. The results of the heavy metals shows that only Copper, Zinc and Cobalt were detected at the first and the sixth month in both Mr Chef and Annapurna which ranges from 0.15±0.00-0.38±0.00 and 0.18±0.00 - 3.50±0.00 respectively. Hence, the stability of iodine in salt is influenced by the storage conditions it is subjected to and the length of time it is been stored.Keywords: salt, iodine, stability, ambient, atmospheric temperature
Procedia PDF Downloads 57811209 Determination of Direct Solar Radiation Using Atmospheric Physics Models
Authors: Pattra Pukdeekiat, Siriluk Ruangrungrote
Abstract:
This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement.Keywords: atmospheric physics models, astronomical parameters, atmospheric parameters, clear sky condition
Procedia PDF Downloads 41011208 New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images
Authors: Suruchi
Abstract:
This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives.Keywords: pollution, GIS, FOG, satellie, atmospheric deposition
Procedia PDF Downloads 2311207 Optimizing the Efficiency of Measuring Instruments in Ouagadougou-Burkina Faso
Authors: Moses Emetere, Marvel Akinyemi, S. E. Sanni
Abstract:
At the moment, AERONET or AMMA database shows a large volume of data loss. With only about 47% data set available to the scientist, it is evident that accurate nowcast or forecast cannot be guaranteed. The calibration constants of most radiosonde or weather stations are not compatible with the atmospheric conditions of the West African climate. A dispersion model was developed to incorporate salient mathematical representations like a Unified number. The Unified number was derived to describe the turbulence of the aerosols transport in the frictional layer of the lower atmosphere. Fourteen years data set from Multi-angle Imaging SpectroRadiometer (MISR) was tested using the dispersion model. A yearly estimation of the atmospheric constants over Ouagadougou using the model was obtained with about 87.5% accuracy. It further revealed that the average atmospheric constant for Ouagadougou-Niger is a_1 = 0.626, a_2 = 0.7999 and the tuning constants is n_1 = 0.09835 and n_2 = 0.266. Also, the yearly atmospheric constants affirmed the lower atmosphere of Ouagadougou is very dynamic. Hence, it is recommended that radiosonde and weather station manufacturers should constantly review the atmospheric constant over a geographical location to enable about eighty percent data retrieval.Keywords: aerosols retention, aerosols loading, statistics, analytical technique
Procedia PDF Downloads 31511206 Investigation of Cold Atmospheric Plasma Exposure Protocol on Wound Healing in Diabetic Foot Ulcer
Authors: P. Akbartehrani, M. Khaledi Pour, M. Amini, M. Khani, M. Mohajeri Tehrani, E. Ghasemi, P. Charipoor, B. Shokri
Abstract:
A common problem between diabetic patients is foot ulcers which are chronic and require specialized treatment. Previous studies illustrate that Cold atmospheric plasma (CAP) has beneficial effects on wound healing and infection. Nevertheless, the comparison of different cap exposure protocols in diabetic ulcer wound healing remained to be studied. This study aims to determine the effect of two different exposure protocols on wound healing in diabetic ulcers. A prospective, randomized clinical trial was conducted at two clinics. Diabetic patients with G1 and G2 wanger classification diabetic foot ulcers were divided into two groups of study. One group was treated by the first protocol, which was treating wounds by argon-generated cold atmospheric plasma jet once a week for five weeks in a row. The other group was treated by the second protocol, which was treating wounds every three days for five weeks in a row. The wounds were treated for 40 seconds/cubic centimeter, while the nozzle tip was moved nonlocalized 1 cm above the wounds. A patient with one or more wounds could participate in different groups as wounds were separately randomized, which allow a participant to be treated several times during the study. The study's significant findings were two different reductions rate in wound size, microbial load, and two different healing speeds. This study concludes that CAP therapy by the second protocol yields more effective healing speeds, reduction in wound sizes, and microbial loads of foot ulcers in diabetic patients.Keywords: wound healing, diabetic ulcers, cold atmospheric plasma, cold argon jet
Procedia PDF Downloads 21911205 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”
Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen
Abstract:
Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval
Procedia PDF Downloads 17111204 Atmospheric Pressure Microwave Plasma System and Its Applications
Authors: Waqas A. Toor, Anis U. Baig, Nuaman Shafqat, Raafia Irfan, Muhammad Ashraf
Abstract:
A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation.Keywords: HFSS high frequency structure simulator, Microwave plasma, UV ultraviolet, WR rectangular waveguide
Procedia PDF Downloads 27211203 Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine
Authors: Mohammed Nabeel Khan, C. Perisamy
Abstract:
Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production.Keywords: AVE, atmospheric vortex engine, atmosphere, updraft, vortex
Procedia PDF Downloads 16111202 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric
Authors: C. W. Kan
Abstract:
Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.Keywords: learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA
Procedia PDF Downloads 30611201 A Statistical Analysis on Relationship between Temperature Variations with Latitude and Altitude regarding Total Amount of Atmospheric Carbon Dioxide in Iran
Authors: Masoumeh Moghbel
Abstract:
Nowadays, carbon dioxide which is produced by human activities is considered as the main effective factor in the global warming occurrence. Regarding to the role of CO2 and its ability in trapping the heat, the main objective of this research is study the effect of atmospheric CO2 (which is recorded in Manaloa) on variations of temperature parameters (daily mean temperature, minimum temperature and maximum temperature) in 5 meteorological stations in Iran which were selected according to the latitude and altitude in 40 years statistical period. Firstly, the trend of temperature parameters was studied by Regression and none-graphical Man-Kendal methods. Then, relation between temperature variations and CO2 were studied by Correlation technique. Also, the impact of CO2 amount on temperature in different atmospheric levels (850 and 500 hpa) was analyzed. The results illustrated that correlation coefficient between temperature variations and CO2 in low latitudes and high altitudes is more significant rather than other regions. it is important to note that altitude as the one of the main geographic factor has limitation in affecting the temperature variations, so that correlation coefficient between these two parameters in 850 hpa (r=0.86) is more significant than 500 hpa (r = 0.62).Keywords: altitude, atmospheric carbon dioxide, latitude, temperature variations
Procedia PDF Downloads 40811200 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials
Authors: Mohamed Akbi, Aissa Bouchou
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission
Procedia PDF Downloads 38511199 GIS Based Atmospheric Analysis to Predict Future Temperature Rise Caused by Land Use and Land Cover in Okara by Using Environmental Remote Sensing
Authors: Sumaira Hafeez, Saira Akram
Abstract:
Albeit the populace in metropolitan regions on the planet develops each year, the urban communities battling to adapt to the expanded metropolitan movement grow at different rates. Land Surface Temperature and other atmospheric parameters of the area of not really settled using Landsat pictures more than 10 years isolated. The LULC types were moreover arranged using managed gathering techniques. Quick urbanization is changing the current examples of Land Use Land Cover (LULC) all around the world, which is thusly expanding the Land Surface Temperature (LST) other atmospheric parameters in numerous districts. Present review was centered around assessing the current and recreating the future LULC and Land Surface Temperature patterns in the elevated climate of lower Himalayan district of Pakistan. Past examples of LULC and Land Surface Temperature were distinguished through the multi-unearthly Landsat satellite pictures during the 1995–2019 information period. The future forecasts were made for the year 2030 to work out LULC and LST changes separately, utilizing their previous examples. The review presumes that the reliably extending encroachment of the city's as of late advanced provincial regions over the totally open have went with an overall warming of the district's typical. Meteorological parameters over the earlier ten years and that permitting the land to lie void for a significant long time resulting to clearing the country fields for future metropolitan improvement is a preparation that has lamentable natural effects.Keywords: surface urban heat island, land surface temperature, urban climate change, spatial analysis of meterological and atmospheric science
Procedia PDF Downloads 13611198 Simulation and Performance Evaluation of Transmission Lines with Shield Wire Segmentation against Atmospheric Discharges Using ATPDraw
Authors: Marcio S. da Silva, Jose Mauricio de B. Bezerra, Antonio E. de A. Nogueira
Abstract:
This paper aims to make a performance analysis of shield wire transmission lines against atmospheric discharges when it is made the option of sectioning the shield wire and verify if the tolerability of the change. As a goal of this work, it was established to make complete modeling of a transmission line in the ATPDraw program with shield wire grounded in all the towers and in some towers. The methodology used to make the proposed evaluation was to choose an actual transmission line that served as a case study. From the choice of transmission line and verification of all its topology and materials, complete modeling of the line using the ATPDraw software was performed. Then several atmospheric discharges were simulated by striking the grounded shield wires in each tower. These simulations served to identify the behavior of the existing line against atmospheric discharges. After this first analysis, the same line was reconsidered with shield wire segmentation. The shielding wire segmentation technique aims to reduce induced losses in shield wires and is adopted in some transmission lines in Brazil. With the same conditions of atmospheric discharge the transmission line, this time with shield wire segmentation was again evaluated. The results obtained showed that it is possible to obtain similar performances against atmospheric discharges between a shield wired line in multiple towers and the same line with shield wire segmentation if some precautions are adopted as verification of the ground resistance of the wire segmented shield, adequacy of the maximum length of the segmented gap, evaluation of the separation length of the electrodes of the insulator spark, among others. As a conclusion, it is verified that since the correct assessment and adopted the correct criteria of adjustment a transmission line with shielded wire segmentation can perform very similar to the traditional use with multiple earths. This solution contributes in a very important way to the reduction of energy losses in transmission lines.Keywords: atmospheric discharges, ATPDraw, shield wire, transmission lines
Procedia PDF Downloads 17011197 Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System
Authors: Asmamaw Yehun, Tsegaye Kassa, Addisu Hunegnaw, Martin Vermeer
Abstract:
There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations.Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour
Procedia PDF Downloads 6211196 Interaction of Elevated Carbon Dioxide and Temperature on Strawberry (Fragaria × ananassa) Growth and Fruit Yield
Authors: Himali N. Balasooriya, Kithsiri B. Dassanayake, Saman Seneweera, Said Ajlouni
Abstract:
Increase in atmospheric CO2 concentration [CO2] and ambient temperature associated with changing climatic conditions will have significant impacts on agriculture crop productivity and quality. Independent effects of the above two environmental variables on the growth, yield and quality of strawberry were well documented. Higher temperatures over the optimum range (20-25ºC) lead to crop failures, while elevated [CO2] stimulated plant growth and yield but compromised the physical quality of fruits. However, there is very limited understanding of the interaction between these variables on the plant growth, yield and quality. Therefore, this study was designed to investigate the interactive effect of high temperature and elevated [CO2] on growth, yield and quality of strawberries. Strawberry cultivars ‘Albion’ and ‘San Andreas’ were grown under six different combinations of two temperatures (25 and 30ºC) and three [CO2] (400, 650 and 950 µmol mol-1) in controlled-environmental growth chambers. Plant growth measurements such as plant height, canopy area, number of flowers, and fruit yield were measured during phonological development. Photosynthesis and transpiration, the ratio of intercellular to atmospheric [CO2] (Ci/Ca) were measured to estimate the physiological adjustment to climate stress. The impact of temperature and [CO2] interaction on growth and yield of strawberry was significant (p < 0.05). Across both cultivars, highest fruit yields were observed at 650 µmol mol-1 [CO2], which was particularly clear at 25°C. The fruit yield gradually decreased at 30°C under all the treatment combinations. However, photosynthesis rates were highest at 650 µmol mol-1 [CO2] but no increment was found at 900 µmol mol-1 [CO2]. Interestingly, Ci/Ca ratio increased with increasing atmospheric [CO2] which was predominant at high temperature. Similarly, fruit yield was substantially reduced at high [CO2] under high temperature. Our findings suggest that increased Ci/Ca ratio at high temperature is likely reduces the photosynthesis and thus yield response to elevated [CO2].Keywords: atmospheric CO₂ concentration, fruit yield, strawberry, temperature
Procedia PDF Downloads 24111195 Optical Parametric Oscillators Lidar Sounding of Trace Atmospheric Gases in the 3-4 µm Spectral Range
Authors: Olga V. Kharchenko
Abstract:
Applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3–4 µm is studied in this work. A technique based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS) is developed for lidar sounding of trace atmospheric gases (TAG). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases.Keywords: atmosphere, lidar sounding, DIAL, DOAS, trace gases, nonlinear crystal
Procedia PDF Downloads 40211194 The Energy Consumption by the Sector of Transport and His Impact on the Atmospheric Pollution
Authors: Mme Hamani Née Guessas Ghaniya
Abstract:
The transport is the base of the development of the exchanges and the business, being both a recognized determiner of the economic and social development. The development of the transport is in the center of the big challenges of development of countries, but it is also at the heart of big contradictions, since we integrate the environmental issues which are bound to him, in particular through the questions of energy. Indeed, the energy consumption by the sector of transport is one of bigger concerns, because it is increasing and it has a big impact on our environment. The main consequences are, the atmospheric pollution causing an increase of the greenhouse effect which causes a global warming. These global warming risks to engender a partial cast iron of polar caps so raising the level of seas, flooding the low coastal zones, certain islands and the deltas. Thus, the purpose of this communication is to present the impact of the energy consumption by the sector of transport on the air quality, showing its effect on the health and on the global warming.Keywords: energy consumption, sector of transport, air quality, atmospheric pollution
Procedia PDF Downloads 332