Search results for: Juan Sebastian Huertas Piedrahita
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 403

Search results for: Juan Sebastian Huertas Piedrahita

193 A Comprehensive CFD Model for Sugar-Cane Bagasse Heterogeneous Combustion in a Grate Boiler System

Authors: Daniel José de Oliveira Ferreira, Juan Harold Sosa-Arnao, Bruno Cássio Moreira, Leonardo Paes Rangel, Song Won Park

Abstract:

The comprehensive CFD models have been used to represent and study the heterogeneous combustion of biomass. In the present work, the operation of a global flue gas circuit in the sugar-cane bagasse combustion, from wind boxes below primary air grate supply, passing by bagasse insertion in swirl burners and boiler furnace, to boiler bank outlet is simulated. It uses five different meshes representing each part of this system located in sequence: wind boxes and grate, boiler furnace, swirl burners, super heaters and boiler bank. The model considers turbulence using standard k-ε, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The results showed good agreement with expected behavior found in literature and equipment design. The more detailed results view in separated parts of flue gas system allows to observe some flow behaviors that cannot be represented by usual simplifications like bagasse supply under homogeneous axial and rotational vectors and others that can be represented using new considerations like the representation of 26 thousand grate orifices by 144 rectangular inlets.

Keywords: comprehensive CFD model, sugar-cane bagasse combustion, sugar-cane bagasse grate boiler, axial

Procedia PDF Downloads 434
192 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications

Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez

Abstract:

Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.

Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable

Procedia PDF Downloads 164
191 Procedure for Impact Testing of Fused Recycled Glass

Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi

Abstract:

Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.

Keywords: construction materials, drop weight impact, impact testing, recycled glass

Procedia PDF Downloads 264
190 Management Software for the Elaboration of an Electronic File in the Pharmaceutical Industry Following Mexican Regulations

Authors: M. Peña Aguilar Juan, Ríos Hernández Ezequiel, R. Valencia Luis

Abstract:

For certification, certain goods of public interest, such as medicines and food, it is required the preparation and delivery of a dossier. For its elaboration, legal and administrative knowledge must be taken, as well as organization of the documents of the process, and an order that allows the file verification. Therefore, a virtual platform was developed to support the process of management and elaboration of the dossier, providing accessibility to the information and interfaces that allow the user to know the status of projects. The development of dossier system on the cloud allows the inclusion of the technical requirements for the software management, including the validation and the manufacturing in the field industry. The platform guides and facilitates the dossier elaboration (report, file or history), considering Mexican legislation and regulations, it also has auxiliary tools for its management. This technological alternative provides organization support for documents and accessibility to the information required to specify the successful development of a dossier. The platform divides into the following modules: System control, catalog, dossier and enterprise management. The modules are designed per the structure required in a dossier in those areas. However, the structure allows for flexibility, as its goal is to become a tool that facilitates and does not obstruct processes. The architecture and development of the software allows flexibility for future work expansion to other fields, this would imply feeding the system with new regulations.

Keywords: electronic dossier, cloud management software, pharmaceutical industry, sanitary registration

Procedia PDF Downloads 266
189 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey

Abstract:

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

Keywords: genus Geobacillus, NADPH/NADH-dependent reductase, selenium nanoparticles, biosynthesis

Procedia PDF Downloads 287
188 The Transcriptome of Carnation (Dianthus Caryophyllus) of Elicited Cells with Fusarium Oxysporum f.sp. Dianthi

Authors: Juan Jose Filgueira, Daniela Londono-Serna, Liliana Maria Hoyos

Abstract:

Carnation (Dianthus caryophyllus) is one of the most important products of exportation in the floriculture industry worldwide. Fusariosis is the disease that causes the highest losses on farms, in particular the one produced by Fusarium oxysporum f.sp. dianthi, called vascular wilt. Gene identification and metabolic routes of the genes that participate in the building of the plant response to Fusarium are some of the current targets in the carnation breeding industry. The techniques for the identifying of resistant genes in the plants, is the analysis of the transcriptome obtained during the host-pathogen interaction. In this work, we report the cell transcriptome of different varieties of carnation that present differential response from Fusarium oxysporum f.sp. dianthi attack. The cells of the different hybrids produced in the outbreeding program were cultured in vitro and elicited with the parasite in a dual culture. The isolation and purification of mRNA was achieved by using affinity chromatography Oligo dT columns and the transcriptomes were obtained by using Illumina NGS techniques. A total of 85,669 unigenes were detected in all the transcriptomes analyzed and 31,000 annotations were found in databases, which correspond to 36.2%. The library construction of genic expression techniques used, allowed to recognize the variation in the expression of genes such as Germin-like protein, Glycosyl hydrolase family and Cinnamate 4-hydroxylase. These have been reported in this study for the first time as part of the response mechanism to the presence of Fusarium oxysporum.

Keywords: Carnation, Fusarium, vascular wilt, transcriptome

Procedia PDF Downloads 121
187 Maker-Based Learning in Secondary Mathematics: Investigating Students’ Proportional Reasoning Understanding through Digital Making

Authors: Juan Torralba

Abstract:

Student digital artifacts were investigated, utilizing a qualitative exploratory research design to understand the ways in which students represented their knowledge of seventh-grade proportionality concepts as they participated in maker-based activities that culminated in the creation of digital 3-dimensional models of their dream homes. Representations of the geometric and numeric dimensions of proportionality were analyzed in the written, verbal, and visual data collected from the students. A directed content analysis approach was utilized in the data analysis, as this work aimed to build upon existing research in the field of maker-based STEAM Education. The results from this work show that students can represent their understanding of proportional reasoning through open-ended written responses more accurately than through verbal descriptions or digital artifacts. The geometric and numeric dimensions of proportionality and their respective components of attributes of similarity representation and percents, rates, and ratios representations were the most represented by the students than any other across the data, suggesting a maker-based instructional approach to teaching proportionality in the middle grades may be promising in helping students gain a solid foundation in those components. Recommendations for practice and research are discussed.

Keywords: learning through making, maker-based education, maker education in the middle grades, making in mathematics, the maker movement

Procedia PDF Downloads 46
186 Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing

Authors: Mehdi Behbahani, Sebastian Rible, Charles Moulinec, Yvan Fournier, Mike Nicolai, Paolo Crosetto

Abstract:

Computational Fluid Dynamics blood-flow simulations are increasingly used to develop and validate blood-contacting medical devices. This study shows that numerical simulations can provide additional and accurate estimates of relevant hemodynamic indicators (e.g., recirculation zones or wall shear stresses), which may be difficult and expensive to obtain from in-vivo or in-vitro experiments. The most recent FDA (Food and Drug Administration) benchmark consisted of a simplified centrifugal blood pump model that contains fluid flow features as they are commonly found in these devices with a clear focus on highly turbulent phenomena. The FDA centrifugal blood pump study is composed of six test cases with different volumetric flow rates ranging from 2.5 to 7.0 liters per minute, pump speeds, and Reynolds numbers ranging from 210,000 to 293,000. Within the frame of this study different turbulence models were tested including RANS models, e.g. k-omega, k-epsilon and a Reynolds Stress Model (RSM) and, LES. The partitioners Hilbert, METIS, ParMETIS and SCOTCH were used to create an unstructured mesh of 76 million elements and compared in their efficiency. Computations were performed on the JUQUEEN BG/Q architecture applying the highly parallel flow solver Code SATURNE and typically using 32768 or more processors in parallel. Visualisations were performed by means of PARAVIEW. Different turbulence models including all six flow situations could be successfully analysed and validated against analytical considerations and from comparison to other data-bases. It showed that an RSM represents an appropriate choice with respect to modeling high-Reynolds number flow cases. Especially, the Rij-SSG (Speziale, Sarkar, Gatzki) variant turned out to be a good approach. Visualisation of complex flow features could be obtained and the flow situation inside the pump could be characterized.

Keywords: blood flow, centrifugal blood pump, high performance computing, scalability, turbulence

Procedia PDF Downloads 364
185 Degradation of Amitriptyline Hydrochloride, Methyl Salicylate and 2-Phenoxyethanol in Water Systems by the Combination UV/Cl2

Authors: F. Javier Benitez, Francisco J. Real, Juan Luis Acero, Francisco Casas

Abstract:

Three emerging contaminants (amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol) frequently found in waste-waters were selected to be individually degraded in ultra-pure water by the combined advanced oxidation process constituted by UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: amitriptyline hydrochloride > methyl salicylate > 2-phenoxyethanol. A later kinetic study was carried out and focused on the specific evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. A comparison between the rate constant values among photochemical experiments without and with the presence of Cl2 reveals a clear increase in the oxidation efficiency of the combined process with respect to the photochemical reaction alone. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water (ultrapure water, surface water from a reservoir, and two secondary effluents) was also performed by the same combination UV/Cl2 under more realistic operating conditions. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/S2O82- and UV/H2O2 AOPs. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested.

Keywords: emerging contaminants, UV/chlorine advanced oxidation process, amitriptyline, methyl salicylate, 2-phenoxyethanol, chlorination, photolysis

Procedia PDF Downloads 307
184 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks

Authors: Juan A. Ferriz-Papi, Simon Thomas

Abstract:

The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.

Keywords: aggregates, concrete, concrete block, construction and demolition waste, recycling

Procedia PDF Downloads 272
183 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation

Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras

Abstract:

The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.

Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation

Procedia PDF Downloads 118
182 A System Architecture for Hand Gesture Control of Robotic Technology: A Case Study Using a Myo™ Arm Band, DJI Spark™ Drone, and a Staubli™ Robotic Manipulator

Authors: Sebastian van Delden, Matthew Anuszkiewicz, Jayse White, Scott Stolarski

Abstract:

Industrial robotic manipulators have been commonplace in the manufacturing world since the early 1960s, and unmanned aerial vehicles (drones) have only begun to realize their full potential in the service industry and the military. The omnipresence of these technologies in their respective fields will only become more potent in coming years. While these technologies have greatly evolved over the years, the typical approach to human interaction with these robots has not. In the industrial robotics realm, a manipulator is typically jogged around using a teach pendant and programmed using a networked computer or the teach pendant itself via a proprietary software development platform. Drones are typically controlled using a two-handed controller equipped with throttles, buttons, and sticks, an app that can be downloaded to one’s mobile device, or a combination of both. This application-oriented work offers a novel approach to human interaction with both unmanned aerial vehicles and industrial robotic manipulators via hand gestures and movements. Two systems have been implemented, both of which use a Myo™ armband to control either a drone (DJI Spark™) or a robotic arm (Stäubli™ TX40). The methodologies developed by this work present a mapping of armband gestures (fist, finger spread, swing hand in, swing hand out, swing arm left/up/down/right, etc.) to either drone or robot arm movements. The findings of this study present the efficacy and limitations (precision and ergonomic) of hand gesture control of two distinct types of robotic technology. All source code associated with this project will be open sourced and placed on GitHub. In conclusion, this study offers a framework that maps hand and arm gestures to drone and robot arm control. The system has been implemented using current ubiquitous technologies, and these software artifacts will be open sourced for future researchers or practitioners to use in their work.

Keywords: human robot interaction, drones, gestures, robotics

Procedia PDF Downloads 128
181 Bioinformatic Screening of Metagenomic Fosmid Libraries for Identification of Biosynthetic Pathways Derived from the Colombian Soils

Authors: María Fernanda Quiceno Vallejo, Patricia del Portillo, María Mercedes Zambrano, Jeisson Alejandro Triana, Dayana Calderon, Juan Manuel Anzola

Abstract:

Microorganisms from tropical ecosystems can be novel in terms of adaptations and conservation. Given the macrodiversity of Colombian ecosystems, it is possible that this diversity is also present in Colombian soils. Tropical soil bacteria could offer a potentially novel source of bioactive compounds. In this study we analyzed a metagenomic fosmid library constructed with tropical bacterial DNAs with the aim of understanding its underlying diversity and functional potential. 8640 clones from the fosmid library were sequenced by NANOPORE MiniOn technology, then analyzed with bioinformatic tools such as Prokka, AntiSMASH and Bagel4 in order to identify functional biosynthetic pathways in the sequences. The strains showed ample difference when it comes to biosynthetic pathways. In total we identified 4 pathways related to aryl polyene synthesis, 12 related to terpenes, 22 related to NRPs (Non ribosomal peptides), 11 related PKs (Polyketide synthases) and 7 related to RiPPs (bacteriocins). We designed primers for the metagenomic clones with the most BGCs (sample 6 and sample 2). Results show the biotechnological / pharmacological potential of tropical ecosystems. Overall, this work provides an overview of the genomic and functional potential of Colombian soil and sets the groundwork for additional exploration of tropical metagenomic sequencing.

Keywords: bioactives, biosyntethic pathways, bioinformatic, bacterial gene clusters, secondary metabolites

Procedia PDF Downloads 142
180 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 76
179 A Prospective Study on the Pattern of Antibiotics Use and Prevalence of Multidrug Resistant Escherichia Coli in Poultry Chickens and Its Correlation with Urinary Tract Infection

Authors: Stelvin Sebastian, Andriya Annie Tom, Joyalanna Babu, Merin Joshy

Abstract:

Introduction: The worldwide increase in the use of antibiotics in poultry and livestock industry to treat and prevent bacterial diseases and as growth promoters in feeds has led to the problem of development of antibiotic resistance both in animals and human population. Aim: To study the pattern of antibiotic use and prevalence of multidrug-resistant Escherichia coli in poultry chickens in selected farms in Muvattupuzha and to compare the spread of multidrug-resistant bacteria from poultry environment to UTI patients. Methodology: Two farms from each of 6 localities in Muvattupuzha were selected. A questionnaire on the pattern of antibiotic use and various farming practices were surveyed from farms. From each farm, 60samples of fresh fecal matter, litter from inside, litter from the outside shed, agricultural soil and control soil were collected, and antimicrobial susceptibility testing of E. coli was done. Antibiogram of UTI patients was collected from the secondary care hospital included in the study, and those were compared with resistance patterns of poultry samples. Results: From survey response antibiotics such as ofloxacin, enrofloxacin, levofloxacin, ciprofloxacin, colistin, ceftriaxone, neomycin, cephalexin, and oxytetracycline were used for treatment and prevention of infections in poultry. 31of 48 samples (51.66%) showed E. coli growth. 7 of 15 antibiotics (46.6%) showed resistance. Ampicillin, amoxicillin, meropenem, tetracycline showed 100% resistance to all samples. Statistical analysis confirmed similar resistance pattern in the poultry environment and UTI patients for antibiotics such as ampicillin, amoxicillin, amikacin, and ofloxacin. Conclusion: E. coli were resistant not only to extended-spectrum beta-lactams but also to carbapenems, which may be disseminated to the environment where litter was used as manure. This may due to irrational use of antibiotics in chicken or from their use in poultry feed as growth promoters. The study concludes the presence of multidrug-resistant E.coli in poultry and its spread to environment and humans, which may cause potentially serious implications for human health.

Keywords: multidrug resistance, escherichia coli, urinary tract infection, poultry

Procedia PDF Downloads 124
178 Physicochemical and Sensorial Evaluation of Astringency Reduction in Cashew Apple (Annacardium occidentale L.) Powder Processing in Cookie Elaboration

Authors: Elida Gastelum-Martinez, Neith A. Pacheco-Lopez, Juan L. Morales-Landa

Abstract:

Cashew agroindustry obtained from cashew apple crop (Anacardium occidentale L.) generates large amounts of unused waste in Campeche, Mexico. Despite having a high content of nutritional compounds such as ascorbic acid, carotenoids, fiber, carbohydrates, and minerals, it is not consumed due to its astringent sensation. The aim of this work was to develop a processing method for cashew apple waste in order to obtain a powder with reduced astringency able to be used as an additive in the food industry. The processing method consisted first in reducing astringency by inducing tannins from cashew apple peel to react and form precipitating complexes with a colloid rich in proline and histidine. Then cashew apples were processed to obtain a dry powder. Astringency reduction was determined by total phenolic content and evaluated by sensorial analysis in cashew-apple-powder based cookies. Total phenolic content in processed powders showed up to 72% lower concentration compared to control samples. The sensorial evaluation indicated that cookies baked using cashew apple powder with reduced astringency were 96.8% preferred. Sensorial characteristics like texture, color and taste were also well-accepted attributes. In conclusion, the method applied for astringency reduction is a viable tool to produce cashew apple powder with desirable sensorial properties to be used in the development of food products.

Keywords: astringency reduction, cashew apple waste, food industry, sensorial evaluation

Procedia PDF Downloads 323
177 Replica-Exchange Metadynamics Simulations of G-Quadruplex DNA Structures Under Substitution of K+ by Na+ Ions

Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria

Abstract:

The DNA G-quadruplex is a four-stranded DNA structure conformed by stacked planes of four base paired guanines (G-quartet). The guanine rich DNA sequences are present in many sites of genomic DNA and can potentially lead to the formation of G-quadruplexes, especially at the 3'-terminus of the human telomeric DNA with many TTAGGG repeats. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to regulate oncogene expression making the G-quadruplex an attractive target for anticancer therapy. Clearly, the G-quadruplex structured in the telomeric DNA is of fundamental importance for rational drug design. In this context, we investigate two G-quadruplex structures, the first follows from the sequence TTAGGG(TTAGGG)3TT (HUT1), and the second from AAAGGG(TTAGGG)3AA (HUT2), both in a K+ solution. We determine the free energy surfaces of the HUT1 and HUT2 structures and investigate their conformations using replica-exchange metadynamics simulations. The carbonyl-carbonyl distances belonging to different guanines residues are selected as the main collective variables to determine the free energy surfaces. The surfaces exhibit two main local minima, compatible with experiments on the conformational transformations of HUT1 and HUT2 under substitution of the K+ ions by the Na+ ions. The conformational transitions are not observed in short MD simulations without the use of the metadynamics approach. The results of this work should be of help to understand the formation and stability of human telomeric G-quadruplex in environments including the presence of K+ and Na+ ions.

Keywords: g-quadruplex, metadynamics, molecular dynamics, replica-exchange

Procedia PDF Downloads 318
176 Revisiting the Historical Narratives of the Old Churches in Albay, Bikol Region, Philippines

Authors: Ruby Ann L. Ayo

Abstract:

As cultural heritage reflects the historical origin of a certain group of people, it reveals their customs, traits, beliefs, practices and even values they hold on for years. One of the tangible examples of cultural heritage is the physical structures including the old churches. The study looked-into the existing historical narratives of the century Old Catholic churches in the Province of Albay, Bikol Region, Philippines: NuestraSeñora de Salvacion in Joroan, Tiwi, Albay; the Our Lady of the Gate in Daraga, Albay; the San Juan de Bautista in Tabaco City and the St. John the Baptist in Camalig, Albay. The historical narratives were analysed in terms of validity and reliability of the secondary documents with reference to the elements of history revealing consistency and adequacy of historical facts. The contents were examined using a modified Checklist of Historical Documents. The historical narratives were likewise submitted to the content expert for validation as regards historical authenticity and accuracy. The contents of the narratives were scrutinized according to the following codes: (1.1) the Patron Saints;(1.2) factors that paved to their constructions; (1.3) the people responsible for their constructions; (1.4) the misconceptions about their constructions; and (1.5) their contributions to Bikol heritage. Based on the codes, themes were identified as: (2.1) Marian Devotees and Christ-centered Patron Saints; (2.2) geographical, socio-political and cultural factors; (2.3) church and government officials; (2.4) misconceptions on the dates of constructions and original sites; and (2.5) popular pilgrim sites and well-admired architectural designs.

Keywords: historical narratives, old churches, cultural heritage, historical validity and reliability, elements of history

Procedia PDF Downloads 265
175 The Role of Cognitive Impairment in Asthma Self-Management Behaviors and Outcomes in Older Adults

Authors: Gali Moritz, Jacqueline H. Becker, Jyoti V. Ankam, Kimberly Arcoleo, Matthew Wysocki, Roee Holtzer, Juan Wisnivesky, Paula J. Busse, Alex D. Federman, Sunit P. Jariwala, Jonathan M. Feldman

Abstract:

Objective: Cognitive impairment (CI), whose incidence is greater among ethnic/racial minorities, is a significant barrier to asthma self-management (SM) behaviors and outcomes in older adults. The aim of this study was to examine the relationships between CI, assessed using the Montreal Cognitive Assessment (MoCA), and asthma SM behaviors and outcomes in a sample of predominantly Black and Hispanic participants. Additionally, we evaluated whether using two different MoCA cutoff scores influenced the association between CI and study outcomes. Methods: Baseline cross-sectional data were extracted from a longitudinal study of older adults with asthma (N=165) age≥ 60 years and used for analysis. Cognition was assessed using the MoCA. Asthma control, asthma-related quality of life (QOL), inhaled corticosteroid (ICS) dosing, and ICS adherence were assessed using self-report. The inhaler technique was observed and rated. Results: Using established MoCA cutoff scores of 23 and 26 yielded 45% and 74% CI rates, respectively. CI, defined using the 23 cutoff score, was significantly associated with worse asthma control (p=.04) and worse ICS adherence (p=.01). With a cutoff score of 26, only asthma-related QOL was significantly associated with CI (p=.03). Race/ethnicity and education did not moderate the relationships between CI and asthma SM behaviors and outcomes. Conclusions: CI in older adults with asthma is associated with important clinical outcomes, but this relationship is influenced by the cutoff score used to define CI.

Keywords: cognition, respiratory, elderly, testing, adherence, validity

Procedia PDF Downloads 49
174 5-HT2CR Deficiency Causes Affective Disorders by Impairing E/I Balance through Augmenting Hippocampal nNOS-CAPON Coupling

Authors: Hu-Jiang Shi, Li-Juan Zhu

Abstract:

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in affective behaviors is a topic of debate, and the underlying mechanisms remain largely unclear. Here, we elucidate that the interaction between hippocampal neuronal nitric oxide synthase (nNOS) and carboxy-terminal PDZ ligand of nNOS (CAPON) contributes to the disruption of hippocampal excitation-inhibition (E/I) balance, which is responsible for the anxiety- and depressive-like behaviors caused by chronic stress-related 5-HT2CR signaling deficiency. In detail, activation or inhibition of 5-HT2CR by CP809101 or SB242084 modulates nNOS-CAPON interaction by influencing intracellular Ca²⁺ release. Notably, the dissociation of nNOS-CAPON abolishes SB242084-induced anxiety- and depressive-like behaviors, as well as the reduction in extracellular signal-regulated kinase (ERK)/cAMP-response element binding protein (CREB)/synapsin signaling and SNARE complex assembly. Furthermore, nNOS-CAPON blockers restore the impairments caused by SB242084, including the reduction in SNARE assembly-mediated γ-aminobutyric acid (GABA) vesicle release and a consequent shift of the E/I balance toward excitation in CA3 pyramidal neurons. Conclusively, our findings disclose the regulatory role of 5-HT2CR in anxiety- and depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

Keywords: 5-HT2CR, anxiety, depression, nNOS-CAPON coupling, excitation-inhibition balance, neurotransmitter release

Procedia PDF Downloads 35
173 Wear Resistance and Mechanical Performance of Ultra-High Molecular Weight Polyethylene Influenced by Temperature Change

Authors: Juan Carlos Baena, Zhongxiao Peng

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in industrial and biomedical fields. The slippery nature of UHMWPE makes this material suitable for surface bearing applications, however, the operational conditions limit the lubrication efficiency, inducing boundary and mixed lubrication in the tribological system. The lack of lubrication in a tribological system intensifies friction, contact stress and consequently, operating temperature. With temperature increase, the material’s mechanical properties are affected, and the lifespan of the component is reduced. The understanding of how mechanical properties and wear performance of UHMWPE change when the temperature is increased has not been clearly identified. The understanding of the wear and mechanical performance of UHMWPE at different temperature is important to predict and further improve the lifespan of these components. This study evaluates the effects of temperature variation in a range of 20 °C to 60 °C on the hardness and the wear resistance of UHMWPE. A reduction of the hardness and wear resistance was observed with the increase in temperature. The variation of the wear rate increased 94.8% when the temperature changed from 20 °C to 50 °C. Although hardness is regarded to be an indicator of the material wear resistance, this study found that wear resistance decreased more rapidly than hardness with the temperature increase, evidencing a low material stability of this component in a short temperature interval. The reduction of the hardness was reflected by the plastic deformation and abrasion intensity, resulting in a significant wear rate increase.

Keywords: hardness, surface bearing, tribological system, UHMWPE, wear

Procedia PDF Downloads 239
172 Engineering of E-Learning Content Creation: Case Study for African Countries

Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola

Abstract:

This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.

Keywords: teaching contents engineering, e-learning, blended learning, international cooperation, 3dslicer, open anatomy browser

Procedia PDF Downloads 143
171 Healthcare Social Entrepreneurship: A Positive Theory Applied to the Case of YOU Foundation in Nepal

Authors: Simone Rondelli, Damiano Rondelli, Bishesh Poudyal, Juan Jose Cabrera-Lazarini

Abstract:

One of the main obstacles for Social Entrepreneurship is to find a business model that is financially sustainable. In other words, the captured value generates enough cash flow to ensure business continuity and reinvestment for growth. Providing Health Services in poor countries for the uninsured population affected by a high-cost chronical disease is not the exception for this challenge. As a prime example, cancer has become a high impact on a global disease not only because of the high morbidity but also of the financial impact on both the patient family and health services in underdeveloped countries. Therefore, it is relevant to find a Social Entrepreneurship Model that provides affordable treatment for this disease while maintaining healthy finances not only for the patient but also for the organization providing the treatment. Using the methodology of Constructive Research, this paper applied a Positive Theory and four business models of Social Entrepreneurship to a case of a Private Foundation model whose mission is to address the challenge previously described. It was found that the Foundation analyzed, in this case, is organized as an Embedded Business Model and complies with the four propositions of the Positive Theory considered. It is recommended for this Private Foundation to explore implementing the Integrated Business Model to ensure more robust sustainability in the long term. It evolves as a scalable model that can attract investors interested in contributing to expanding this initiative globally.

Keywords: affordable treatment, global healthcare, social entrepreneurship theory, sustainable business model

Procedia PDF Downloads 113
170 The ReliVR Project: Feasibility of a Virtual Reality Intervention in the Psychotherapy of Depression

Authors: Kyra Kannen, Sonja D. Roelen, Sebastian Schnieder, Jarek Krajewski, Steffen Holsteg, André Karger, Johanna Askeridis, Celina Slawik, Philip Mildner, Jens Piesk, Ruslan David, Holger Kürten, Benjamin Oster, Robert Malzan, Mike Ludemann

Abstract:

Virtual Reality (VR) is increasingly recognized for its potential in transforming mental disorder treatment, offering advantages such as cost-effectiveness, time efficiency, accessibility, reduced stigma, and scalability. While the application of VR in the context of anxiety disorders has been extensively evaluated and demonstrated to be effective, the utilization of VR as a therapeutic treatment for depression remains under-investigated. Our goal is to pioneer immersive VR therapy modules for treating major depression, alongside a web-based system for home use. We develop a modular digital therapy platform grounded in psychodynamic therapy interventions which addresses stress reduction, exploration of social situations and relationship support, social skill training, avoidance behavior analysis, and psychoeducation. In addition, an automated depression monitoring system, based on acoustic voice analysis, is implemented in the form of a speech-based diary to track the affective state of the user and depression severity. The use of immersive VR facilitates patient immersion into complex and realistic interpersonal interactions with high emotional engagement, which may contribute to positive treatment acceptance and satisfaction. In a proof-of-concept study, 45 depressed patients were assigned to VR or web-platform modules, evaluating user experience, usability and additional metrics including depression severity, mindfulness, interpersonal problems, and treatment satisfaction. The findings provide valuable insights into the effectiveness and user-friendliness of VR and web modules for depression therapy and contribute to the refinement of more tailored digital interventions to improve mental health.

Keywords: virtual reality therapy, digital health, depression, psychotherapy

Procedia PDF Downloads 27
169 Carbon Aerogel Spheres from Resorcinol/Phenol and Formaldehyde for CO₂ Adsorption

Authors: Jessica Carolina Hernandez Galeano, Juan Carlos Moreno Pirajan, Liliana Giraldo

Abstract:

Carbon gels are materials whose structure and porous texture can be designed and controlled on a nanoscale. Among their characteristics it is found their low density, large surface area and high degree of porosity. These materials are produced by a sol-gel polymerization of organic monomers using basic or acid catalysts, followed by drying and controlled carbonization. In this work, the synthesis and characterization of carbon aerogels from resorcinol, phenol and formaldehyde in ethanol is described. The aim of this study is obtaining different carbonaceous materials in the form of spheres using the Stöber method to perform a further evaluation of CO₂ adsorption of each material. In general, the synthesis consisted of a sol-gel polymerization process that generates a cluster (cross-linked organic monomers) from the precursors in the presence of NH₃ as a catalyst. This cluster was subjected to specific conditions of gelling and curing (30°C for 24 hours and 100°C for 24 hours, respectively) and CO₂ supercritical drying. Finally, the dry material was subjected to a process of carbonization or pyrolysis, in N₂ atmosphere at 350°C (1° C / min) for 2 h and 600°C (1°C / min) for 4 hours, to obtain porous solids that retain the structure initially desired. For this work, both the concentrations of the precursors and the proportion of ammonia in the medium where modify to describe the effect of the use of phenol and the amount of catalyst in the resulting material. Carbon aerogels were characterized by Scanning Electron Microscope (SEM), N₂ isotherms, infrared spectroscopy (IR) and X-ray Powder Diffraction (XRD) showing the obtention of carbon spheres in the nanometric scale with BET areas around 500 m2g-1.

Keywords: carbon aerogels, carbon spheres, CO₂ adsorption, Stöber method

Procedia PDF Downloads 109
168 Achieving Quality of Life and Sustainability in Mexican Cities, the Case of the Housing Complex “Villa del Campo”, Tijuana, Mexico

Authors: María de los Ángeles Zárate López, Juan Antonio Pitones Rubio

Abstract:

Quality of life and sustainability in cities are among the most important challenges faced by designers, city planners and urban managers. The Mexican city of Tijuana has a particular dynamic in its demographics which has been accelerated by its border city condition, putting to the test the ability from authorities to provide the population with the necessary services to aspire for a deserving quality of life. In the recent story of Tijuana, we found that the housing policy and the solutions presented by private housing developers have not met the best living conditions for end users by far, thereby adding issues to current social problems which impact the whole metropolitan area, including damage to the natural environment. Therefore this research presents the case study about the situation of a suburban housing development near Tijuana named “Villa del Campo” and exposes the problems of this specific project (originally labelled as a “sustainable” proposal) demonstrating that, once built, the place does not reflect the quality of life that it promised as a project. Currently, this housing development has a number of problematic issues such as the faulty operating conditions of public utilities and serious cases of crime inside the neighborhood. There is no intention to only expose the negative side of this case study, but to explore some alternatives which could help solving the most serious problems at the place, considering possible architectural and landscape interventions within the housing complex to help achieve the optimal conditions of livability and sustainability required by their inhabitants.

Keywords: suburban, housing, quality of life, sustainability, Tijuana, demographics

Procedia PDF Downloads 360
167 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 84
166 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract

Authors: Kenia Martínez, Geniel Talavera, Juan Alonso

Abstract:

Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.

Keywords: antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content

Procedia PDF Downloads 231
165 Contextual Enablers and Behaviour Outputs for Action of Knowledge Workers

Authors: Juan-Gabriel Cegarra-Navarro, Alexeis Garcia-Perez, Denise Bedford

Abstract:

This paper provides guidelines for what constitutes a knowledge worker. Many graduates from non-managerial domains adopt, at some point in their professional careers, management roles at different levels, ranging from team leaders through to executive leadership. This is particularly relevant for professionals from an engineering background. Moving from a technical to an executive-level requires an understanding of those behaviour management techniques that can motivate and support individuals and their performance. Further, the transition to management also demands a shift of contextual enablers from tangible to intangible resources, which allows individuals to create new capacities, competencies, and capabilities. In this dynamic process, the knowledge worker becomes that key individual who can help members of the management board to transform information into relevant knowledge. However, despite its relevance in shaping the future of the organization in its transition to the knowledge economy, the role of a knowledge worker has not yet been studied to an appropriate level in the current literature. In this study, the authors review both the contextual enablers and behaviour outputs related to the role of the knowledge worker and relate these to their ability to deal with everyday management issues such as knowledge heterogeneity, varying motivations, information overload, or outdated information. This study highlights that the aggregate of capacities, competences and capabilities (CCCs) can be defined as knowledge structures, the study proposes several contextual enablers and behaviour outputs that knowledge workers can use to work cooperatively, acquire, distribute and knowledge. Therefore, this study contributes to a better comprehension of how CCCs can be managed at different levels through their contextual enablers and behaviour outputs.

Keywords: knowledge workers, capabilities, capacities, competences, knowledge structures

Procedia PDF Downloads 126
164 Flexible Integration of Airbag Weakening Lines in Interior Components: Airbag Weakening with Jenoptik Laser Technology

Authors: Markus Remm, Sebastian Dienert

Abstract:

Vehicle interiors are not only changing in terms of design and functionality but also due to new driving situations in which, for example, autonomous operating modes are possible. Flexible seating positions are changing the requirements for passive safety system behavior and location in the interior of a vehicle. With fully autonomous driving, the driver can, for example, leave the position behind the steering wheel and take a seated position facing backward. Since autonomous and non-autonomous vehicles will share the same road network for the foreseeable future, accidents cannot be avoided, which makes the use of passive safety systems indispensable. With JENOPTIK-VOTAN® A technology, the trend towards flexible predetermined airbag weakening lines is enabled. With the help of laser beams, the predetermined weakening lines are introduced from the backside of the components so that they are absolutely invisible. This machining process is sensor-controlled and guarantees that a small residual wall thickness remains for the best quality and reliability for airbag weakening lines. Due to the wide processing range of the laser, the processing of almost all materials is possible. A CO₂ laser is used for many plastics, natural fiber materials, foams, foils and material composites. A femtosecond laser is used for natural materials and textiles that are very heat-sensitive. This laser type has extremely short laser pulses with very high energy densities. Supported by a high-precision and fast movement of the laser beam by a laser scanner system, the so-called cold ablation is enabled to predetermine weakening lines layer by layer until the desired residual wall thickness remains. In that way, for example, genuine leather can be processed in a material-friendly and process-reliable manner without design implications to the components A-Side. Passive safety in the vehicle is increased through the interaction of modern airbag technology and high-precision laser airbag weakening. The JENOPTIK-VOTAN® A product family has been representing this for more than 25 years and is pointing the way to the future with new and innovative technologies.

Keywords: design freedom, interior material processing, laser technology, passive safety

Procedia PDF Downloads 79