Search results for: HL-60 cell lines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4424

Search results for: HL-60 cell lines

4094 Anti-Cancerous Activity of Sargassum siliquastrum in Cervical Cancer: Choreographing the Fly's Danse Macabre

Authors: Sana Abbasa, Shahzad Bhattiab, Nadir Khan

Abstract:

Sargassum siliquastrum is brown seaweed with traditional claims for some medicinal properties. This research was done to investigate the methanol extract of S. siliquastrum for antiproliferative activity against human cervical cancer cell line, HeLa and its mode of cell death. From methylene blue assay, S. siliquastrum exhibited antiproliferative activity on HeLa cells with IC50 of 3.87 µg/ml without affecting non-malignant cells. Phase contrast microscopy indicated the confluency reduction in HeLa cells and changes on the cell shape. Nuclear staining with Hoechst 33258 displayed the formation of apoptotic bodies and fragmented nuclei. S. siliquastrum also induced early apoptosis event in HeLa cells as confirmed by FITC-Annexin V/propidium iodide staining by flow cytometry analysis. Cell cycle analysis indicated growth arrest of HeLa cells at G1/S phase. Protein study by flow cytometry indicated the increment of p53, slight increase of Bax and unchanged level of Bcl-2. In conclusion, S. siliquastrum demonstrated an antiproliferative activity in HeLa cell by inducing G1/S cell cycle arrest via p53-mediated pathway.

Keywords: sargassum siliquastrum, cervical cancer, P53, antiproleferation

Procedia PDF Downloads 592
4093 Microwave-Assisted Synthesis of a Class of Pyridine and Purine Thioglycoside Analogs

Authors: Mamdouh Abu-Zaied, K. Mohamed, Galal A. Nawwar

Abstract:

Microwave-assisted synthesis of a new class of pyridine or purine thioglycoside analogs from readily available starting materials has been described. The key step of this protocol is the formation of sodium pyridine 4-thiolate 4 and pyrazolo[1,5-a]pyrimidine-7-thiolate 5 derivatives via condensation of 1 with cyanoacetanilide derivative 2 or 5-aminopyrazole derivative 3 respectively under microwave irradiation, followed by coupling with halo sugars to give the corresponding pyridine and purine thioglycoside analogs. The obtained compounds were evaluated in vitro against lung (A549), colon (HCT116), liver (HEPG2), and MCF-7(breast) cancer cell lines. Some of them recorded promising activities.

Keywords: antitumor, cyclic sugars, pyrazoles, pyridines, pyrimidines, purines, thioglycosides

Procedia PDF Downloads 219
4092 The Effect of Tool Type on Surface Morphology of FSJ Joint

Authors: Yongfang Deng, Dunwen Zuo

Abstract:

An attempt is made here to join 2024 aluminum alloy plate by friction stir joining (FSJ) using different types of tools. Joint surface morphology was observed, and both arc line spacing and flash were measured. Study is carried out on the effect of pin, shoulder and eccentricity of the tool on the surface topography of the joint and the formation of the joint surface topography is analyzed. It is found that, eccentric squeezing action of the tool is the mainly motive power to form arc lines contour and flash structure. Little flash appears in the advancing side but with severe deformation, while the flash in the retreating side is heavy but with soft deformation. The pin of tool has a deep impact on the flash on the advancing side of the joints. Shoulder can widen the arc lines, refine arcs structure, reduce flash in the retreat side, but will increase the flash in the advancing side. Increasing the amount of eccentricity, it has litter effect on the arc line spacing but will destroy the arc lines morphology in the joint surface and promote the formation of filamentous flash structure in the joint.

Keywords: FSJ, surface morphology, tool, joint

Procedia PDF Downloads 329
4091 In vitro and vivo Studies for Assessing the Anti-Proliferative, Anti-Migration and Apoptotic Activity of A. squamosa L. Leaves Extract

Authors: Rawan Al-Nemari, Abdulrahman Al-Senaidy, Abdelhabib Semlali

Abstract:

Background and objectives: The most common cause of death in women worldwide is breast cancer. Regarding all chemotherapy disadvantages and side effects, it’s becoming necessary to identify natural products that target cancer cells with lesser harmful side effects on non-targeted cells and biological environment. Different parts of A. squamosa L., commonly known as custard apple, show varied therapeutic effects. The objective of this study is to investigate in vitro and in vivo, the anti-cancer activity of A. squamosa leaves extract. Methods: The physiological responses using MTT, nucleus staining, and LDH assays were used to evaluate cell survival and proliferation in both ER+ and ER- cells when they were exposed to extract. Monolayer wound repair assay was used to investigate the effect of extracts on cell migration. Apoptotic gene’s expression was investigated by real-time polymerase chain reaction. To study the effect of the extract on the size of tumor, breast cancer induced rats were used. Results: A. squamosa leaves extract showed high anti-proliferative and cytotoxicity effects against different breast cancer cell lines with high concentration, 100 ug/ml. The extracts have reduced the cells wound closure. Polymerase chain reaction revealed downregulation of Bcl-2 and upregulation of Bax. In breast cancer model animal developed in our laboratory, after 4 weeks treatment, treated groups have shown smaller tumor size in comparison with control group (n=4). Conclusion: These results suggest that A. squamosa leaves extract has anti-cancer activity against breast cancer in both in vitro and in vivo, and it may be developed as a potential novel agent to treat breast cancer.

Keywords: apoptosis, breast cancer, migration, proliferation

Procedia PDF Downloads 120
4090 Arterial Line Use for Acute Type 2 Respiratory Failure

Authors: C. Scurr, J. Jeans, S. Srivastava

Abstract:

Introduction: Acute type two respiratory failure (T2RF) has become a common presentation over the last two decades primarily due to an increase in the prevalence of chronic lung disease. Acute exacerbations can be managed either medically or in combination with non-invasive ventilation (NIV) which should be monitored with regular arterial blood gas samples (ABG). Arterial lines allow more frequent arterial blood sampling with less patient discomfort. We present the experience from a teaching hospital emergency department (ED) and level 2 medical high-dependency unit (HDU) that together form the pathway for management of acute type 2 respiratory failure. Methods: Patients acutely presenting to Charing Cross Hospital, London, with T2RF requiring non-invasive ventilation (NIV) over 14 months (2011 to 2012) were identified from clinical coding. Retrospective data collection included: demographics, co-morbidities, blood gas numbers and timing, if arterial lines were used and who performed this. Analysis was undertaken using Microsoft Excel. Results: Coding identified 107 possible patients. 69 notes were available, of which 41 required NIV for type 2 respiratory failure. 53.6% of patients had an arterial line inserted. Patients with arterial lines had 22.4 ABG in total on average compared to 8.2 for those without. These patients had a similar average time to normalizing pH of (23.7 with arterial line vs 25.6 hours without), and no statistically significant difference in mortality. Arterial lines were inserted by Foundation year doctors, Core trainees, Medical registrars as well as the ICU registrar. 63% of these were performed by the medical registrar rather than ICU, ED or a junior doctor. This is reflected in that the average time until an arterial line was inserted was 462 minutes. The average number of ABGs taken before an arterial line was 2 with a range of 0 – 6. The average number of gases taken if no arterial line was ever used was 7.79 (range of 2-34) – on average 4 times as many arterial punctures for each patient. Discussion: Arterial line use was associated with more frequent arterial blood sampling during each inpatient admission. Additionally, patients with an arterial line have less individual arterial punctures in total and this is likely more comfortable for the patient. Arterial lines are normally sited by medical registrars, however this is normally after some delay. ED clinicians could improve patient comfort and monitoring thus allowing faster titration of NIV if arteral lines were regularly inserted in the ED. We recommend that ED doctors insert arterial lines when indicated in order improve the patient experience and facilitate medical management.

Keywords: non invasive ventilation, arterial blood gas, acute type, arterial line

Procedia PDF Downloads 400
4089 Experimental Investigation of the Effect of Temperature on A PEM Fuel Cell Performance

Authors: Remzi Şahin, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated. The efficiency of energy conversion in PEM fuel cells is dependent on the catalytic activities of the catalysts used in the cathode and anode of membrane electrode assemblies. Membrane is considered the heart of PEM fuel cells without which they cannot produce electricity. PEM fuel cell performance increased with coating carbon nanotube (CNT). CNT show a unique combination of stiffness, strength, and tenacity compared to other fiber materials which usually lack one or more of these properties. Two different experiments were performed and the membrane performance has been determined by repeating the two experiments that were done before coating. The purposes of these experiments are the observation of power change due to a temperature change in the same voltage value.

Keywords: carbon nanotube (CNT), proton exchange membrane (PEM), fuel cell, spin method

Procedia PDF Downloads 353
4088 Physical Fitness in Omani Children with Sickle Cell Disease and Sickle Cell Trait

Authors: Mahfoodha Al-Kitani, Dylan Thompson, Keith Stokes

Abstract:

Sickle cell disease (SCD) and sickle cell trait (SCT) are the most common hematological diseases in Oman according to the national survey of genetic blood disorders. The aim of this study was to determine markers of physical fitness and anthropometrics indices in children with sickle cell disease and children with sickle cell trait and compare them with normal healthy children of the same age. One hundred and twenty male children participated in the present study divided to three groups: 40 with sickle disease (SCD; age, 13.3(.80), height, 131.9(3.5), mass, 29.2(3.1)); 40 with sickle cell trait (SCT; age, 12.2(.80), height, 141.0(9.9), mass, 38.0(4.4)); and 40 controls with normal hemoglobin (Con; age, 12.8(.80), height, 139.4(8.7), mass, 37.2(4.3)). All children completed a 5-min running exercise test on a treadmill at speed corresponding to 5 km/hr. Heart rate and was recorded during exercise and during 10-min of recovery. Blood lactate was measured before and 5 min after the completion of exercise. Children with SCD exhibited a higher mean value (P < 0.05) for percent body fat and fat mass than the normal healthy subjects and SCT subjects. Resting values of hemoglobin were similar in SCT (11.04(.78)) and control (10.8(94)) groups, and lower in SCD (8.89(.54); P < 0.05). There was a strong correlation between peak heart rate and resting hemoglobin levels for the three groups (r= -.472. n= 120, p < .0005).The SCD group (175.2(10.3)) exhibited higher mean heart rate during exercise than those observed in the SCT (143.7(9.5)) and normal control children (144.5(22.4); P < 0.05). Additionally, SCD children showed higher serum lactate values before and after treadmill exercise compared to the other groups (P < 0.05). Children with sickle cell trait demonstrate similar physical fitness level and similar exercise responses to treadmill stress test to normal children. In contrast, SCD children have lower body mass, higher fat mass and lower physical fitness than children with SCT and healthy controls.

Keywords: sickle cell disease, sickle cell trait, children, exercise

Procedia PDF Downloads 403
4087 Characterization of Retinal Pigmented Cell Epithelium Cell Sheet Cultivated on Synthetic Scaffold

Authors: Tan Yong Sheng Edgar, Yeong Wai Yee

Abstract:

Age-related macular degeneration (AMD) is one of the leading cause of blindness. It can cause severe visual loss due to damaged retinal pigment epithelium (RPE). RPE is an important component of the retinal tissue. It functions as a transducing boundary for visual perception making it an essential factor for sight. The RPE also functions as a metabolically complex and functional cell layer that is responsible for the local homeostasis and maintenance of the extra photoreceptor environment. Thus one of the suggested method of treating such diseases would be regenerating these RPE cells. As such, we intend to grow these cells using a synthetic scaffold to provide a stable environment that reduces the batch effects found in natural scaffolds. Stiffness of the scaffold will also be investigated to determine the optimal Young’s modulus for cultivating these cells. The cells will be generated into a monolayer cell sheet and their functions such as formation of tight junctions and gene expression patterns will be assessed to evaluate the cell sheet quality compared to a native RPE tissue.

Keywords: RPE, scaffold, characterization, biomaterials, colloids and nanomedicine

Procedia PDF Downloads 400
4086 Hydrogel Hybridizing Temperature-Cured Dissolvable Gelatin Microspheres as Non-Anchorage Dependent Cell Carriers for Tissue Engineering Applications

Authors: Dong-An Wang

Abstract:

All kinds of microspheres have been extensively employed as carriers for drug, gene and therapeutic cell delivery. Most therapeutic cell delivery microspheres rely on a two-step methodology: fabrication of microspheres and subsequent seeding of cells onto them. In this study, we have developed a novel one-step cell encapsulation technique using a convenient and instant water-in-oil single emulsion approach to form cell-encapsulated gelatin microspheres. This technology is adopted for hyaline cartilage tissue engineering, in which autologous chondrocytes are used as therapeutic cells. Cell viability was maintained throughout and after the microsphere formation (75-100 µm diameters) process that avoids involvement of any covalent bonding reactions or exposure to any further chemicals. Further encapsulation of cell-laden microspheres in alginate gels were performed under 4°C via a prompt process. Upon the formation of alginate constructs, they were immediately relocated into CO2 incubator where the temperature was maintained at 37°C; under this temperature, the cell-laden gelatin microspheres dissolved within hours to yield similarly sized cavities and the chondrocytes were therefore suspended within the cavities inside the alginate gel bulk. Hence, the gelatin cell-laden microspheres served two roles: as cell delivery vehicles which can be removable through temperature curing, and as porogens within an alginate hydrogel construct to provide living space for cell growth and tissue development as well as better permeability for mutual diffusions. These cell-laden microspheres, namely “temperature-cured dissolvable gelatin microsphere based cell carriers” (tDGMCs), were further encapsulated in a chondrocyte-laden alginate scaffold system and analyzed by WST-1, gene expression analyses, biochemical assays, histology and immunochemistry stains. The positive results consistently demonstrated the promise of tDGMC technology in delivering these non-anchorage dependent cells (chondrocytes). It can be further conveniently translated into delivery of other non-anchorage dependent cell species, including stem cells, progenitors or iPS cells, for regeneration of tissues in internal organs, such as engineered hepatogenesis or pancreatic regeneration.

Keywords: biomaterials, tissue engineering, microsphere, hydrogel, porogen, anchorage dependence

Procedia PDF Downloads 365
4085 Oncogenic Role of MicroRNA-346 in Human Non-Small Cell Lung Cancer by Regulation of XPC/ERK/Snail/E-Cadherin Pathway

Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li

Abstract:

Determinants of growth and metastasis in cancer remain of great interest to define. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. Here, we report the definition of miR-346 as an oncogenic microRNA that facilitates non-small cell lung cancer (NSCLC) cell growth and metastasis. XPC, an important DNA damage recognition factor in nucleotide excision repair was defined as a target for down-regulation by miR-346, functioning through direct interaction with the 3'-UTR of XPC mRNA. Blocking miR-346 by an antagomiR was sufficient to inhibit NSCLC cell growth and metastasis, an effect that could be phenol-copied by RNAi-mediated silencing of XPC. In vivo studies established that miR-346 overexpression was sufficient to promote tumor growth by A549 cells in xenografts mice, relative to control cells. Overall, our results defined miR-346 as an oncogenic miRNA in NSCLC, the levels of which contributed to tumor growth and invasive aggressiveness.

Keywords: microRNA-346, miR-346, XPC, non-small cell lung cancer, oncogenesis

Procedia PDF Downloads 282
4084 Design of Broadband Power Divider for 3G and 4G Applications

Authors: A. M. El-Akhdar, A. M. El-Tager, H. M. El-Hennawy

Abstract:

This paper presents a broadband power divider with equal power division ratio. Two sections of transmission line transformers based on coupled microstrip lines are applied to obtain broadband performance. In addition, design methodology is proposed for the novel structure. A prototype is designed, simulated to operate in the band from 2.1 to 3.8 GHz to fulfill the requirements of 3G and 4G applications. The proposed structure features reduced size and less resistors than other conventional techniques. Simulation verifies the proposed idea and design methodology.

Keywords: power dividers, coupled lines, microstrip, 4G applications

Procedia PDF Downloads 447
4083 On the Path of the Ottoman Modernization Period Mesire: As a Women Place in 19th Century

Authors: Merve Kurt

Abstract:

How women should behave in public spaces and how they should be dressed was a loaded issues in the Ottoman Empire. They pointed to what kind of state the Ottoman State was. One of such public space was Mesires, promenades. Women's visibility and invisibility, their morals were reflected and linked to the society as a whole. How the public space and private space is defined, what were the lines that separates them, how much blurred these lines were discussed in this paper. Moreover, all these points were strengthened by the primary sources from archives dating to the end of the 19th century.

Keywords: Mesire, Ottoman Empire, Ottoman women, public spaces

Procedia PDF Downloads 199
4082 Comparison of Filamentous Fungus (Monascus purpureus)Growth in Submerged and Solid State Culture

Authors: Shafieeh Mansoori, Fatemeh Yazdian, Ashrafsadat Hatamian, Majid Azizi

Abstract:

Monascus purpureus, which has a special metabolite with many therapeutic and medicinal properties including antioxidant, antibiotic, anti-hypercholesterolemia, and immunosuppressive properties, is a traditional Chinese fermentation fungus and is used as a natural dietary supplement. Production of desired metabolites actually determined by optimized growth which is supported by some factors such as substrates and Monascus strains type, moisture content of the fermentation mixture, aeration, and control of contamination issues. In this experiment, M. purpureus PTCC5305 was cultured in both the liquid and solid culture medium. The former medium contain YMP (yeast extract, maltose and peptone), PGC (peptone, glucose complex), and GYP (glucose, yeast extract and peptone) medium. After 8 days, the best medium for the cell production was PGC agar medium on solid culture with 0.28 g dry weight of cell mass whereas the best liquid culture was GYP medium with 3.5 g/l dry weight of cell mass. The lowest cell production was on YMP agar with 0.1 g dry weight of cell mass and then YMP medium with 2.5 g/l dry cell weight.

Keywords: Monascus purpureus, solid state fermentation, submerged culture, Chinese fermentation fungus

Procedia PDF Downloads 384
4081 Cell-Based and Exosome Treatments for Hair Restoration

Authors: Armin Khaghani Boroujeni, Leila Dehghani, Parham Talebi Boroujeni, Sahar Rostamian, Ali Asilian

Abstract:

Background: Hair loss is a common complaint observed in both genders. Androgenetic alopecia is known pattern for hair loss. To assess new regenerative strategies (PRP, A-SC-BT, conditioned media, exosome-based treatments) compared to conventional therapies for hair loss or hair regeneration, an updated review was undertaken. To address this issue, we carried out this systematic review to comprehensively evaluate the efficacy of cell-based therapies on hair loss. Methods: The available online databases, including ISI Web of Science, Scopus, and PubMed, were searched systematically up to February 2022. The quality assessment of included studies was done using the Cochrane Collaboration's tool. Results: As a result, a total of 90 studies involving 2345 participants were included in the present study. The enrolled studies were conducted between 2010 and 2022. The subjects’ mean age ranged from 19 to 55.11 years old. Approaches using platelet rich plasma (PRP) provide a beneficial impact on hair regrowth. However, other cell-based therapies, including stem cell transplant, stem cell-derived conditioned medium, and stem cell-derived exosomes, revealed conflicting evidence. Conclusion: However, cell-based therapies for hair loss are still in their infancy, and more robust clinical studies are needed to better evaluate their mechanisms of action, efficacy, safety, benefits, and limitations. In this review, we provide the resources to the latest clinical studies and a more detailed description of the latest clinical studies concerning cell-based therapies in hair loss.

Keywords: cell-based therapy, exosome, hair restoration, systematic review

Procedia PDF Downloads 52
4080 Artificial Cells Capable of Communication by Using Polymer Hydrogel

Authors: Qi Liu, Jiqin Yao, Xiaohu Zhou, Bo Zheng

Abstract:

The first artificial cell was produced by Thomas Chang in the 1950s when he was trying to make a mimic of red blood cells. Since then, many different types of artificial cells have been constructed from one of the two approaches: a so-called bottom-up approach, which aims to create a cell from scratch, and a top-down approach, in which genes are sequentially knocked out from organisms until only the minimal genome required for sustaining life remains. In this project, bottom-up approach was used to build a new cell-free expression system which mimics artificial cell that capable of protein expression and communicate with each other. The artificial cells constructed from the bottom-up approach are usually lipid vesicles, polymersomes, hydrogels or aqueous droplets containing the nucleic acids and transcription-translation machinery. However, lipid vesicles based artificial cells capable of communication present several issues in the cell communication research: (1) The lipid vesicles normally lose the important functions such as protein expression within a few hours. (2) The lipid membrane allows the permeation of only small molecules and limits the types of molecules that can be sensed and released to the surrounding environment for chemical communication; (3) The lipid vesicles are prone to rupture due to the imbalance of the osmotic pressure. To address these issues, the hydrogel-based artificial cells were constructed in this work. To construct the artificial cell, polyacrylamide hydrogel was functionalized with Acrylate PEG Succinimidyl Carboxymethyl Ester (ACLT-PEG2000-SCM) moiety on the polymer backbone. The proteinaceous factors can then be immobilized on the polymer backbone by the reaction between primary amines of proteins and N-hydroxysuccinimide esters (NHS esters) of ACLT-PEG2000-SCM, the plasmid template and ribosome were encapsulated inside the hydrogel particles. Because the artificial cell could continuously express protein with the supply of nutrients and energy, the artificial cell-artificial cell communication and artificial cell-natural cell communication could be achieved by combining the artificial cell vector with designed plasmids. The plasmids were designed referring to the quorum sensing (QS) system of bacteria, which largely relied on cognate acyl-homoserine lactone (AHL) / transcription pairs. In one communication pair, “sender” is the artificial cell or natural cell that can produce AHL signal molecule by synthesizing the corresponding signal synthase that catalyzed the conversion of S-adenosyl-L-methionine (SAM) into AHL, while the “receiver” is the artificial cell or natural cell that can sense the quorum sensing signaling molecule form “sender” and in turn express the gene of interest. In the experiment, GFP was first immobilized inside the hydrogel particle to prove that the functionalized hydrogel particles could be used for protein binding. After that, the successful communication between artificial cell-artificial cell and artificial cell-natural cell was demonstrated, the successful signal between artificial cell-artificial cell or artificial cell-natural cell could be observed by recording the fluorescence signal increase. The hydrogel-based artificial cell designed in this work can help to study the complex communication system in bacteria, it can also be further developed for therapeutic applications.

Keywords: artificial cell, cell-free system, gene circuit, synthetic biology

Procedia PDF Downloads 124
4079 Preparation of Natural Polymeric Scaffold with Desired Pore Morphology for Stem Cell Differentiation

Authors: Mojdeh Mohseni

Abstract:

In the context of tissue engineering, the effect of microtopography as afforded by scaffold morphology is an important design parameter. Since the morphology of pores can effect on cell behavior, in this study, porous Chitosan (CHIT) - Gelatin (GEL)- Alginate (ALG) scaffolds with microtubule orientation structure were manufactured by unidirectional freeze-drying method and the effect of pore morphology on differentiation of Mesenchymal Stem Cells (MSCs) was investigated. This study showed that, the provided scaffold with natural polymer had good properties for cell behavior and the pores with highest orientation rate have produced appropriate substrate for the differentiation of stem cells.

Keywords: Chitosan, gelatin, Alginate, pore morphology, stem cell differentiation

Procedia PDF Downloads 436
4078 Breast Cancer Cellular Immunotherapies

Authors: Zahra Shokrolahi, Mohammad Reza Atashzar

Abstract:

The goals of treating patients with breast cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. The term of cellular immunotherapy refers to the administration of living cells to a patient; this type of immunotherapy can be active, such as a dendritic cell (DC) vaccine, in that the cells can stimulate an anti-tumour response in the patient, or the therapy can be passive, whereby the cells have intrinsic anti-tumour activity; this is known as adoptive cell transfer (ACT) and includes the use of autologous or allogeneic lymphocytes that may, or may not, be modified. The most important breast cancer cellular immunotherapies involving the use of T cells and natural killer (NK) cells in adoptive cell transfer, as well as dendritic cells vaccines. T cell-based therapies including tumour-infiltrating lymphocytes (TILs), engineered TCR-T cells, chimeric antigen receptor (CAR T cell), Gamma-delta (γδ) T cells, natural killer T (NKT) cells. NK cell-based therapies including lymphokine-activated killers (LAK), cytokine-induced killer (CIK) cells, CAR-NK cells. Adoptive cell therapy has some advantages and disadvantages some. TILs cell strictly directed against tumor-specific antigens but are inactive against tumor changes due to immunoediting. CIK cell have MHC-independent cytotoxic effect and also need concurrent high dose IL-2 administration. CAR T cell are MHC-independent; overcome tumor MHC molecule downregulation; potent in recognizing any cell surface antigen (protein, carbohydrate or glycolipid); applicable to a broad range of patients and T cell populations; production of large numbers of tumor-specific cells in a moderately short period of time. Meanwhile CAR T cells capable of targeting only cell surface antigens; lethal toxicity due to cytokine storm reported. Here we present the most popular cancer cellular immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials .To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.

Keywords: breast cancer , cell therapy , CAR T cell , CIK cells

Procedia PDF Downloads 101
4077 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 412
4076 Inhibition of Variant Surface Glycoproteins Translation to Define the Essential Features of the Variant Surface Glycoprotein in Trypanosoma brucei

Authors: Isobel Hambleton, Mark Carrington

Abstract:

Trypanosoma brucei, the causal agent of a range of diseases in humans and livestock, evades the mammalian immune system through a population survival strategy based on the expression of a series of antigenically distinct variant surface glycoproteins (VSGs). RNAi mediated knockdown of the active VSG gene triggers a precytokinesis cell cycle arrest. To determine whether this phenotype is the result of reduced VSG transcript or depleted VSG protein, we used morpholino antisense oligonucleotides to block translation of VSG mRNA. The same precytokinesis cell cycle arrest was observed, suggesting that VSG protein abundance is monitored closely throughout the cell cycle. An inducible expression system has been developed to test various GPI-anchored proteins for their ability to rescue this cell cycle arrest. This system has been used to demonstrate that wild-type VSG expressed from a T7 promoter rescues this phenotype. This indicates that VSG expression from one of the specialised bloodstream expression sites (BES) is not essential for cell division. The same approach has been used to define the minimum essential features of a VSG necessary for function.

Keywords: bloodstream expression site, morpholino, precytokinesis cell cycle arrest, variant surface glycoprotein

Procedia PDF Downloads 121
4075 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming

Authors: Sanjay Tushar Choudhary

Abstract:

This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.

Keywords: current density, SOFC, suel utilization factor, recirculation ratio

Procedia PDF Downloads 481
4074 Fabrication of Ligand Coated Lipid-Based Nanoparticles for Synergistic Treatment of Autoimmune Disease

Authors: Asiya Mahtab, Sushama Talegaonkar

Abstract:

The research is aimed at developing targeted lipid-based nanocarrier systems of chondroitin sulfate (CS) to deliver an antirheumatic drug to the inflammatory site in arthritic paw. Lipid-based nanoparticle (TEF-lipo) was prepared by using a thin-film hydration method. The coating of prepared drug-loaded nanoparticles was done by the ionic interaction mechanism. TEF-lipo and CS-coated lipid nanoparticle (CS-lipo) were characterized for mean droplet size, zeta potential, and surface morphology. TEF-lipo and CS-lipo were further subjected to in vitro cell line studies on RAW 264.7 murine macrophage, U937, and MG 63 cell lines. The pharmacodynamic study was performed to establish the effectiveness of the prepared lipid-based conventional and targeted nanoparticles in comparison to pure drugs. Droplet size and zeta potential of TEF-lipo were found to be 128. 92 ± 5.42 nm and +12.6 ± 1.2 mV. It was observed that after the coating of TEF-lipo with CS, particle size increased to 155.6± 2.12 nm and zeta potential changed to -10.2± 1.4mV. Transmission electron microscopic analysis revealed that the nanovesicles were uniformly dispersed and detached from each other. Formulations followed sustained release pattern up to 24 h. Results of cell line studies ind icated that CS-lipo formulation showed the highest cytotoxic potential, thereby proving its enhanced ability to kill the RAW 264.7 murine macrophage and U937 cells when compared with other formulations. It is clear from our in vivo pharmacodynamic results that targeted nanocarriers had a higher inhibitory effect on arthritis progression than nontargeted nanocarriers or free drugs. Results demonstrate that this approach will provide effective treatment for rheumatoid arthritis, and CS served as a potential prophylactic against the advancement of cartilage degeneration.

Keywords: adjuvant induced arthritis, chondroitin sulfate, rheumatoid arthritis, teriflunomide

Procedia PDF Downloads 108
4073 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy

Authors: Raed Kouta

Abstract:

A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.

Keywords: fuel cell, mechanic, reliability, uncertainties

Procedia PDF Downloads 164
4072 Metal Nanoparticles Caused Death of Metastatic MDA-MB-231 Cells

Authors: O. S. Adeyemi, C. G. Whiteley

Abstract:

The present study determined the toxic potential of metal nanoparticles in cell culture system. Silver and gold nanoparticles were synthesized and characterized following established "green" protocols. The synthesized nanoparticles, in varying concentrations ranging from 0.1–100 µM were evaluated for toxicity in metastatic MDA-MB-231 cells. The nanoparticles promoted a generation of reactive oxygen species and reduced cell viability to less than 50% in the demonstration of cellular toxicity. The nanoparticles; gold and the silver-gold mixture had IC50 values of 56.65 and 18.44 µM respectively. The IC50 concentration for silver nanoparticles could not be determined. Furthermore, the probe of the cell death using flow cytometry and confocal microscopy revealed the partial involvement of apoptosis as well as necrosis. Our results revealed cellular toxicity caused by the nanoparticles but the mechanism remains yet undefined.

Keywords: cell death, nanomedicine, nanotoxicology, toxicity

Procedia PDF Downloads 358
4071 Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter

Authors: Yeng Min Yi, Rosli Md Illias, Salehhuddin Hamdan

Abstract:

Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli.

Keywords: biocatalysis, cell surface display, Escherichia coli, TibA autotransporter

Procedia PDF Downloads 255
4070 Optimization of Heterojunction Solar Cell Using AMPS-1D

Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui

Abstract:

Photo voltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP/GaAs configuration for p/ n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.

Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction

Procedia PDF Downloads 382
4069 The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter

Authors: Chen Zheng, Lin Zhou, Bao Xie, Xiao Du, Nianbin Shao

Abstract:

Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper.

Keywords: LSPVPs, stability analysis, grid impedance, different types of inverter, PCC voltage

Procedia PDF Downloads 281
4068 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 352
4067 Phosphate Use Efficiency in Plants: A GWAS Approach to Identify the Pathways Involved

Authors: Azizah M. Nahari, Peter Doerner

Abstract:

Phosphate (Pi) is one of the essential macronutrients in plant growth and development, and it plays a central role in metabolic processes in plants, particularly photosynthesis and respiration. Limitation of crop productivity by Pi is widespread and is likely to increase in the future. Applications of Pi fertilizers have improved soil Pi fertility and crop production; however, they have also caused environmental damage. Therefore, in order to reduce dependence on unsustainable Pi fertilizers, a better understanding of phosphate use efficiency (PUE) is required for engineering nutrient-efficient crop plants. Enhanced Pi efficiency can be achieved by improved productivity per unit Pi taken up. We aim to identify, by using association mapping, general features of the most important loci that contribute to increased PUE to allow us to delineate the physiological pathways involved in defining this trait in the model plant Arabidopsis. As PUE is in part determined by the efficiency of uptake, we designed a hydroponic system to avoid confounding effects due to differences in root system architecture leading to differences in Pi uptake. In this system, 18 parental lines and 217 lines of the MAGIC population (a Multiparent Advanced Generation Inter-Cross) grown in high and low Pi availability conditions. The results showed revealed a large variation of PUE in the parental lines, indicating that the MAGIC population was well suited to identify PUE loci and pathways. 2 of 18 parental lines had the highest PUE in low Pi while some lines responded strongly and increased PUE with increased Pi. Having examined the 217 MAGIC population, considerable variance in PUE was found. A general feature was the trend of most lines to exhibit higher PUE when grown in low Pi conditions. Association mapping is currently in progress, but initial observations indicate that a wide variety of physiological processes are involved in influencing PUE in Arabidopsis. The combination of hydroponic growth methods and genome-wide association mapping is a powerful tool to identify the physiological pathways underpinning complex quantitative traits in plants.

Keywords: hydroponic system growth, phosphate use efficiency (PUE), Genome-wide association mapping, MAGIC population

Procedia PDF Downloads 297
4066 Chemical Bath Deposition Technique (CBD) of Cds Used in Closed Space Sublimation (CSS) of CdTe Solar Cell

Authors: Zafar Mahmood, Fahimullah Babar, Surriyia Naz, Hafiz Ur Rehman

Abstract:

Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Elipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here).The efficiency came out to be approximately 16.5 % and the CIGS (copper- indium –gallium- selenide) maximum efficiency is 20 %.The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).

Keywords: CBD, CdS, CdTe, CSS

Procedia PDF Downloads 330
4065 Simulation and Performance Evaluation of Transmission Lines with Shield Wire Segmentation against Atmospheric Discharges Using ATPDraw

Authors: Marcio S. da Silva, Jose Mauricio de B. Bezerra, Antonio E. de A. Nogueira

Abstract:

This paper aims to make a performance analysis of shield wire transmission lines against atmospheric discharges when it is made the option of sectioning the shield wire and verify if the tolerability of the change. As a goal of this work, it was established to make complete modeling of a transmission line in the ATPDraw program with shield wire grounded in all the towers and in some towers. The methodology used to make the proposed evaluation was to choose an actual transmission line that served as a case study. From the choice of transmission line and verification of all its topology and materials, complete modeling of the line using the ATPDraw software was performed. Then several atmospheric discharges were simulated by striking the grounded shield wires in each tower. These simulations served to identify the behavior of the existing line against atmospheric discharges. After this first analysis, the same line was reconsidered with shield wire segmentation. The shielding wire segmentation technique aims to reduce induced losses in shield wires and is adopted in some transmission lines in Brazil. With the same conditions of atmospheric discharge the transmission line, this time with shield wire segmentation was again evaluated. The results obtained showed that it is possible to obtain similar performances against atmospheric discharges between a shield wired line in multiple towers and the same line with shield wire segmentation if some precautions are adopted as verification of the ground resistance of the wire segmented shield, adequacy of the maximum length of the segmented gap, evaluation of the separation length of the electrodes of the insulator spark, among others. As a conclusion, it is verified that since the correct assessment and adopted the correct criteria of adjustment a transmission line with shielded wire segmentation can perform very similar to the traditional use with multiple earths. This solution contributes in a very important way to the reduction of energy losses in transmission lines.

Keywords: atmospheric discharges, ATPDraw, shield wire, transmission lines

Procedia PDF Downloads 145