Search results for: short channel fabrication
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4960

Search results for: short channel fabrication

2020 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 240
2019 Building on Previous Microvalving Approaches for Highly Reliable Actuation in Centrifugal Microfluidic Platforms

Authors: Ivan Maguire, Ciprian Briciu, Alan Barrett, Dara Kervick, Jens Ducrèe, Fiona Regan

Abstract:

With the ever-increasing myriad of applications of which microfluidic devices are capable, reliable fluidic actuation development has remained fundamental to the success of these microfluidic platforms. There are a number of approaches which can be taken in order to integrate liquid actuation on microfluidic platforms, which can usually be split into two primary categories; active microvalves and passive microvalves. Active microvalves are microfluidic valves which require a physical parameter change by external, or separate interaction, for actuation to occur. Passive microvalves are microfluidic valves which don’t require external interaction for actuation due to the valve’s natural physical parameters, which can be overcome through sample interaction. The purpose of this paper is to illustrate how further improvements to past microvalve solutions can largely enhance systematic reliability and performance, with both novel active and passive microvalves demonstrated. Covered within this scope will be two alternative and novel microvalve solutions for centrifugal microfluidic platforms; a revamped pneumatic-dissolvable film active microvalve (PAM) strategy and a spray-on Sol-Gel based hydrophobic passive microvalve (HPM) approach. Both the PAM and the HPM mechanisms were demonstrated on a centrifugal microfluidic platform consisting of alternating layers of 1.5 mm poly(methyl methacrylate) (PMMA) (for reagent storage) sheets and ~150 μm pressure sensitive adhesive (PSA) (for microchannel fabrication) sheets. The PAM approach differs from previous SOLUBON™ dissolvable film methods by introducing a more reliable and predictable liquid delivery mechanism to microvalve site, thus significantly reducing premature activation. This approach has also shown excellent synchronicity when performed in a multiplexed form. The HPM method utilises a new spray-on and low curing temperature (70°C) sol-gel material. The resultant double layer coating comprises a PMMA adherent sol-gel as the bottom layer and an ultra hydrophobic silica nano-particles (SNPs) film as the top layer. The optimal coating was integrated to microfluidic channels with varying cross-sectional area for assessing microvalve burst frequencies consistency. It is hoped that these microvalving solutions, which can be easily added to centrifugal microfluidic platforms, will significantly improve automation reliability.

Keywords: centrifugal microfluidics, hydrophobic microvalves, lab-on-a-disc, pneumatic microvalves

Procedia PDF Downloads 191
2018 Isan Symphonic Variations for Chorus and Orchestra

Authors: Chananart Meenanan

Abstract:

The composition Isan Symphonic Variations for Chorus and Orchestra is a musical composition inspired by Isan Folk music tunes. The composer has created the well crafted melodic variations and cultural sound character of the piece based on the Klon Lum Tang Isan Keaw (Green Isan’s short poems). Meanwhile, the poetic lyric has been motivatedly recreated to bring the abundance of Northeastern Thailand region’s sentiment back to life. Moreover, the sound of xylophone (Ponglang), the instruments of the orchestra and the chorus were blended in order to present Isan folk music’s character via the Western musical idiom. The 3 movement of this composition is divided as following: In Movement I (Allegro), the introduction has been represented the uniqueness in Isan folk music’s liveliness by expressing it through the sound of chorus and orchestra. The composer also added the melodious sound flavor by utilizing the variety of the muting sound style on trumpets and horns. In Movement II (Moderato), the aspect of the heterophonic approach music has been implied to the main idea of the entire movement whereby its formatted transformation worked effectively through chorus and the orchestra. In Movement III (Allegretto) the harmonic chromaticism was modified and applied as the symbolic icon of the entire movement. The transparence of Isan cultural sound was perfectly designed to be the highlight of this spectacular episode.

Keywords: Isan, symphonic variations, chorus, orchestra

Procedia PDF Downloads 248
2017 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment

Authors: Jingyuan Hu, Zhandong Liu

Abstract:

CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.

Keywords: CRISPR, HMM, sequence alignment, gene editing

Procedia PDF Downloads 59
2016 The Dynamics of Algeria’s Natural Gas Exports to Europe: Evidence from ARDL Bounds Testing Approach with Breakpoints

Authors: Hicham Benamirouche, Oum Elkheir Moussi

Abstract:

The purpose of the study is to examine the dynamics of Algeria’s natural gas exports through the Autoregressive Distributed Lag (ARDL) bounds testing approach with break points. The analysis was carried out for the period from 1967 to 2015. Based on imperfect substitution specification, the ARDL approach reveals a long-run equilibrium relationship between Algeria’s Natural gas exports and their determinant factors (Algeria’s gas reserves, Domestic gas consumption, Europe’s GDP per capita, relative prices, the European gas production and the market share of competitors). All the long-run elasticities estimated are statistically significant with a large impact of domestic factors, which constitute the supply constraints. In short term, the elasticities are statistically significant, and almost comparable to those of the long term. Furthermore, the speed of adjustment towards long-run equilibrium is less than one year because of the little flexibility of the long term export contracts. Two break points have been estimated when we employ the domestic gas consumption as a break variable; 1984 and 2010, which reflect the arbitration policy between the domestic gas market and gas exports.

Keywords: natural gas exports, elasticity, ARDL bounds testing, break points, Algeria

Procedia PDF Downloads 205
2015 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency

Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu

Abstract:

In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.

Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal

Procedia PDF Downloads 157
2014 Structural and Histochemical Alterations in the Development of the Stigma in Vibirnum tinus

Authors: Aslihan Cetinbas Genc, Meral Unal

Abstract:

This study presents the structural and cytochemical alterations of stigma at the stages of pre-anthesis, anthesis and post-anthesis in Vibirnum tinus. Capitate stigma continues with a closed style. The receptive surface of stigma is composed of unicellular papillae which are short and flattened at pre-anthesis stage. The papillae in this stage have dense cytoplasm with small vacuoles and a centrally located nucleus. With the start of anthesis, the stigma widens, papillae lengthen and become cylindrical. At anthesis stage, vacuoles enlarge, and nucleus moves to the base of the cell. At post-anthesis stage, the boundaries of the papillae become less noticeable. As proved by Periodic Acid Schiff procedure, the cytoplasm of papillae is rich in insoluble polysaccharides at all stages of development but it becomes remarkable at post-anthesis, particularly at the sub-papillar area. Although there is no significant difference in the content of protein in all stages of the development, it is more abundant at post-anthesis stage, as in Coomassie Brillant Blue stained sections. The surface of papillae is covered by a cuticle which becomes thicker at post-anthesis, and it gives positive reaction with Sudan Black B and Auramine O. The cuticle is covered by a pellicle stained by Coomassie Brillant Blue, indicating dry type of stigma.

Keywords: develeopmental features, histochemistry, stigma, Vibirnum tinus

Procedia PDF Downloads 249
2013 Employing Innovative Pedagogy: Collaborative (Online) Learning and Teaching In An International Setting

Authors: Sonja Gögele, Petra Kletzenbauer

Abstract:

International strategies are ranked as one of the core activities in the development plans of Austrian universities. This has led to numerous promising activities in terms of internationalization (i.e. development of international degree programmes, increased staff, and student mobility, and blended international projects). The latest innovative approach are so called Blended Intensive Programmes (BIP), which combine jointly delivered teaching and learning elements of at least three participating ERASMUS universities in a virtual and short-term mobility setup. Students who participate in BIP can maintain their study plans at their home institution and include BIP as a parallel activity. This paper presents the experiences of this programme on the topic of sustainable computing hosted by the University of Applied Sciences FH JOANNEUM. By means of an online survey and face-to-face interviews with all stakeholders (20 students, 8 professors), the empirical study addresses the challenges of hosting an international blended learning programme (i.e. virtual phase and on-site intensive phase) and discusses the impact of such activities in terms of innovative pedagogy (i.e. virtual collaboration, research-based learning).

Keywords: internationalization, collaborative learning, blended intensive programme, pedagogy

Procedia PDF Downloads 135
2012 Exploring the Potential of Bio-Inspired Lattice Structures for Dynamic Applications in Design

Authors: Axel Thallemer, Aleksandar Kostadinov, Abel Fam, Alex Teo

Abstract:

For centuries, the forming processes in nature served as a source of inspiration for both architects and designers. It seems as most human artifacts are based on ideas which stem from the observation of the biological world and its principles of growth. As a fact, in the cultural history of Homo faber, materials have been mostly used in their solid state: From hand axe to computer mouse, the principle of employing matter has not changed ever since the first creation. In the scope of history only recently and by the help of additive-generative fabrication processes through Computer Aided Design (CAD), designers were enabled to deconstruct solid artifacts into an outer skin and an internal lattice structure. The intention behind this approach is to create a new topology which reduces resources and integrates functions into an additively manufactured component. However, looking at the currently employed lattice structures, it is very clear that those lattice structure geometries have not been thoroughly designed, but rather taken out of basic-geometry libraries which are usually provided by the CAD. In the here presented study, a group of 20 industrial design students created new and unique lattice structures using natural paragons as their models. The selected natural models comprise both the animate and inanimate world, with examples ranging from the spiraling of narwhal tusks, off-shooting of mangrove roots, minimal surfaces of soap bubbles, up to the rhythmical arrangement of molecular geometry, like in the case of SiOC (Carbon-Rich Silicon Oxicarbide). This ideation process leads to a design of a geometric cell, which served as a basic module for the lattice structure, whereby the cell was created in visual analogy to its respective natural model. The spatial lattices were fabricated additively in mostly [X]3 by [Y]3 by [Z]3 units’ volumes using selective powder bed melting in polyamide with (z-axis) 50 mm and 100 µm resolution and subdued to mechanical testing of their elastic zone in a biomedical laboratory. The results demonstrate that additively manufactured lattice structures can acquire different properties when they are designed in analogy to natural models. Several of the lattices displayed the ability to store and return kinetic energy, while others revealed a structural failure which can be exploited for purposes where a controlled collapse of a structure is required. This discovery allows for various new applications of functional lattice structures within industrially created objects.

Keywords: bio-inspired, biomimetic, lattice structures, additive manufacturing

Procedia PDF Downloads 152
2011 Role of Endonuclease G in Exogenous DNA Stability in HeLa Cells

Authors: Vanja Misic, Mohamed El-Mogy, Yousef Haj-Ahmad

Abstract:

Endonuclease G (EndoG) is a well conserved mitochondrio-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from non-viral DNA vectors in gene therapy efforts.

Keywords: EndoG, silencing, exogenous DNA stability, HeLa cells

Procedia PDF Downloads 465
2010 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 156
2009 Towards an Adornian Critical Theory of the Environment

Authors: Dominic Roulx

Abstract:

Many scholars have in the past decade emphasized the relevance of Adorno’s criticism of the rationalized domination of nature (Naturbeherrschung) for thinking the environmental crisis. Beyond the intersubjective critical models of thinkers such as Habermas and Honneth, Adorno’s critical theory has the benefit, according to them, of disclosing the entwinement of social and natural domination in a critically productive way. The author will be arguing in this paper that Adorno’s model of critical theory displays a theoretical framework that is both original and relevant for thinking the ins and outs of the currentenvironmental crisis. To do so, he first construe Adorno’s understanding of the historical domination of nature and argue that Adorno’s method for its criticizing is immanent critique. He puts emphasis on how his understanding of the domination of nature implicitly implies an account of thedialectical relationship between reason and nature. In doing so, he presents a naturalistic understanding of his idea of the primacy of the object. Second, regarding Adorno’s concept of nature, he discusses what he sees as the shortcomings of many commentators’ understanding of the concept of nature in Adorno. He contends that they tend to fall short of Adorno’s concept of nature in failing to make sense of its thoroughly negative signification, thereby falling into an uncritical and fetichized comprehension of “nature. Third, he discusses the prospect for a possible “reconciliation” (Versöhnung) of nature with society. Highlighting how the domination of nature proves to produce the necessary conditions for its own overcoming, he contends that reconciliation with nature relies mainly on the subject’s capacity for critical self-reflection.

Keywords: german philosophy, adorno, nature, environmental crisis

Procedia PDF Downloads 103
2008 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects

Authors: Muhammad Khairi bin Sulaiman

Abstract:

The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.

Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning

Procedia PDF Downloads 87
2007 Peltier Air Conditioning System for Preventing Ambient Heating: An Alternative to Gas Air Conditioners

Authors: Siamak Eskandari, Neda Ebadi

Abstract:

After discovering and using Freon as refrigerant in refrigerators and air conditioners, researchers have been working hard to minimize massive environmental damage caused by this type of systems, including ozone depletion, heat production, and urban warming. However, there is a growing concern for global warming and climate change and its impacts on climates. Although gas air conditioners can provide comfort in short term, there are long-term consequences and effects, including global warming, polar ice melting, sea level rising, rising sea surface temperatures, reduction in seasonal precipitation, tropical storms, and drought. In this theoretical and practical study, Peltier electronic chip was used with no gas in the structure and operation. In fact, cooling and heating are based on bipolar electronics. With an innovative method, Peltier air conditioners provide cooling in warm seasons and heating in cold seasons in buildings. Such a system prevents ambient warming. The problem of air circulation between high buildings in large cities and draught will be considerably resolved through the use of the silent fan in the system. In addition, the system is designed and developed in accordance with international standards such as LEED and Energy Star.

Keywords: energy, Building cooling and heating, peltier, leed, energy star

Procedia PDF Downloads 198
2006 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing

Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.

Abstract:

Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.

Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target

Procedia PDF Downloads 334
2005 The Use of Instructional Media in a Thai EFL Classroom: Student Teachers' Preferences and Attitudes

Authors: Khanita Limhan

Abstract:

Due to the fact that the instructional media is a very crucial implement in English as Foreign Language (EFL) teaching and learning because it simply motivates or demotivates the learners to learn English. Furthermore, it could enormously involve the learners in the real language. The mixed-method research investigates undergraduate student teachers at the Faculty of Education in aspects of the preferences and attitudes towards the use of instructional media in a Thai EFL classroom. Therefore, there were 21 female and 4 male students, who are being educated to be secondary English teachers in Thai educational system, participated in this study. Moreover, the data was gathered from six open-ended questions; obviously, all were given at least 30 - 45 minutes to express their preferences and thoughts in their native tongue at the end of the English for English teacher course. The results of this study indicated that 64 % of student teachers preferred to study English grammar through songs and music; 54% of them desire to learn English grammar through English movies; and 40% of them want to acquire English grammar by watching short documentaries. Since, the participants illustrated that they feel neither anxious nor bored; however, they feel very excited and fun while studying. In addition, they pointed out that they could improve their listening proficiency; obtain new vocabulary; and comprehend the cultural content authentically from the instructional media. It can be concluded that the use of instructional media affects students and teachers’ motivations and attitudes on English teaching and learning.

Keywords: attitudes, preferences, student teachers, instructional media

Procedia PDF Downloads 284
2004 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 151
2003 The Effect of Nursing Teamwork Training on Nursing Teamwork Effectiveness

Authors: Manar Ahmed Elbadawy

Abstract:

Background: Empirical evidence suggested that improving nursing teamwork (NTW) may be the key to reducing medical error. The functioning nursing teams require open communication, mutual respect, and shared mental models to activate quality patient care. The complexity and the high demands for specialized nursing knowledge and skill also require nursing staff to consult with one another and work in teams regularly. The current study aimed to evaluate the effect of the nursing teamwork training program on nursing teamwork effectiveness. Design: A quasi-experimental (one group pretest-posttest) design was utilized. Three medical intensive care units at a teaching hospital affiliated to Cairo University Hospital, Egypt. Subjects: A convenient sample of 48 nursing staff worked at the selected units. The Nursing Teamwork Observational Checklist was used. Results: Total (NTW) mean scores exhibited quite elevation post-program implementation compared to preprogram and showed little decrease 3 months later ( = 2.52, SD = ± 0.27, mean % =51.98, = 2.72, SD = ± 0.20, mean %=72.45, = 2.67, SD = ± 0.11, mean %= 67.48 respectively). Conclusion: Implementation of (NTW) training program had a positive effect on increasing (NTW) effectiveness. Regular and frequent short-term teamwork training is important to be introduced as well as sustainable monitoring is required to ensure nursing attitudes, knowledge and skills’ change about teamwork effectiveness.

Keywords: effectiveness, nursing, teamwork, training

Procedia PDF Downloads 126
2002 A Socio-Pragmatic Investigation of Gender Enactment in New Month Text Messages

Authors: Esther Robert, Romanus Aboh

Abstract:

This paper undertakes a socio-pragmatic investigation of gender enactment in new month text messages. This study employs Gumperz’s Interactional Sociolinguistics as its theoretical point of reference to investigate how people create meaning through social interaction. This theory attempts to analyse any social interaction based on contextualization cues and presuppositions. This study explores the appropriateness of language used in texting. The text messages are collected from different mobile phones from different genders, which form the data for this paper. The study observes remarkable differences between genders in the use of informal language. The study reveals that men and women differ remarkably in conversational interaction as well as in writing. While it is observed that women are emotional, orderly, and meticulous, detailed and observed certain grammatical rules, men are casual, brief and appear to show evidence that less attention is paid to grammatical rules. Also, the study shows women as relaxing, showing love, care, concern with their emotive, spirit-raising and touching language, while mean are direct, short, and straight to the point. It is discovered through the study that women behave this way because of their brain-wiring. That is why language and communication matter more to women than to men and this reflects in their new month text messages.

Keywords: difference, emotionalised expressions, gender, texting

Procedia PDF Downloads 258
2001 Size Optimization of Microfluidic Polymerase Chain Reaction Devices Using COMSOL

Authors: Foteini Zagklavara, Peter Jimack, Nikil Kapur, Ozz Querin, Harvey Thompson

Abstract:

The invention and development of the Polymerase Chain Reaction (PCR) technology have revolutionised molecular biology and molecular diagnostics. There is an urgent need to optimise their performance of those devices while reducing the total construction and operation costs. The present study proposes a CFD-enabled optimisation methodology for continuous flow (CF) PCR devices with serpentine-channel structure, which enables the trade-offs between competing objectives of DNA amplification efficiency and pressure drop to be explored. This is achieved by using a surrogate-enabled optimisation approach accounting for the geometrical features of a CF μPCR device by performing a series of simulations at a relatively small number of Design of Experiments (DoE) points, with the use of COMSOL Multiphysics 5.4. The values of the objectives are extracted from the CFD solutions, and response surfaces created using the polyharmonic splines and neural networks. After creating the respective response surfaces, genetic algorithm, and a multi-level coordinate search optimisation function are used to locate the optimum design parameters. Both optimisation methods produced similar results for both the neural network and the polyharmonic spline response surfaces. The results indicate that there is the possibility of improving the DNA efficiency by ∼2% in one PCR cycle when doubling the width of the microchannel to 400 μm while maintaining the height at the value of the original design (50μm). Moreover, the increase in the width of the serpentine microchannel is combined with a decrease in its total length in order to obtain the same residence times in all the simulations, resulting in a smaller total substrate volume (32.94% decrease). A multi-objective optimisation is also performed with the use of a Pareto Front plot. Such knowledge will enable designers to maximise the amount of DNA amplified or to minimise the time taken throughout thermal cycling in such devices.

Keywords: PCR, optimisation, microfluidics, COMSOL

Procedia PDF Downloads 167
2000 It Is Time to Perform Total Laparoscopic Hysterectomy (TLH) without the Use of Uterine Manipulator: Kamran's TLH

Authors: Ahmed Gendia, Waseem Kamran

Abstract:

Objective: Total Laparoscopic hysterectomy (TLH) remains a common approach among laparoscopic surgeons. However, this approach depends on the use of uterine manipulator to facilitate the surgery. Although many studies reported the effectiveness of TLH with uterine manipulator, only few reported TLH without the use of any uterine or vaginal manipulation. the aim of this report is to demonstrate our Technique (kamran's TLH) in performing TLH without the use of any uterine or vaginal manipulation in benign conditions and report our intra- and post-operative outcomes. Methodology : surgical technique will be demonstrated through a short video highlighting the easy and safe to learn surgical steps. Additionally, the data of 86 patients who underwent KTLH for benign condition were retrospectively analyzed. the data included intra- and postoperative finding and complications. Results : A total of 86 hysterectomies were performed utilizing the Kamran's TLH ( KTHL). Mean age was 52.2 (±11) years old and BMI was 28.2(±7). Mean operative time was 64.7(±27.9) minutes and estimated bloods loss was 46.2(±54.6) ml. No intraoperative complications were recorded and there was no conversion to open surgery. Only one patient required readmission and surgery for vaginal vault dehiscence. Conclusion & Significance: Uterine manipulator is a key component in performing laparoscopic hysterectomy. However, our approach demonstrated that TLH can be safely performed without the use of any uterine or vaginal manipulation.

Keywords: laparoscopic hystrectomy, TLH, uterine manipulator, surgery

Procedia PDF Downloads 160
1999 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 169
1998 Study of Performance Based Parameters on Sprint Interval Training and Steady State Run: Trained Young Female

Authors: Abdul Latif Shaikh, Osama Kattos

Abstract:

Purpose: The study compared the effects of intra and inter group short duration intensity training and long duration steady state-run training on the cardiovascular performance on female athletes. Method: Twenty trained young female athletes age between 17 to 20 years were randomly selected to participate in the test. The sprint interval training (n-10) program consisted of 5 min sprints and steady state run (n-10) conducted for 30 min. Both groups completed eight sessions of training within four weeks. Result: In intragroup distribution of mean % change in all the variables from week 4 to week 1 did not differ significantly (p-value > 0.05). The inter-group means value of post resting heart rate, max oxygen consumption (VO2max), and calorie expenditure in sprint interval training was higher with compared with steady state run. Conclusion: The comparative mean value of the intergroups program concludes that the SIT program is superior to SSR in performance-based variables in trained young females. The SIT program can be applied as a time-efficient program for improving performance.

Keywords: calorie expenditure, maximum rate of oxygen consumption, post recovery HR (1-4-7 min), time domain

Procedia PDF Downloads 175
1997 Design and Realization of Double-Delay Line Canceller (DDLC) Using Fpga

Authors: A. E. El-Henawey, A. A. El-Kouny, M. M. Abd –El-Halim

Abstract:

Moving target indication (MTI) which is an anti-clutter technique that limits the display of clutter echoes. It uses the radar received information primarily to display moving targets only. The purpose of MTI is to discriminate moving targets from a background of clutter or slowly-moving chaff particles as shown in this paper. Processing system in these radars is so massive and complex; since it is supposed to perform a great amount of processing in very short time, in most radar applications the response of a single canceler is not acceptable since it does not have a wide notch in the stop-band. A double-delay canceler is an MTI delay-line canceler employing the two-delay-line configuration to improve the performance by widening the clutter-rejection notches, as compared with single-delay cancelers. This canceler is also called a double canceler, dual-delay canceler, or three-pulse canceler. In this paper, a double delay line canceler is chosen for study due to its simplicity in both concept and implementation. Discussing the implementation of a simple digital moving target indicator (DMTI) using FPGA which has distinct advantages compared to other application specific integrated circuit (ASIC) for the purposes of this work. The FPGA provides flexibility and stability which are important factors in the radar application.

Keywords: FPGA, MTI, double delay line canceler, Doppler Shift

Procedia PDF Downloads 652
1996 Nature of a Supercritical Mesophase

Authors: Hamza Javar Magnier, Leslie V. Woodcock

Abstract:

It has been reported that at temperatures above the critical there is no “continuity of liquid and gas”, as originally hypothesized by van der Waals. Rather, both gas and liquid phases, with characteristic properties as such, extend to supercritical temperatures. Each phase is bounded by the locus of a percolation transition, i.e. a higher-order thermodynamic phase change associated with percolation of gas clusters in a large void, or liquid interstitial vacancies in a large cluster. Between these two-phase bounds, it is reported there exists a mesophase that resembles an otherwise homogeneous dispersion of gas micro-bubbles in liquid (foam) and a dispersion of liquid micro-droplets in gas (mist). Such a colloidal-like state of a pure one-component fluid represents a hitherto unchartered equilibrium state of matter besides pure solid, liquid or gas. Here we provide compelling evidence, from molecular dynamics (MD) simulations, for the existence of this supercritical mesophase and its colloidal nature. We report preliminary results of computer simulations for a model fluid using a simplistic representation of atoms or molecules, i.e. a hard-core repulsion with an attraction so short that the atoms are referred to as “adhesive spheres”. Molecular clusters, and hence percolation transitions, are unambiguously defined. Graphics of color-coded clusters show colloidal characteristics of the supercritical mesophase.

Keywords: critical phenomena, mesophase, supercritical, square-well, critical parameters

Procedia PDF Downloads 429
1995 Hardness and Microstructure of Rapidly Quenched Aluminum Alloys

Authors: Mehdi Ghatus

Abstract:

Two simple apparatus based on the hammer and anvil principle have been constructed and used to study the microstructure and micro-hardness characteristics of some AL-base alloys. Foils with thicknesses arranging from 20 µm up to 600 µm have been obtained. The cooling rate was estimated to be in the range 10^4 - 10^5 K/sec. Microstructure study of rapidly quenched Al-30% Si foils indicated that with decreasing the foil thickness the size of primary Si crystallites decreases in the whole investigated range (0.64-0.15 mm). However, the volume fraction of the primary Si crystals in the structure remained constant down to thickness the primary Si volume fraction started to decrease. Rapid quenching of Al- 14-16% Cu showed single phase cell structure. In foils up to 0.55 mm with decreasing the foil thickness the cell size decreases and micro-hardness increases particularly in foils below 0.3 mm in thickness. Isochronal annealing of theses foils show that the highly supersaturated Al-14-16% Cu solid solution decomposes readily at relatively low temperature and short time intervals. The maximum hardness is obtained after annealing at 100 °C for 30 minutes. However with decreasing the Cu content of the foils the precipitation process is largely delayed. Eight hours of annealing at 100 °C was not enough to achieve the maximum hardness in Al-4% Cu thin foils. The achieved hardness value was more than twice of the maximum hardness obtained in articles of similar composition but conventionally aged.

Keywords: aluminum, hardness, alloys, quenched aluminum

Procedia PDF Downloads 443
1994 Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements

Authors: Mohamad Molavi Nojumi, Xiaodong Wang

Abstract:

In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements.

Keywords: finite element, fracture mechanics, functionally graded materials, graded element

Procedia PDF Downloads 176
1993 Development of Polymer Nano-Particles as in vivo Imaging Agents for Photo-Acoustic Imaging

Authors: Hiroyuki Aoki

Abstract:

Molecular imaging has attracted much attention to visualize a tumor site in a living body on the basis of biological functions. A fluorescence in vivo imaging technique has been widely employed as a useful modality for small animals in pre-clinical researches. However, it is difficult to observe a site deep inside a body because of a short penetration depth of light. A photo-acoustic effect is a generation of a sound wave following light absorption. Because the sound wave is less susceptible to the absorption of tissues, an in vivo imaging method based on the photoacoustic effect can observe deep inside a living body. The current study developed an in vivo imaging agent for a photoacoustic imaging method. Nano-particles of poly(lactic acid) including indocyanine dye were developed as bio-compatible imaging agent with strong light absorption. A tumor site inside a mouse body was successfully observed in a photo-acoustic image. A photo-acoustic imaging with polymer nano-particle agent would be a powerful method to visualize a tumor.

Keywords: nano-particle, photo-acoustic effect, polymer, dye, in vivo imaging

Procedia PDF Downloads 160
1992 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach

Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova

Abstract:

Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.

Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition

Procedia PDF Downloads 87
1991 Successful Natural Reproduction of the 'Extinct in the Wild; Yangtze Sturgeon Through Ecological Hydraulics-Based Spawning Habitat Creation

Authors: Hao Du, Xuan Ban, Pengcheng Li, Jinming Wu, Junyi Li

Abstract:

The Yangtze sturgeon, a Class I protected aquatic wildlife species in China, has suffered a rapid decline due to human activities such as dam construction, channel dredging, sand and stone mining, and overfishing. Its natural reproduction ceased by 2000, and it was assessed as ‘extinct in the wild’ by the IUCN in 2022. To save this endangered species, the Chinese government is fully committed to restoring the Yangtze's fishery resources, implementing policies such as the ‘10-year fishing ban’ and the Yangtze River Protection Law. Researchers have established an artificial population tier using limited wild stock and attempted to restore natural reproduction through parental release. Based on ecological hydraulics simulations of historical spawning grounds of the Chinese sturgeon and Yangtze sturgeon in the upper Yangtze River, this study identified flow velocity, substrate, and topography as key environmental factors for sturgeon reproduction. Through six consecutive years of indoor artificial spawning ground simulations, researchers pinpointed critical environmental parameters for Yangtze sturgeon's natural reproduction. Subsequently, they created a spawning habitat in the natural waters of the Jiajiang River, a branch of the Yangtze, successfully inducing natural reproduction of the Yangtze sturgeon for two consecutive years, with a total of 980,000 eggs laid and fertilization rates ranging from 54% to 83%. This breakthrough resolved the 20-year challenge of interrupted natural reproduction of the Yangtze sturgeon. This report systematically introduces research progress on the protection of the Yangtze sturgeon, providing a classic case for the reconstruction of wild populations of critically endangered aquatic animals and offering a reference for global freshwater biodiversity conservation.

Keywords: dam, ecohydraulic conditions, spawning ground, habitat creation, natural reproduction, sturgeon, Yangzte River

Procedia PDF Downloads 10