Search results for: ozone water oxidation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9435

Search results for: ozone water oxidation

6495 Application of Waterflooding Technique in Petroleum Reservoir

Authors: Khwaja Naweed Seddiqi

Abstract:

Hydrocarbon resources are important for the redevelopment and sustainable progress of Afghanistan’s infrastructure. This paper aim is to increase the oil recovery of Hitervian reservoir of Angut oil field in north part of Afghanistan by an easy and available method, which is Buckley-Leveret frontal displacement theory. In this paper oil displacement by water that takes placed by injecting water into the under laying petroleum reservoir which called waterflooding technique is investigated. The theory is investigated in a laboratory experiment first then applied in Angut oil field which is now under the operation of a private petroleum company. Based on this study oil recovery of Angut oil field, residual oil saturation, Buckle-Leveret saturation and FBL is determined.

Keywords: waterflooding technique, two phase fluid flow, Buckley-Leveret, petroleum engineering

Procedia PDF Downloads 437
6494 Produce High-Quality Activated Carbon with a Large Surface Area from Date Seeds Biomass for Water Treatment

Authors: Rashad Al-Gaashani, Viktor Kochkodan, Jenny Lawler

Abstract:

Physico-chemical activation method wasused to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomasswastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were used to evaluate the AC samples. AC produced from date seeds have a wide range of the pores available, including micro- andnano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metalsiron (III) and copper (II) ions were removed from wastewater using the AC producedusinga batch adsorption technique. The AC produced from date seeds biomass wastes show high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, pH on the removal of heavy metalswere studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 107
6493 Spectra Analysis in Sunset Color Demonstrations with a White-Color LED as a Light Source

Authors: Makoto Hasegawa, Seika Tokumitsu

Abstract:

Spectra of light beams emitted from white-color LED torches are different from those of conventional electric torches. In order to confirm if white-color LED torches can be used as light sources for popular sunset color demonstrations in spite of such differences, spectra of travelled light beams and scattered light beams with each of a white-color LED torch (composed of a blue LED and yellow-color fluorescent material) and a conventional electric torch as a light source were measured and compared with each other in a 50 cm-long water tank for sunset color demonstration experiments. Suspension liquid was prepared from acryl-emulsion and tap-water in the water tank, and light beams from the white-color LED torch or the conventional electric torch were allowed to travel in this suspension liquid. Sunset-like color was actually observed when the white-color LED torch was used as the light source in sunset color demonstrations. However, the observed colors when viewed with naked eye look slightly different from those obtainable with the conventional electric torch. At the same time, with the white-color LED, changes in colors in short to middle wavelength regions were recognized with careful observations. From those results, white-color LED torches are confirmed to be applicable as light sources in sunset color demonstrations, although certain attentions have to be paid. Further advanced classes will be successfully performed with white-color LED torches as light sources.

Keywords: blue sky demonstration, sunset color demonstration, white LED torch, physics education

Procedia PDF Downloads 289
6492 Removal of Pb²⁺ from Waste Water Using Nano Silica Spheres Synthesized on CaCO₃ as a Template: Equilibrium and Thermodynamic Studies

Authors: Milton Manyangadze, Joseph Govha, T. Bala Narsaiah, Ch. Shilpa Chakra

Abstract:

The availability and access to fresh water is today a serious global challenge. This has been a direct result of factors such as the current rapid industrialization and industrial growth, persistent droughts in some parts of the world, especially in the sub-Saharan Africa as well as population growth. Growth of the chemical processing industry has also seen an increase in the levels of pollutants in our water bodies which include heavy metals among others. Heavy metals are known to be dangerous to both human and aquatic life. As such, they have been linked to several diseases. This is mainly because they are highly toxic. They are also known to be bio accumulative and non-biodegradable. Lead for example, has been linked to a number of health problems which include damage of vital internal body systems like the nervous and reproductive system as well as the kidneys. From this background therefore, the removal of the toxic heavy metal, Pb2+ from waste water was investigated using nano silica hollow spheres (NSHS) as the adsorbent. Synthesis of NSHS was done using a three-stage process in which CaCO3 nanoparticles were initially prepared as a template. This was followed by treatment of the formed oxide particles with NaSiO3 to give a nanocomposite. Finally, the template was destroyed using 2.0M HCl to give NSHS. Characterization of the nanoparticles was done using analytical techniques like XRD, SEM, and TGA. For the adsorption process, both thermodynamic and equilibrium studies were carried out. Thermodynamic studies were carried out and the Gibbs free energy, Enthalpy and Entropy of the adsorption process were determined. The results revealed that the adsorption process was both endothermic and spontaneous. Equilibrium studies were also carried out in which the Langmuir and Freundlich isotherms were tested. The results showed that the Langmuir model best described the adsorption equilibrium.

Keywords: characterization, endothermic, equilibrium studies, Freundlich, Langmuir, nanoparticles, thermodynamic studies

Procedia PDF Downloads 221
6491 Transformations of Spatial Distributions of Bio-Polymers and Nanoparticles in Water Suspensions Induced by Resonance-Like Low Frequency Electrical Fields

Authors: A. A. Vasin, N. V. Klassen, A. M. Likhter

Abstract:

Water suspensions of in-organic (metals and oxides) and organic nano-objects (chitozan and collagen) were subjected to the treatment of direct and alternative electrical fields. In addition to quasi-periodical spatial patterning resonance-like performance of spatial distributions of these suspensions has been found at low frequencies of alternating electrical field. These resonances are explained as the result of creation of equilibrium states of groups of charged nano-objects with opposite signs of charges at the interparticle distances where the forces of Coulomb attraction are compensated by the repulsion forces induced by relatively negative polarization of hydrated regions surrounding the nanoparticles with respect to pure water. The low frequencies of these resonances are explained by comparatively big distances between the particles and their big masses with t\respect to masses of atoms constituting molecules with high resonance frequencies. These new resonances open a new approach to detailed modeling and understanding of mechanisms of the influence of electrical fields on the functioning of internal organs of living organisms at the level of cells and neurons.

Keywords: bio-polymers, chitosan, collagen, nanoparticles, coulomb attraction, polarization repulsion, periodical patterning, electrical low frequency resonances, transformations

Procedia PDF Downloads 550
6490 Comparison of On-Site Stormwater Detention Real Performance and Theoretical Simulations

Authors: Pedro P. Drumond, Priscilla M. Moura, Marcia M. L. P. Coelho

Abstract:

The purpose of On-site Stormwater Detention (OSD) system is to promote the detention of addition stormwater runoff caused by impervious areas, in order to maintain the peak flow the same as the pre-urbanization condition. In recent decades, these systems have been built in many cities around the world. However, its real efficiency continues to be unknown due to the lack of research, especially with regard to monitoring its real performance. Thus, this study aims to compare the water level monitoring data of an OSD built in Belo Horizonte/Brazil with the results of theoretical methods simulations, usually adopted in OSD design. There were made two theoretical simulations, one using the Rational Method and Modified Puls method and another using the Soil Conservation Service (SCS) method and Modified Puls method. The monitoring data were obtained with a water level sensor, installed inside the reservoir and connected to a data logger. The comparison of OSD performance was made for 48 rainfall events recorded from April/2015 to March/2017. The comparison of maximum water levels in the OSD showed that the results of the simulations with Rational/Puls and SCS/Puls methods were, on average 33% and 73%, respectively, lower than those monitored. The Rational/Puls results were significantly higher than the SCS/Puls results, only in the events with greater frequency. In the events with average recurrence interval of 5, 10 and 200 years, the maximum water heights were similar in both simulations. Also, the results showed that the duration of rainfall events was close to the duration of monitored hydrograph. The rising time and recession time of the hydrographs calculated with the Rational Method represented better the monitored hydrograph than SCS Method. The comparison indicates that the real discharge coefficient value could be higher than 0.61, adopted in Puls simulations. New researches evaluating OSD real performance should be developed. In order to verify the peak flow damping efficiency and the value of the discharge coefficient is necessary to monitor the inflow and outflow of an OSD, in addition to monitor the water level inside it.

Keywords: best management practices, on-site stormwater detention, source control, urban drainage

Procedia PDF Downloads 192
6489 Effect of Local Steel Slag as a Coarse Aggregate in the Properties of Fly Ash Based-Geopolymer Concrete

Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien

Abstract:

Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitute of crushed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of dolomite. This paper reports the experimental study to investigate the influence of a hundred replacement of dolomite as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.

Keywords: geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate

Procedia PDF Downloads 306
6488 Development of a Solar Energy Based Prototype, CyanoClean, for Arsenic Removal from Water with the Use of a Cyanobacterial Consortium in Field Conditions of India

Authors: Anurakti Shukla, Sudhakar Srivastava

Abstract:

Cyanobacteria are known for rapid growth rates, high biomass, and the ability to accumulate potentially toxic elements and contaminants. The present work was planned to develop a low-cost, feasible prototype, CyanoClean, for the growth of a cyanobacterial consortium for the removal of arsenic (As) from water. The cyanobacterial consortium consisting of Oscillatoria, Phormidiumand Gloeotrichiawas used, and the conditions for optimal growth of the consortium were standardized. A pH of 7.6, initial cyanobacterial biomass of 10 g/L, and arsenite [As(III)] and arsenate [As(V)] concentration of 400 μΜand 600 μM, respectively, were found to be suitable. The CyanoClean prototype was designed with acrylic sheet and had arrangements for optimal cyanobacterial growth in natural sunlight and also in artificial light. The As removal experiments in concentration- and duration-dependent manner demonstrated removal of up to 39-69% and 9-33% As respectively from As(III) and As(V)-contaminated water. In field testing of CyanoClean, natural As-contaminated groundwater was used, and As reduction was monitored when a flow rate of 3 L/h was maintained. In a field experiment, As concentration in groundwater was found to reduce from 102.43 μg L⁻¹ to <10 μg L⁻¹ after 6 h in natural sunlight. However, in shaded conditions under artificial light, the same result was achieved after 9 h. The CyanoClean prototype is of simple design and can be easily up-scaled for application at a small- to medium-size land and shall be affordable even for a low- to middle-income group farmer.

Keywords: cyanoclean, gloeotrichia, oscillatoria, phormidium, phycoremediation

Procedia PDF Downloads 147
6487 Characterization of Chemically Deposited CdS Thin Films Annealed in Different Atmospheres

Authors: J. Pantoja Enríquez, G. P. Hernández, G. I. Duharte, X. Mathew, J. Moreira, P. J. Sebastian

Abstract:

Cadmium sulfide films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in air, argon, hydrogen and nitrogen for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film.

Keywords: cds, thin films, annealing, optical, electrical properties

Procedia PDF Downloads 513
6486 Architectural Approaches to a Sustainable Community with Floating Housing Units Adapting to Climate Change and Sea Level Rise in Vietnam

Authors: Nguyen Thi Thu Trang

Abstract:

Climate change and sea level rise is one of the greatest challenges facing human beings in the 21st century. Because of sea level rise, several low-lying coastal areas around the globe are at risk of being completely submerged, disappearing under water. Particularly in Viet Nam, the rise in sea level is predicted to result in more frequent and even permanently inundated coastal plains. As a result, land reserving fund of coastal cities is going to be narrowed in near future, while construction ground is becoming increasingly limited due to a rapid growth in population. Faced with this reality, the solutions are being discussed not only in tradition view such as accommodation is raised or moved to higher areas, or “living with the water”, but also forwards to “living on the water”. Therefore, the concept of a sustainable floating community with floating houses based on the precious value of long term historical tradition of water dwellings in Viet Nam would be a sustainable solution for adaptation of climate change and sea level rise in the coastal areas. The sustainable floating community is comprised of sustainability in four components: architecture, environment, socio-economic and living quality. This research paper is focused on sustainability in architectural component of floating community. Through detailed architectural analysis of current floating houses and floating communities in Viet Nam, this research not only accumulates precious values of traditional architecture that need to be preserved and developed in the proposed concept, but also illustrates its weaknesses that need to address for optimal design of the future sustainable floating communities. Based on these studies the research would provide guidelines with appropriate architectural solutions for the concept of sustainable floating community with floating housing units that are adapted to climate change and sea level rise in Viet Nam.

Keywords: guidelines, sustainable floating community, floating houses, Vietnam

Procedia PDF Downloads 530
6485 Biosensors for Parathion Based on Au-Pd Nanoparticles Modified Electrodes

Authors: Tian-Fang Kang, Chao-Nan Ge, Rui Li

Abstract:

An electrochemical biosensor for the determination of organophosphorus pesticides was developed based on electrochemical co-deposition of Au and Pd nanoparticles on glassy carbon electrode (GCE). Energy disperse spectroscopy (EDS) analysis was used for characterization of the surface structure. Scanning electron micrograph (SEM) demonstrates that the films are uniform and the nanoclusters are homogeneously distributed on the GCE surface. Acetylcholinesterase (AChE) was immobilized on the Au and Pd nanoparticle modified electrode (Au-Pd/GCE) by cross-linking with glutaraldehyde. The electrochemical behavior of thiocholine at the biosensor (AChE/Au-Pd/GCE) was studied. The biosensors exhibited substantial electrocatalytic effect on the oxidation of thiocholine. The peak current of linear scan voltammetry (LSV) of thiocholine at the biosensor is proportional to the concentration of acetylthiocholine chloride (ATCl) over the range of 2.5 × 10-6 to 2.5 × 10-4 M in 0.1 M phosphate buffer solution (pH 7.0). The percent inhibition of acetylcholinesterase was proportional to the logarithm of parathion concentration in the range of 4.0 × 10-9 to 1.0 × 10-6 M. The detection limit of parathion was 2.6 × 10-9 M. The proposed method exhibited high sensitivity and good reproducibility.

Keywords: acetylcholinesterase, Au-Pd nanoparticles, electrochemical biosensors, parathion

Procedia PDF Downloads 410
6484 Deep Groundwater Potential and Chemical Analysis Based on Well Logging Analysis at Kapuk-Cengkareng, West Jakarta, DKI Jakarta, Indonesia

Authors: Josua Sihotang

Abstract:

Jakarta Capital Special Region is the province that densely populated with rapidly growing infrastructure but less attention for the environmental condition. This makes some social problem happened like lack of clean water supply. Shallow groundwater and river water condition that has contaminated make the layer of deep water carrier (aquifer) should be done. This research aims to provide the people insight about deep groundwater potential and to determine the depth, location, and quality where the aquifer can be found in Jakarta’s area, particularly Kapuk-Cengkareng’s people. This research was conducted by geophysical method namely Well Logging Analysis. Well Logging is the geophysical method to know the subsurface lithology with the physical characteristic. The observation in this research area was conducted with several well devices that is Spontaneous Potential Log (SP Log), Resistivity Log, and Gamma Ray Log (GR Log). The first devices well is SP log which is work by comprising the electrical potential difference between the electrodes on the surface with the electrodes that is contained in the borehole and rock formations. The second is Resistivity Log, used to determine both the hydrocarbon and water zone based on their porosity and permeability properties. The last is GR Log, work by identifying radioactivity levels of rocks which is containing elements of thorium, uranium, or potassium. The observation result is curve-shaped which describes the type of lithological coating in subsurface. The result from the research can be interpreted that there are four of the deep groundwater layer zone with different quality. The good groundwater layer can be found in layers with good porosity and permeability. By analyzing the curves, it can be known that most of the layers which were found in this wellbore are clay stone with low resistivity and high gamma radiation. The resistivity value of the clay stone layers is about 2-4 ohm-meter with 65-80 Cps gamma radiation. There are several layers with high resistivity value and low gamma radiation (sand stone) that can be potential for being an aquifer. This is reinforced by the sand layer with a right-leaning SP log curve proving that this layer is permeable. These layers have 4-9 ohm-meter resistivity value with 40-65 Cps gamma radiation. These are mostly found as fresh water aquifer.

Keywords: aquifer, deep groundwater potential, well devices, well logging analysis

Procedia PDF Downloads 257
6483 Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids

Authors: Devesh Motwani, Amey Kashyap

Abstract:

Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required.

Keywords: economics, guargum, viscofier, CMC, thermal stability

Procedia PDF Downloads 475
6482 Reduction of Toxic Matter from Marginal Water Treatment Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter

Authors: Dheyaa Wajid Abbood, Ali Mohammed Tawfeeq Baqer, Eitizaz Awad Jasim

Abstract:

The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the Environmental Hydraulic Laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used.

Keywords: Marginal water , Toxic matter, Stepped Cascade weir, limestone trickling filter

Procedia PDF Downloads 400
6481 Preparation of Gold Nanoparticles Stabilized in Acid-Activated Montmorillonite for Nitrophenol Reduction

Authors: Fatima Ammari, Meriem Chenouf

Abstract:

Synthesis of gold nanoparticles (AuNPs) has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used montmorillonite pre-acidified under gentle conditions for AuNPs stabilization; using different loading percentage 1, 2 and 5%. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in acid-activated montmorillonite were used as catalysts for reduction of 4-nitrophenol to aminophenol with sodium borohydride at room temperature The UV-Vis results confirm directly the gold nanaoparticles formation. The XRD N2 adsorption and MET results showed the formation of gold nanoparticles in the pores of preacidified montmorillonite with an average size of 5.7nm. The reduction reaction of 4-nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au°-montmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 4.5min.

Keywords: gold, acid-activated montmorillonite, nanoparticles, 4-nitrophenol

Procedia PDF Downloads 392
6480 Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete

Authors: Dhara Shah, Chandrakant Shah

Abstract:

Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion.

Keywords: curing methods, self-curing compound, compressive strength, modulus of elasticity, durability

Procedia PDF Downloads 331
6479 Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia

Authors: Samira Melki, Moncef Gueddari

Abstract:

In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall.

Keywords: phosphogypsum leatchate, groundwater quality, pollution, stable isotopes, Sfax-Agareb, Tunisia

Procedia PDF Downloads 208
6478 The Influence of the Aquatic Environment on Hematological Parameters in Cyprinus carpio

Authors: Andreea D. Șerban, Răzvan Mălăncuș, Mihaela Ivancia, Șteofil Creangă

Abstract:

Just as air influences the quality of life in the terrestrial environment, water, as a living environment, is one of great importance when it comes to the quality of life of underwater animals, which acquires an even higher degree of importance when analyzing underwater creatures as future products for human consumption. Thus, going beyond the ideal environment, in which all water quality parameters are permanently in perfect standards for reproduction, growth, and development of fish material and customizing this study to reality, it was demonstrated the importance of reproduction, development, and growth of biological material, necessary in the population fish farms, in the same environment to gain the maximum yield that a fish farm can offer. The biological material used was harvested from 3 fish farms located at great distances from each other to have environments with different parameters. The specimens were clinically healthy at 2 years of age. Thus, the differences in water quality parameters had effects on specimens from other environments, describing large curves in their evolution in new environments. Another change was observed in the new environment, the specimens contributing with the "genetic package" to its modification, tending to a balance of the parameters studied to the values in the environment in which they lived until the time of the experiment. The study clearly showed that adaptability to the environment in which an individual has developed and grown is not valid in environments with different parameters, resulting even in the fatality of one sample during the experiment. In some specimens, the values of the studied hematological parameters were halved after the transfer to the new environment, and in others, the same parameters were doubled. The study concludes that the specimens were adapted to the environment in which they developed and grew, their descendants having a higher value of heritability only in the initial environment. It is known that heritability is influenced 50% by the genetic package of the individual and 50% by the environment, by removing the value of the environment, the duration of improvement of characters of interest will be shorter and the maximum yield of fish farms can be achieved in a smaller period.

Keywords: environment, heritability, quality, water

Procedia PDF Downloads 175
6477 Numerical Study of Wettability on the Triangular Micro-pillared Surfaces Using Lattice Boltzmann Method

Authors: Ganesh Meshram, Gloria Biswal

Abstract:

In this study, we present the numerical investigation of surface wettability on triangular micropillar surfaces by using a two-dimensional (2D) pseudo-potential multiphase lattice Boltzmann method with a D2Q9 model for various interaction parameters of the range varies from -1.40 to -2.50. Initially, simulation of the equilibrium state of a water droplet on a flat surface is considered for various interaction parameters to examine the accuracy of the present numerical model. We then imposed the microscale pillars on the bottom wall of the surface with different heights of the pillars to form the hydrophobic and superhydrophobic surfaces which enable the higher contact angle. The wettability of surfaces is simulated with water droplets of radius 100 lattice units in the domain of 800x800 lattice units. The present study shows that increasing the interaction parameter of the pillared hydrophobic surfaces dramatically reduces the contact area between water droplets and solid walls due to the momentum redirection phenomenon. Contact angles for different values of interaction strength have been validated qualitatively with the analytical results.

Keywords: contact angle, lattice boltzmann method, d2q9 model, pseudo-potential multiphase method, hydrophobic surfaces, wenzel state, cassie-baxter state, wettability

Procedia PDF Downloads 72
6476 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block

Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali

Abstract:

In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.

Keywords: foamed concrete, oil palm ash, strength, interlocking block

Procedia PDF Downloads 265
6475 A Study of Evaporative Heat Loss from the Skin of Baby Elephants (Elephas maximus maximus) at Elephant Transit Home

Authors: G .D. B. N. Kulasaooriya, H. B. S. Ariyarathne, I. Abeygunawardene, A. A. J. Rafarathne, B. V. Perera

Abstract:

Elephant is the largest resident of the wild and has small surface to volume ratio as well as less number of sweat glands which cause challenges to the thermoregulation of this mammal. However, this megaherbivore has adopted specialised meachanisms to maintain its thermal balance through behavioral adaptations, ear flapping and well anastomosed arterioles and venules of the ear. Nevertheless, little is known on the involvement of the skin in the process of thermoregulation. The present study was undertaken to monitor the water evaporation rate from the skin of unrestrained wild elephant calves throughout the day and to understand its importance in the thermoregulation. Seven baby elephants housed in the elephant transit home, Udawalawe were used. Ambient temparature, relative humidity (RH) and radiation heat load was monitored throughout the day of the study period. Similarly, surface temparature of the skin was taken at six points including lateral ear pinna, lateral body and the rump during the same period. The skin water evaporation was also measured from the same sites using cobolt chloride method. The surface are of the skin was determined by assigning geometrical shapes to each body part. The results showed that the ambient temperature gradually increased with the day reaching maximum around 3.00 pm. The relative humidity was lowest early in the morning. The radiation heat load did not show any significant change in the study period. The skin temperature was different among lateral ear pinna, lateral body and the rump where the highest temperature was on the rump and the lowest on the lateral ear pinna. The skin temperature gradually increase with increasing ambient temperature but there was not a strong correlation (R2 =53.53) between these two. The skin temperature had strong correlation with RH (p<0.05 R2 =70.84% ) but a significant relationship was not considered since the radiation heat load was not varying in large scale. The skin evaporative water loss had a weak negative correlation with ambient temperature (correlation coefficient= -0.01) whereas strong positive correlation with RH (correlation coefficient= 25.275 ) and no corelation with radiation heat load. It also appeared that skin water loss increases as the skin temperature increased. In the present study, it was observed that on average, skin of the baby elephant looses 403 g/m2/h of water. Based on these observations it can be concluded that a large volume of water is evaporated from the skin of baby elephants and evaporative heat loss may be contributing significantly to the thermoregulation. However, further investigation on the influence of environmental factors on evaporative heat loss has to be conducted to understand the thermoregulatory mechanisms of the baby elephant.

Keywords: thermoregulation, behavioral adaptations, evaporation, elephant

Procedia PDF Downloads 381
6474 Normal Spectral Emissivity of Roughened Aluminum Alloy AL 6061 Surfaces at High Temperature

Authors: Sumeet Kumar, C. V. Krishnamurthy, Krishnan Balasubramaniam

Abstract:

Normal spectral emissivity of Al 6061 alloys with different surface finishes was experimentally measured at 833°K. Four different samples were prepared by polishing the surfaces of the alloy by 80, 220, 600 grit sizes of SiC abrasive papers and diamond paste. The samples were heated in air for 6 h at 833°K, and the emissivity was measured during the process from pyrometers operating at wavelengths of 3.9, 5.14 and 7.8 μm. The results indicated that the emissivity was increasing with heating time and the rate of increase was rapid during the initial stage of heating in comparison with the later stage. This appears to be because of the parabolic rate law followed by the process of oxidation. Further, it is found that the increase in emissivity with heating time was higher for rough surfaces than that for polished surfaces. Both the results were analyzed at all the three wavelengths, and qualitatively similar results were obtained for all of them. In this way emissivity of the alloy can be increased by roughening the surfaces and heating it at high temperature until the surfaces are oxidized.

Keywords: aluminum alloy, high temperature, normal spectral emissivity, surface roughness

Procedia PDF Downloads 234
6473 Yield Level, Variability and Yield Gap of Maize (Zea Mays L.) Under Variable Climate Condition of the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Soil moisture and nutrient availability are the two key edaphic factors that affect crop yields and are directly or indirectly affected by climate variability and change. The study examined climate-induced yield level, yield variability and gap of maize during 1981-2010 main growing season in the Central Rift Valley (CRV) of Ethiopia. Pearson correlation test was employed to see the relationship between climate variables and yield. The coefficient of variation (CV) was used to analyze annual yield variability. Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate the growth and yield of maize for the study period. The result indicated that maize grain yield was strongly (P<0.01) and positively correlated with seasonal rainfall (r=0.67 at Melkassa and r = 0.69 at Ziway) in the CRV while day temperature affected grain yield negatively (r= -0.44) at Ziway (P<0.05) during the simulation period. Variations in total seasonal rainfall at Melkassa and Ziway explained 44.9 and 48.5% of the variation in yield, respectively, under optimum nutrition. Following variation in rainfall, high yield variability (CV=23.5%, Melkassa and CV=25.3%, Ziway) was observed for optimum nutrient simulation than the corresponding nutrient limited simulation (CV=16%, Melkassa and 24.1%, Ziway) in the study period. The observed farmers’ yield was 72, 52 and 43% of the researcher-managed, water-limited and potential yield of the crop, respectively, indicating a wide maize yield gap in the region. The study revealed rainfed crop production in the CRV is prone to yield variabilities due to its high dependence on seasonal rainfall and nutrient level. Moreover, the high coefficient of variation in the yield gap for the 30-year period also foretells the need for dependable water supply at both locations. Given the wide yield gap especially during lower rainfall years across the simulation periods, it signifies the requirement for a more dependable application of irrigation water and a potential shift to irrigated agriculture; hence, adopting options that can improve water availability and nutrient use efficiency would be crucial for crop production in the area.

Keywords: climate variability, crop model, water availability, yield gap, yield variability

Procedia PDF Downloads 76
6472 Anti-inflammatory Effect of Wild Indigo (Baptisia tinctoria) Root on Raw 264.7 Cells with Stimulated Lipopolysaccharide

Authors: Akhmadjon Sultanov, Eun-Ho Lee, Hye-Jin Park, Young-Je Cho

Abstract:

This study tested the anti-inflammatory effect of wild indigo (Baptisia tinctoria) root in Raw 264.7 cells. We prepared two extracts of B. tinctoria; one in water and the other in 50% ethanol. Then we evaluated the toxicities of the B. tinctoria root extracts at 10 to 100 mg mL-1 concentrations in raw 264.7 cells and observed 80% cell viability. The anti-inflammatory effect of B. tinctoria root extract in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were observed with concentrations at 10, 30, and 50 μg mL-1. The results showed that 77.27-66.82% of nitric oxide (NO) production was inhibited by 50 μg mL-1 B. tinctoria root extract. The protein expression of Inducible NO synthase (iNOS) expression dramatically decreased by 93.14% and 52.65% in raw 264.7 cells treated with water and ethanol extracts of B. tinctoria root, respectively. Moreover, cyclooxygenase-2 (COX-2) protein expression decreased by 42.85% and 69.70% in raw 264.7 cells treated with water and ethanol extracts of B. tinctoria root, respectively. Furthermore, the mRNA expression of pro-inflammatory markers, such as tumor necrosis factor-alpha, interleukin-1β, interleukin-6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2, was significantly suppressed in a concentration-dependent manner. Additionally, the B. tinctoria root extracts effectively inhibited enzymes involved in physiological activities. The B. tinctoria root extracts showed excellent anti-inflammatory effects and can be used as a functional material for biological activities.

Keywords: cytokine, macrophage, pro-inflammatory, protein expression, real-time PCR

Procedia PDF Downloads 75
6471 Enhanced Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterwards, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model were considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field, is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low salinity water flooding, immiscible displacement, kashkari oil field, twophase flow, numerical reservoir simulation model

Procedia PDF Downloads 47
6470 Environmental Interactions in Riparian Vegetation Cover in an Urban Stream Corridor: A Case Study of Duzce Asar Suyu

Authors: Engin Eroğlu, Oktay Yıldız, Necmi Aksoy, Akif Keten, Mehmet Kıvanç Ak, Şeref Keskin, Elif Atmaca, Sertaç Kaya

Abstract:

Nowadays, green spaces in urban areas are under threat and decreasing their percentages in the urban areas because of increasing population, urbanization, migration, and some cultural changes in quality. An important element of the natural landscape water and water-related natural ecosystems are exposed to corruption due to these pressures. A landscape has owned many different types of elements or units, a more dominant structure than other landscapes as good or bad perceptible extent different direction and variable reveals a unique structure and character of the landscape. Whereas landscapes deal with two main groups as urban and rural according to their location on the world, especially intersection areas of urban and rural named semi-urban or semi-rural present variety landscape features. The main components of the landscape are defined as patch-matrix-corridor. The corridors include quite various vegetation types such as riparian, wetland and the others. In urban areas, natural water corridors are an important elements of the diversity of the riparian vegetation cover. In particular, water corridors attract attention with a natural diversity and lack of fragmentation, degradation and artificial results. Thanks to these features, without a doubt, water corridors are the important component of all cities in the world. These corridors not only divide the city into two separate sides, but also assured the ecological connectivity between the two sides of the city. The main objective of this study is to determine the vegetation and habitat features of urban stream corridor according to environmental interactions. Within this context, this study will be realized that 'Asar Suyu' is an important component of the city of Düzce. Moreover, the riparian zone touched contiguous area borders of the city and overlaid the urban development limits of the city, determining of characteristics of the corridor will be carried out as floristic and habitat analysis. Consequently, vegetation structure and habitat features which play an important role between riparian zone vegetation covers and environmental interaction will be determined. This study includes first results of The Scientific and Technological Research Council of Turkey (TUBITAK-116O596; 'Determining of Landscape Character of Urban Water Corridors as Visual and Ecological; A Case Study of Asar Suyu in Duzce').

Keywords: corridor, Duzce, landscape ecology, riparian vegetation

Procedia PDF Downloads 338
6469 Nigeria Rural Water Supply Management: Participatory Process as the Best Option

Authors: E. O. Aluta, C. A. Booth, D. G. Proverbs, T. Appleby

Abstract:

Challenges in the effective management of potable water have attracted global attention in recent years and remain many world regions’ major priorities. Scarcity and unavailability of potable water may potentially escalate poverty, obviate democratic expression of views and militate against inter-sectoral development. These challenges contra-indicate the inherent potentials of the resource. Thus, while creation of poverty may be regarded as a broad-based problem, it is capable of reflecting life-span reduction diseases, the friction of interests manifesting in threats and warfare, the relegation of democratic principles for authoritarian definitions and Human Rights abuse. The challenges may be identified as manifestations of ineffective management of potable water resource and therefore, regarded as major problems in environmental protection. In reaction, some nations have re-examined their laws and policies, while others have developed innovative projects, which seek to ameliorate difficulties of providing sustainable potable water. The problems resonate in Nigeria, where the legal framework supporting the supply and management of potable water has been criticized as ineffective. This has impacted more on rural community members, often regarded as ‘voiceless’. At that level, the participation of non-state actors has been identified as an effective strategy, which can improve water supply. However, there are indications that there is no pragmatic application of this, resulting in over-centralization and top-down management. Thus, this study focuses on how the participatory process may enable the development of participatory water governance framework, for use in Nigeria rural communities. The Rural Advisory Board (RAB) is proposed as a governing body to promote proximal relationships, institute democratisation borne out of participation, while enabling effective accountability and information. The RAB establishes mechanisms for effectiveness, taking into consideration Transparency, Accountability and Participation (TAP), advocated as guiding principles of decision-makers. Other tools, which may be explored in achieving these are, Laws and Policies supporting the water sector, under the direction of the Ministries and Law Courts, which ensure non-violation of laws. Community norms and values, consisting of Nigerian traditional belief system, perceptions, attitude and reality (often undermined in favour of legislations), are relied on to pave the way for enforcement. While the Task Forces consist of community members with specific designation of duties, which ensure compliance and enforceability, a cross-section of community members are assigned duties. Thus, the principle of participation is pragmatically reflected. A review of the literature provided information on the potentials of the participatory process, in potable water governance. Qualitative methodology was explored by using the semi-structured interview as strategy for inquiry. The purposive sampling strategy, consisting of homogeneous, heterogeneous and criterion techniques was applied to enable sampling. The samples, sourced from diverse positions of life, were from the study area of Delta State of Nigeria, involving three local governments of Oshimili South, Uvwie and Warri South. From the findings, there are indications that the application of the participatory process is inhered with empowerment of the rural community members to make legitimate demands for TAP. This includes the obviation of mono-decision making for the supply and management of potable water. This is capable of restructuring the top-down management to a top-down/bottom-up system.

Keywords: participation, participatory process, participatory water governance, rural advisory board

Procedia PDF Downloads 388
6468 Systematics of Water Lilies (Genus Nymphaea L.) Using 18S rDNA Sequences

Authors: M. Nakkuntod, S. Srinarang, K.W. Hilu

Abstract:

Water lily (Nymphaea L.) is the largest genus of Nymphaeaceae. This family is composed of six genera (Nuphar, Ondinea, Euryale, Victoria, Barclaya, Nymphaea). Its members are nearly worldwide in tropical and temperate regions. The classification of some species in Nymphaea is ambiguous due to high variation in leaf and flower parts such as leaf margin, stamen appendage. Therefore, the phylogenetic relationships based on 18S rDNA were constructed to delimit this genus. DNAs of 52 specimens belonging to water lily family were extracted using modified conventional method containing cetyltrimethyl ammonium bromide (CTAB). The results showed that the amplified fragment is about 1600 base pairs in size. After analysis, the aligned sequences presented 9.36% for variable characters comprising 2.66% of parsimonious informative sites and 6.70% of singleton sites. Moreover, there are 6 regions of 1-2 base(s) for insertion/deletion. The phylogenetic trees based on maximum parsimony and maximum likelihood with high bootstrap support indicated that genus Nymphaea was a paraphyletic group because of Ondinea, Victoria and Euryale disruption. Within genus Nymphaea, subgenus Nymphaea is a basal lineage group which cooperated with Euryale and Victoria. The other four subgenera, namely Lotos, Hydrocallis, Brachyceras and Anecphya were included the same large clade which Ondinea was placed within Anecphya clade due to geographical sharing.

Keywords: nrDNA, phylogeny, taxonomy, waterlily

Procedia PDF Downloads 146
6467 Adaptive Architecture and Urbanism - A Study of Coastal Cities, Climate Change Problems, Effects, Risks And Opportunities for Making Sustainable Habitat

Authors: Santosh Kumar Ketham

Abstract:

Climate change creating most dramatic and destructive consequences, the result is global warming and sea-level rise, flooding coastal cities around the world forming vulnerable situations affecting in multiple ways: environment, economy, social and political. The aim and goal of the research is to develop cities on water. Taking the problem as an opportunity to bring science, engineering, policies and design together to make a resilient and sustainable floating community on water considering existing/new technologies of floating. The quest is to make sustainable habitat on water to live, work, learn and play.  To make sustainable energy generation and storage alongside maintaining balance of land and marine to conserve Ecosystem. The research would serve as a model for sustainable neighbourhoods designed in a modular way and thus can easily extend or re-arranged, to adapt for future socioeconomic realities.  This research paper studies primarily on climate change problems, effects, risks and opportunities. It does so, through analysing existing case studies, books and writings published on coastal cities and understanding its various aspects for making sustainable habitat.

Keywords: floating cities, flexible modular typologies, rising sea levels, sustainable architecture and urbanism

Procedia PDF Downloads 142
6466 Bioaccumulation of Polycyclic Aromatic Hydrocarbons in Padina boryana Alga Collected from a Contaminated Site at the Red Sea, Saudi Arabia

Authors: Huda Qari, I. A. Hassan

Abstract:

The brown alga Padina boryanawas was used for bioassay of polycyclic aromatic hydrocarbons (PAHs) accumulation at the seashore of Jeddah city. PAHs were determined in the coastal water and algal tissues by GC-MS. Acenaphthene (Ace) and dibenzo (a,h) anthracene (dB(a,h)An) were the main PAHs in seawater (50.02 and 46.18) and algal tissues (64.67 and 72.45), respectively. The ratios of low molecular weight/high molecular weight hydrocarbons (1.76 – 1.44), fluoranthene/pyrene (1.57 – 1.52) and phenanthrene/anthracene (0.86 – 0.67) in seawater and algal tissues, respectively, indicated the origin of the PAHs to be mainly petrogenic. This study has demonstrated the utility of using Padina boryanawas as a biomonitor of PAH contamination and bioavailability in the coastal waters.

Keywords: polycyclic aromatic hydrocarbons, Padina boryanawas, bioaccumulation, waste water

Procedia PDF Downloads 287