Search results for: biodiversity monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3476

Search results for: biodiversity monitoring

536 Geochemical Characteristics and Chemical Toxicity: Appraisal of Groundwater Uranium With Other Geogenic Contaminants in Various Districts of Punjab, India

Authors: Tanu Sharma, Bikramjit Singh Bajwa, Inderpreet Kaur

Abstract:

Monitoring of groundwater in Tarn-Taran, Bathinda, Faridkot and Mansa districts of Punjab state, India is essential where this freshwater resource is being over-exploited causing quality deterioration, groundwater depletion and posing serious threats to residents. The present integrated study was done to appraise quality and suitability of groundwater for drinking/irrigation purposes, hydro-geochemical characteristics, source identification and associated health risks. In the present study, groundwater of various districts of Punjab state was found to be heavily contaminated with As followed by U, thus posing high cancerous risks to local residents via ingestion, along with minor contamination of Fe, Mn, Pb and F−. Most health concerns in the study region were due to the elevated concentrations of arsenic in groundwater with average values of 130 µg L-1, 176 µg L-1, 272 µg L-1 and 651 µg L-1 in Tarn-Taran, Bathinda, Faridkot and Mansa districts, respectively, which is quite high as compared to the safe limit as recommended by BIS i.e. 10 µg L-1. In Tarn-Taran, Bathinda, Faridkot and Mansa districts, average uranium contents were found to be 37 µg L-1, 88 µg L-1, 61 µg L-1 and 104 µg L-1, with 51 %, 74 %, 61 % and 71 % samples, respectively, being above the WHO limit of 30 µg L-1 in groundwater. Further, the quality indices showed that groundwater of study region is suited for irrigation but not appropriate for drinking purposes. Hydro-geochemical studies revealed that most of the collected groundwater samples belonged to Ca2+ - Mg2+ - HCO3- type showing dominance of MgCO3 type which indicates the presence of temporary hardness in groundwater. Rock-water reactions and reverse ion exchange were the predominant factors for controlling hydro-geochemistry in the study region. Dissolution of silicate minerals caused the dominance of Na+ ions in the aquifers of study region. Multivariate statistics revealed that along with geogenic sources, contribution of anthropogenic activities such as injudicious application of agrochemicals and domestic waste discharge was also very significant. The results obtained abolished the myth that uranium is only root cause for large number of cancer patients in study region as arsenic and mercury were also present in groundwater at levels that were of health concern to groundwater.

Keywords: uranium, trace elements, multivariate data analysis, risk assessment

Procedia PDF Downloads 53
535 Reviewing Performance Assessment Frameworks for Urban Sanitation Services in India

Authors: Gaurav Vaidya, N. R. Mandal

Abstract:

UN Summit, 2000 had resolved to provide access to sanitation to whole humanity as part of ‘Millennium Development Goals -2015’. However, more than one third of world’s population still did not have the access to basic sanitation facilities by 2015. Therefore, it will be a gigantic challenge to achieve goal-6 of ‘UN Sustainable Development Goal’ to ensure availability and sustainable management of sanitation for all by the year 2030. Countries attempt to find out own ways of meeting this challenge of providing access to safe sanitation and as part of monitoring the actions have prepared varied types of ‘performance assessment frameworks (PAF)’. India introduced Service Level Benchmarking (SLB) in 2010 to set targets and achieve the goals of NUSP. Further, a method of reviewing performance was introduced as ‘Swachh Sarvekshan’ (Cleanliness Surveys) in 2016 and in 2017 guidelines for the same was revised. This study, as a first step, reviews the documents in use in India with a conclusion that the frameworks adopted are based on target setting, financial allocation and performance in achieving the targets set. However, it does not focus upon sanitation needs holistically i.e., areas and aspects not targeted through projects are not covered in the performance assessment. In this context, as a second step, this study reviews literature available on performance assessment frameworks for urban sanitation in selected other countries and compares the same with that in India. The outcome of the comparative review resulted in identification of unaddressed aspects as well as inadequacy of parameters in Indian context. Thirdly, in an attempt to restructure the performance assessment process and develop an index in urban sanitation, researches done in other urban services such as health and education were studied focusing on methods of measuring under-performance. As a fourth step, a tentative modified framework is suggested with the help of understanding drawn from above for urban sanitation using stages of Urban Sanitation Service Chain Management (SSCM) and modified set of parameters drawn from the literature review in the first and second steps. This paper reviews existing literature on SSCM procedures, Performance Index in sanitation and other urban services and identifies a tentative list of parameters and a framework for measuring under-performance in sanitation services. This may aid in preparation of a Service Delivery Under-performance Index (SDUI) in future.

Keywords: assessment, performance, sanitation, services

Procedia PDF Downloads 121
534 Prevalence and Mechanisms of Antibiotic Resistance in Escherichia coli Isolated from Mastitic Dairy Cattle in Canada

Authors: Satwik Majumder, Dongyun Jung, Jennifer Ronholm, Saji George

Abstract:

Bovine mastitis is the most common infectious disease in dairy cattle, with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health. In this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with three heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors. Phenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics, and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = +0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates, corroborating phenotype observations. This investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through milk and dairy products.

Keywords: antimicrobial resistance, E. coli, bovine mastitis, antibiotics, heavy-metals, efflux pump, ß-lactamase enzyme, biofilm, whole-genome sequencing

Procedia PDF Downloads 181
533 The Role and Challenges of Social Workers in Child Protection: The Case of Indonesia

Authors: B. Rusyidi

Abstract:

Since 2009, the Indonesian Ministry of Social Affairs has been implementing Program Kesejahteraan Sosial Anak (PKSA) (Child Welfare Program) a conditional cash transfer program that targets neglected children, children with disabilities, street children, children in conflict with the law, and children in need of special protection, all from poor households. PKSA integrates three elements: Transfer of cash, care and social services through social workers, and institutional childcare assistance. This qualitative study analyzed the roles and the challenges of social workers in implementing PKSA and lays out recommendations to inform policy changes. Data were collected in late 2014 from national and local government and non-government child welfare agencies, social workers, and childcare institution representatives through interviews and Focused Group Discussions (FGDs). Field work took place in six districts in the provinces of Jakarta, Central Java and South Sulawesi. The study found that the social workers’ role was significant in facilitating cash transfer, providing education and guidance, and linking children and families to basic social services. This improved utilization of basic social services enhanced children and families’ behaviors and contributed to the well being of the children. However, only a small number of childcare institutions have social workers, leaving many children and families without care and social service linkages, depriving them of rehabilitative components to help them regain their social functions. Some social workers reported their struggles with heavy workloads, lack of professional competencies and training, limited job security, and inadequate professional acknowledgment from other professions. Parts of those challenges were due to the centralized nature of the program and the lack of shared vision and commitment about the child protection system among related government agencies both at the national and local levels. The study highlights the necessity to implement an integrated child protection system, decentralize the PKSA program, and increase the number, competence, case management, and management and monitoring of social workers. The most recent progress of the program and its impacts on social workers are also discussed.

Keywords: child protection, conditional cash transfer, program decentralization, social worker, working conditions

Procedia PDF Downloads 195
532 Dynamic Change of Floods Disaster Monitoring for River Central Bar by Remote Sensing Time-Series Images

Authors: Zuoji Huang, Jinyan Sun, Chunlin Wang, Haiming Qian, Nan Xu

Abstract:

The spatial extent and area of central river bars can always vary due to the impact of water level, sediment supply and human activities. In 2016, a catastrophic flood disaster caused by sustained and heavy rainfall happened in the middle and lower Yangtze River. The flood led to the most serious economic and social loss since 1954, and strongly affected the central river bar. It is essential to continuously monitor the dynamics change of central bars because it can avoid frequent field measurements in central bars before and after the flood disaster and is helpful for flood warning. This paper focused on the dynamic change of central bars of Phoenix bar and Changsha bar in the Yangtze River in 2016. In this study, GF-1 (GaoFen-1) WFV(wide field view) data was employed owing to its high temporal frequency and high spatial resolution. A simple NDWI (Normalized Difference Water Index) method was utilized for river central bar mapping. Human-checking was then performed to ensure the mapping quality. The relationship between the area of central bars and the measured water level was estimated using four mathematical models. Furthermore, a risk assessment index was proposed to map the spatial pattern of inundation risk of central bars. The results indicate a good ability of the GF-1 WFV imagery with a 16-m spatial resolution to characterize the seasonal variation of central river bars and to capture the impact of a flood disaster on the area of central bars. This paper observed a significant negative but nonlinear relationship between the water level and the area of central bars, and found that the cubic function fits best among four models (R² = 0.9839, P < 0.000001, RMSE = 0.4395). The maximum of the inundated area of central bars appeared during the rainy season on July 8, 2016, and the minimum occurred during the dry season on December 28, 2016, which are consistent with the water level measured by the hydrological station. The results derived from GF-1 data could provide a useful reference for decision-making of real-time disaster early warning and post-disaster reconstruction.

Keywords: central bars, dynamic change, water level, the Yangtze river

Procedia PDF Downloads 221
531 Sustainability Framework for Water Management in New Zealand's Canterbury Region

Authors: Bryan Jenkins

Abstract:

Introduction: The expansion of irrigation in the Canterbury region has led to the sustainability limits being reached for water availability and the cumulative effects of land use intensification. The institutional framework under New Zealand’s Resource Management Act was found to be an inadequate basis for managing water at sustainability limits. An alternative paradigm for water management was developed based on collaborative governance and nested adaptive systems. This led to the formulation and implementation of the Canterbury Water Management Strategy. Methods: The nested adaptive system approach was adopted. Sustainability issues were identified at multiple spatial and time scales and defined potential failure pathways for the water resource system. These included biophysical and socio-economic issues such as water availability, cumulative effects on water quality due to land use intensification, projected changes in climate, public health, institutional arrangements, economic outcomes and externalities, and, social effects of changing technology. This led to the derivation of sustainability strategies to address these failure pathways. The collaborative governance approach involved stakeholder participation and community engagement to decide on a regional strategy; regional and zone committees of community and rūnanga (Māori groups) members to develop implementation programmes for the strategy; and, farmer collectives for operational management. Findings: The strategy identified improvements in the efficiency of use of water already allocated was more effective in improving water availability than a reliance on increased storage alone. New forms of storage with less adverse impacts were introduced, such as managed aquifer recharge and off-river storage. Reductions of nutrients from land use intensification by improving management practices has been a priority. Solutions packages for addressing the degradation of vulnerable lakes and rivers have been prepared. Biodiversity enhancement projects have been initiated. Greater involvement of Māori has led to the incorporation of kaitiakitanga (resource stewardship) into implementation programmes. Emerging issues are the need for improved integration of surface water and groundwater interactions, increased use of modelling of water and financial outcomes to guide decision making, and, equity in allocation among existing users as well as between existing and future users. Conclusions: However, sustainability analysis indicates that the proposed levels of management interventions are not sufficient to achieve community targets for water management. There is a need for more proactive recovery and rehabilitation measures. Managing to environmental limits is not sufficient, rather managing adaptive cycles is needed. Better measurement and management of water use efficiency is required. Proposed implementation packages are not sufficient to deliver desired water quality outcomes. Greater attention to targets important to environmental and recreational interests is needed to maintain trust in the collaborative process. Implementation programmes don’t adequately address climate change adaptations and greenhouse gas mitigation. Affordability is a constraint on adaptive capacity of farmers and communities. More funding mechanisms are required to implement proactive measures. The legislative and institutional framework needs to be changed to incorporate water framework legislation, regional sustainability strategies and water infrastructure coordination.

Keywords: collaborative governance, irrigation management, nested adaptive systems, sustainable water management

Procedia PDF Downloads 131
530 Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model

Authors: K. Tunde Olagunju, C. Scott Allen, Freek Van Der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon-substrate combination, Sentinel-2, WorldView-3

Procedia PDF Downloads 193
529 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 49
528 Data Model to Predict Customize Skin Care Product Using Biosensor

Authors: Ashi Gautam, Isha Shukla, Akhil Seghal

Abstract:

Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.

Keywords: biosensors, data model, machine learning, skin care

Procedia PDF Downloads 63
527 Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes

Authors: Roman Matejka, Vaclav Prochazka, Tibor Izak, Jana Stepanovska, Martina Travnickova, Alexander Kromka

Abstract:

Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A.

Keywords: bio-impedance measuring, bioreactor, cell cultivation, diamond layer, gold interdigitated electrodes, tissue engineering

Procedia PDF Downloads 275
526 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 58
525 Sensing Endocrine Disrupting Chemicals by Virus-Based Structural Colour Nanostructure

Authors: Lee Yujin, Han Jiye, Oh Jin-Woo

Abstract:

The adverse effects of endocrine disrupting chemicals (EDCs) has attracted considerable public interests. The benzene-like EDCs structure mimics the mechanisms of hormones naturally occurring in vivo, and alters physiological function of the endocrine system. Although, some of the most representative EDCs such as polychlorinated biphenyls (PCBs) and phthalates compounds already have been prohibited to produce and use in many countries, however, PCBs and phthalates in plastic products as flame retardant and plasticizer are still circulated nowadays. EDCs can be released from products while using and discarding, and it causes serious environmental and health issues. Here, we developed virus-based structurally coloured nanostructure that can detect minute EDCs concentration sensitively and selectively. These structurally coloured nanostructure exhibits characteristic angel-independent colors due to the regular virus bundle structure formation through simple pulling technique. The designed number of different colour bands can be formed through controlling concentration of virus solution and pulling speed. The virus, M-13 bacteriophage, was genetically engineered to react with specific ECDs, typically PCBs and phthalates. M-13 bacteriophage surface (pVIII major coat protein) was decorated with benzene derivative binding peptides (WHW) through phage library method. In the initial assessment, virus-based color sensor was exposed to several organic chemicals including benzene, toluene, phenol, chlorobenzene, and phthalic anhydride. Along with the selectivity evaluation of virus-based colour sensor, it also been tested for sensitivity. 10 to 300 ppm of phthalic anhydride and chlorobenzene were detected by colour sensor, and showed the significant sensitivity with about 90 of dissociation constant. Noteworthy, all measurements were analyzed through principal component analysis (PCA) and linear discrimination analysis (LDA), and exhibited clear discrimination ability upon exposure to 2 categories of EDCs (PCBs and phthalates). Because of its easy fabrication, high sensitivity, and the superior selectivity, M-13 bacteriophage-based color sensor could be a simple and reliable portable sensing system for environmental monitoring, healthcare, social security, and so on.

Keywords: M-13 bacteriophage, colour sensor, genetic engineering, EDCs

Procedia PDF Downloads 216
524 Placement of Inflow Control Valve for Horizontal Oil Well

Authors: S. Thanabanjerdsin, F. Srisuriyachai, J. Chewaroungroj

Abstract:

Drilling horizontal well is one of the most cost-effective method to exploit reservoir by increasing exposure area between well and formation. Together with horizontal well technology, intelligent completion is often co-utilized to increases petroleum production by monitoring/control downhole production. Combination of both technological results in an opportunity to lower water cresting phenomenon, a detrimental problem that does not lower only oil recovery but also cause environmental problem due to water disposal. Flow of reservoir fluid is a result from difference between reservoir and wellbore pressure. In horizontal well, reservoir fluid around the heel location enters wellbore at higher rate compared to the toe location. As a consequence, Oil-Water Contact (OWC) at the heel side of moves upward relatively faster compared to the toe side. This causes the well to encounter an early water encroachment problem. Installation of Inflow Control Valve (ICV) in particular sections of horizontal well can involve several parameters such as number of ICV, water cut constrain of each valve, length of each section. This study is mainly focused on optimization of ICV configuration to minimize water production and at the same time, to enhance oil production. A reservoir model consisting of high aspect ratio of oil bearing zone to underneath aquifer is drilled with horizontal well and completed with variation of ICV segments. Optimization of the horizontal well configuration is firstly performed by varying number of ICV, segment length, and individual preset water cut for each segment. Simulation results show that installing ICV can increase oil recovery factor up to 5% of Original Oil In Place (OOIP) and can reduce of produced water depending on ICV segment length as well as ICV parameters. For equally partitioned-ICV segment, more number of segment results in better oil recovery. However, number of segment exceeding 10 may not give a significant additional recovery. In first production period, deformation of OWC strongly depends on number of segment along the well. Higher number of segment results in smoother deformation of OWC. After water breakthrough at heel location segment, the second production period begins. Deformation of OWC is principally dominated by ICV parameters. In certain situations that OWC is unstable such as high production rate, high viscosity fluid above aquifer and strong aquifer, second production period may give wide enough window to ICV parameter to take the roll.

Keywords: horizontal well, water cresting, inflow control valve, reservoir simulation

Procedia PDF Downloads 386
523 Integrating One Health Approach with National Policies to Improve Health Security post-COVID-19 in Vietnam

Authors: Yasser Sanad, Thu Trang Dao

Abstract:

Introduction: Implementing the One Health (OH) approach requires an integrated, interdisciplinary, and cross-sectoral methodology. OH is a key tool for developing and implementing programs and projects and includes developing ambitious policies that consider the common needs and benefits of human, animal, plant, and ecosystem health. OH helps humanity readjust its path to environmentally friendly and impartial sustainability. As co-leader of the Global Health Security Agenda’s Zoonotic Disease Action Package, Vietnam pioneered a strong OH approach to effectively address early waves of the COVID-19 outbreak in-country. Context and Aim: The repeated surges in COVID-19 in Vietnam challenged the capabilities of the national system and disclosed the gaps in multi-sectoral coordination and resilience. To address this, FHI 360 advocated for the standardization of the OH platform by government actors to increase the resiliency of the system during and post COVID-19. Methods: FHI 360 coordinated technical resources to develop and implement evidence-based OH policies, promoting high-level policy dialogue between the Ministries of Health, Agriculture, and the Environment, and policy research to inform developed policies and frameworks. Through discussions, an OH-building Partnership (OHP) was formed, linking climate change, the environment, and human and animal health. Findings: The OHP Framework created a favorable policy environment within and between sectors, as well as between governments and international health security partners. It also promoted strategic dialogue, resource mobilization, policy advocacy, and integration of international systems with National Steering Committees to ensure accountability and emphasize national ownership. Innovative contribution to policy, practice and/or research: OHP was an effective evidence-based research-to-policy platform linking to the National One Health Strategic Plan (2021-2025). Collectively they serve as a national framework for the implementation and monitoring of OH activities. Through the adoption of policies and plans, the risk of zoonotic pathogens, environmental agent spillover, and antimicrobial resistance can be minimized through strengthening multi-sectoral OH collaboration for health security.

Keywords: one health, national policies, health security, COVID-19, Vietnam

Procedia PDF Downloads 70
522 Evaluation of Commercial Back-analysis Package in Condition Assessment of Railways

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

Over the years,increased demands on railways, the emergence of high-speed trains and heavy axle loads, ageing, and deterioration of the existing tracks, is imposing costly maintenance actions on the railway sector. The need for developing a fast andcost-efficient non-destructive assessment method for the structural evaluation of railway tracksis therefore critically important. The layer modulus is the main parameter used in the structural design and evaluation of the railway track substructure (foundation). Among many recently developed NDTs, Falling Weight Deflectometer (FWD) test, widely used in pavement evaluation, has shown promising results for railway track substructure monitoring. The surface deflection data collected by FWD are used to estimate the modulus of substructure layers through the back-analysis technique. Although there are different commerciallyavailableback-analysis programs are used for pavement applications, there are onlya limited number of research-based techniques have been so far developed for railway track evaluation. In this paper, the suitability, accuracy, and reliability of the BAKFAAsoftware are investigated. The main rationale for selecting BAKFAA as it has a relatively straightforward user interfacethat is freely available and widely used in highway and airport pavement evaluation. As part of the study, a finite element (FE) model of a railway track section near Leominsterstation, Herefordshire, UK subjected to the FWD test, was developed and validated against available field data. Then, a virtual experimental database (including 218 sets of FWD testing data) was generated using theFE model and employed as the measured database for the BAKFAA software. This database was generated considering various layers’ moduli for each layer of track substructure over a predefined range. The BAKFAA predictions were compared against the cone penetration test (CPT) data (available from literature; conducted near to Leominster station same section as the FWD was performed). The results reveal that BAKFAA overestimatesthe layers’ moduli of each substructure layer. To adjust the BAKFA with the CPT data, this study introduces a correlation model to make the BAKFAA applicable in railway applications.

Keywords: back-analysis, bakfaa, railway track substructure, falling weight deflectometer (FWD), cone penetration test (CPT)

Procedia PDF Downloads 108
521 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis

Authors: Asowata Osamede

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.

Keywords: power-conversion, meteonorm, PV panels, DC-DC converters

Procedia PDF Downloads 122
520 Arterial Line Use for Acute Type 2 Respiratory Failure

Authors: C. Scurr, J. Jeans, S. Srivastava

Abstract:

Introduction: Acute type two respiratory failure (T2RF) has become a common presentation over the last two decades primarily due to an increase in the prevalence of chronic lung disease. Acute exacerbations can be managed either medically or in combination with non-invasive ventilation (NIV) which should be monitored with regular arterial blood gas samples (ABG). Arterial lines allow more frequent arterial blood sampling with less patient discomfort. We present the experience from a teaching hospital emergency department (ED) and level 2 medical high-dependency unit (HDU) that together form the pathway for management of acute type 2 respiratory failure. Methods: Patients acutely presenting to Charing Cross Hospital, London, with T2RF requiring non-invasive ventilation (NIV) over 14 months (2011 to 2012) were identified from clinical coding. Retrospective data collection included: demographics, co-morbidities, blood gas numbers and timing, if arterial lines were used and who performed this. Analysis was undertaken using Microsoft Excel. Results: Coding identified 107 possible patients. 69 notes were available, of which 41 required NIV for type 2 respiratory failure. 53.6% of patients had an arterial line inserted. Patients with arterial lines had 22.4 ABG in total on average compared to 8.2 for those without. These patients had a similar average time to normalizing pH of (23.7 with arterial line vs 25.6 hours without), and no statistically significant difference in mortality. Arterial lines were inserted by Foundation year doctors, Core trainees, Medical registrars as well as the ICU registrar. 63% of these were performed by the medical registrar rather than ICU, ED or a junior doctor. This is reflected in that the average time until an arterial line was inserted was 462 minutes. The average number of ABGs taken before an arterial line was 2 with a range of 0 – 6. The average number of gases taken if no arterial line was ever used was 7.79 (range of 2-34) – on average 4 times as many arterial punctures for each patient. Discussion: Arterial line use was associated with more frequent arterial blood sampling during each inpatient admission. Additionally, patients with an arterial line have less individual arterial punctures in total and this is likely more comfortable for the patient. Arterial lines are normally sited by medical registrars, however this is normally after some delay. ED clinicians could improve patient comfort and monitoring thus allowing faster titration of NIV if arteral lines were regularly inserted in the ED. We recommend that ED doctors insert arterial lines when indicated in order improve the patient experience and facilitate medical management.

Keywords: non invasive ventilation, arterial blood gas, acute type, arterial line

Procedia PDF Downloads 401
519 Managing Construction and Demolition Wastes - A Case Study of Multi Triagem, Lda

Authors: Cláudia Moço, Maria Santos, Carlos Arsénio, Débora Mendes, Miguel Oliveira. José Paulo Da Silva

Abstract:

Construction industry generates large amounts of waste all over the world. About 450 million tons of construction and demolition wastes (C&DW) are produced annually in the European Union. C&DW are highly heterogeneous materials in size and composition, which imposes strong difficulties on their management. Directive n.º 2008/98/CE, of the European Parliament and of the Council of 6 November establishes that 70 % of the C&DW have to be recycled by 2020. To evaluate possible applications of these materials, a detailed physical, chemical and environmental characterization is necessary. Multi Triagem, Lda. is a company located in Algarve (Portugal) and was supported by the European Regional Development Fund (grant QREN 30307 Multivalor) to quantify and characterize the received C&DW, in order to evaluate their possible applications. This evaluation, performed in collaboration with the University of Algarve, involves a physical, chemical and environmental detailed characterization of the received C&DW. In this work we report on the amounts, trial procedures and properties of the C&DW received over a period of fifteen month. In this period the company received C&DW coming from 393 different origins. The total amount was 32.458 tons, mostly mixtures containing concrete, masonry/mortar and soil/rock. Most of C&DW came from demodulation constructions and diggings. The organic/inert component, namely metal, glass, wood and plastics, were screened first and account for about 3 % of the received materials. The remaining materials were screened and grouped according to their origin and contents, the latter evaluated by visual inspection. Twenty five samples were prepared and submitted to a detailed physical, chemical and environmental analysis. The C&DW aggregates show lower quality properties than natural aggregates for concrete preparation and unbound layers of road pavements. However, chemical analyzes indicated that most samples are environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds is needed in order to perform a proper screening of the C&DW. C&DW aggregates provide a good alternative to natural aggregates.

Keywords: construction and demolition wastes, waste classification, waste composition, waste screening

Procedia PDF Downloads 327
518 The Integrated Water Management of the Northern Saharan Aquifer System in a Climatic Changes Context

Authors: Mohamed Redha Menani

Abstract:

The Northern Saharan aquifer system “SASS” shared by Algeria, Libya, and Tunisia, covers a surface of about 1 100 000 km². It is composed of superposed aquifers; the upper one is the “Continental terminal – CT” (Eocene calcareous formation) situated at 400 m depth in average, while the” Continental Intercalaire – CI”(clay sands from Albian to Lower Cretaceous) is generally at 1500 m depth. This aquifer system is situated in a dry zone with a very weak current recharge but with a non-renewable big volume stored, estimated between 20 000 and 31 000 km³. From 1970 to nowadays, the exploitation of the SASS has increased from 0.6 to more than 2.5 km³/year. This situation provoked risks of water salinisation, reduction of the artesianisme, an increase of drawdowns, etc. which seriously threaten the sustainable socioeconomic development engaged in the SASS zone. Face the water shortage induced by the alarming dryness noted these last years, particularly in the MENA region, the joint management of this system by the three concerned countries, engaged for many years, needs a long-term strategy of integrated water resources management to meet the expected socio-economic goals projected not only in the SASS zone but also in other places, by water transfers. The sustainable management of this extensive aquifer system, aiming to satisfy various needs not only in the areas covered by the SASS but also in other areas through hydraulic transfers, can only be considered if this management is genuinely coordinated, incorporating schemes that primarily address the major constraint of climate change, which has been observed worldwide over the past two decades and is intensifying. In this particular climate context, management schemes must necessarily target several aspects, including (i) Updating the state of water resource exploitation in the SASS. (ii) Guiding agricultural usage as the primary consumer to ensure significant water savings. (iii) Constant monitoring through a network of piezometers to control the physicochemical parameters of the exploited aquifers. (iv) Other aspects related to governance within the framework of integrated management must also be taken into consideration, particularly environmental aspects and conflict resolution. However, problems, especially political ones as currently seen in Libya, may limit or at least disrupt the prospects of coordinated and sustainable management of this aquifer system, which is vital for the three countries.

Keywords: transboundary water resources, SASS, governance, climatic changes

Procedia PDF Downloads 61
517 Informal Economy: Case Study of Street Vendors in Bangkok

Authors: Kangrij Roeksiripat

Abstract:

Street vending is one of the informal economy activities which considered significance to Thai people in the economic and the day-to-day social life. It had been believed that the street vendor is a group of the poor and uneducated people. With the increasing numbers of the street vendor occupying space on public sidewalks especially in central business districts, it becomes unclear whether street vending continues as a solution to unemployment for access labors. This research attempts to study and analyze types of street vendors in Bangkok under the informal economy framework. The debate on the heterogeneous informal economy has categorized into four schools; the dualism, the structuralism, the legalism and the voluntarism. The examination also embodies with market concept with Porter’s Five Forces of Competitive Position Model analysis and the interviews with the street vendors in three case study areas: Inner zone (Pathumwan district - the sidewalk on the opposite side of Siam Paragon mall), Middle zone (Ramkhamhaeng district - the sidewalk on the opposite side of Ramkhamhaeng University) and Outer zone (Minburi district- the sidewalk of Sriburanukit Road). The result indicates that most of street vendors in Siam square are voluntarily choose to make a living in vending on a sidewalk and tend to take it as a long-term occupation even though they can be in formal wage employment. Moreover, average income and positive attitude towards self-employed are the important factors that drive them to operate street vending businesses. Meanwhile, street vending is often a family enterprise in Ramkhamhaeng area and most vendors do not wish to transform their businesses into the formal sectors. Whereas the survey conducted in Sriburankit Road reveals that almost all of street vendors migrated from other provinces and were previously paid as the unskilled workers in formal sectors. They moved to informal trades because of the uncertainty of employment in the mainstream sectors and the inconsistent income with knowledge support of friends and relatives from the same hometown. In particular, the result reveals a common pattern that street vending is the very first occupation of some group of vendors and they will continue to engage in this activity. Thus, it is important for the government to design optimal policy which not only integrating informal workers into the formal economy but also monitoring the enforcement of regulations on the modern informal economy.

Keywords: informal economy, sidewalks, street vendors, occupation

Procedia PDF Downloads 257
516 The Investment Decision-Making Principles in Regional Tourism

Authors: Evgeni Baratashvili, Giorgi Sulashvili, Malkhaz Sulashvili, Bela Khotenashvili, Irma Makharashvili

Abstract:

The most investment decision-making principle of regional travel firm's management and its partner is the formulation of the aims of investment programs. The investments can be targeted in order to reduce the firm's production costs and to purchase good transport equipment. In attractive region, in order to develop firm’s activities, the investment program can be targeted for increasing of provided services. That is the case where the sales already have been used in the market. The investment can be directed to establish the affiliate firms, branches, to construct new hotels, to create food and trade enterprises, to develop entertainment enterprises, etc. Economic development is of great importance to regional development. International experience shows that inclusive economic growth largely depends on not only the national, but also regional development planning and implementation of a strong and competitive regions. Regional development is considered as the key factor in achieving national success. Establishing a modern institute separate entities if the pilot centers will constitute a promotion, international best practice-based public-private partnership to encourage the use of models. Regional policy directions and strategies adopted in accordance with the successful implementation of major importance in the near future specific action plans for inclusive development and implementation, which will be provided in accordance with the effective monitoring and evaluation tools and measurable indicators combined. All of these above-mentioned investments are characterized by different levels, which are related to the following fact: How successful tourism marketing service is, whether it is able to determine the proper market's reaction according to the particular firm's actions. In the sphere of regional tourism industry and in the investment decision possible variants it can be developed the some specter of models. Each of the models can be modified and specified according to the situation, and characteristic skills of the existing problem that must be solved. Besides, while choosing the proper model, the process is affected by the regulation system of economic processes. Also, it is influenced by liberalization quality and by the level of state participation.

Keywords: net income of travel firm, economic growth, Investment profitability, regional development, tourist product, tourism development

Procedia PDF Downloads 238
515 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry

Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya

Abstract:

This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.

Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry

Procedia PDF Downloads 63
514 The Relationship between Risk and Capital: Evidence from Indian Commercial Banks

Authors: Seba Mohanty, Jitendra Mahakud

Abstract:

Capital ratio is one of the major indicators of the stability of the commercial banks. Pertinent to its pervasive importance, over the years the regulators, policy makers focus on the maintenance of the particular level of capital ratio to minimize the solvency and liquidation risk. In this context, it is very much important to identify the relationship between capital and risk and find out the factors which determine the capital ratios of commercial banks. The study examines the relationship between capital and risk of the commercial banks operating in India. Other bank specific variables like bank size, deposit, profitability, non-performing assets, bank liquidity, net interest margin, loan loss reserves, deposits variability and regulatory pressure are also considered for the analysis. The period of study is 1997-2015 i.e. the period of post liberalization. To identify the impact of financial crisis and implementation of Basel II on capital ratio, we have divided the whole period into two sub-periods i.e. 1997-2008 and 2008-2015. This study considers all the three types of commercial banks, i.e. public sector, the private sector and foreign banks, which have continuous data for the whole period. The main sources of data are Prowess data base maintained by centre for monitoring Indian economy (CMIE) and Reserve Bank of India publications. We use simultaneous equation model and more specifically Two Stage Least Square method to find out the relationship between capital and risk. From the econometric analysis, we find that capital and risk affect each other simultaneously, and this is consistent across the time period and across the type of banks. Moreover, regulation has a positive significant impact on the ratio of capital to risk-weighted assets, but no significant impact on the banks risk taking behaviour. Our empirical findings also suggest that size has a negative impact on capital and risk, indicating that larger banks increase their capital less than the other banks supported by the too-big-to-fail hypothesis. This study contributes to the existing body of literature by predicting a strong relationship between capital and risk in an emerging economy, where banking sector plays a majority role for financial development. Further this study may be considered as a primary study to find out the macro economic factors which affecting risk and capital in India.

Keywords: capital, commercial bank, risk, simultaneous equation model

Procedia PDF Downloads 296
513 Geomatic Techniques to Filter Vegetation from Point Clouds

Authors: M. Amparo Núñez-Andrés, Felipe Buill, Albert Prades

Abstract:

More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations.

Keywords: RGB index, TLS, photogrammetry, multispectral camera, point cloud

Procedia PDF Downloads 106
512 Association between Noise Levels, Particulate Matter Concentrations and Traffic Intensities in a Near-Highway Urban Area

Authors: Mohammad Javad Afroughi, Vahid Hosseini, Jason S. Olfert

Abstract:

Both traffic-generated particles and noise have been associated with the development of cardiovascular diseases, especially in near-highway environments. Although noise and particulate matters (PM) have different mechanisms of dispersion, sharing the same emission source in urban areas (road traffics) can result in a similar degree of variability in their levels. This study investigated the temporal variation of and correlation between noise levels, PM concentrations and traffic intensities near a major highway in Tehran, Iran. Tehran particulate concentration is highly influenced by road traffic. Additionally, Tehran ultrafine particles (UFP, PM<0.1 µm) are mostly emitted from combustion processes of motor vehicles. This gives a high possibility of a strong association between traffic-related noise and UFP in near-highway environments of this megacity. Hourly average of equivalent continuous sound pressure level (Leq), total number concentration of UFPs, mass concentration of PM2.5 and PM10, as well as traffic count and speed were simultaneously measured over a period of three days in winter. Additionally, meteorological data including temperature, relative humidity, wind speed and direction were collected in a weather station, located 3 km from the monitoring site. Noise levels showed relatively low temporal variability in near-highway environments compared to PM concentrations. Hourly average of Leq ranged from 63.8 to 69.9 dB(A) (mean ~ 68 dB(A)), while hourly concentration of particles varied from 30,800 to 108,800 cm-3 for UFP (mean ~ 64,500 cm-3), 41 to 75 µg m-3 for PM2.5 (mean ~ 53 µg m-3), and 62 to 112 µg m-3 for PM10 (mean ~ 88 µg m-3). The Pearson correlation coefficient revealed strong relationship between noise and UFP (r ~ 0.61) overall. Under downwind conditions, UFP number concentration showed the strongest association with noise level (r ~ 0.63). The coefficient decreased to a lesser degree under upwind conditions (r ~ 0.24) due to the significant role of wind and humidity in UFP dynamics. Furthermore, PM2.5 and PM10 correlated moderately with noise (r ~ 0.52 and 0.44 respectively). In general, traffic counts were more strongly associated with noise and PM compared to traffic speeds. It was concluded that noise level combined with meteorological data can be used as a proxy to estimate PM concentrations (specifically UFP number concentration) in near-highway environments of Tehran. However, it is important to measure joint variability of noise and particles to study their health effects in epidemiological studies.

Keywords: noise, particulate matter, PM10, PM2.5, ultrafine particle

Procedia PDF Downloads 166
511 Sustainable Development Approach for Coastal Erosion Problem in Thailand: Using Bamboo Sticks to Rehabilitate Coastal Erosion

Authors: Sutida Maneeanakekul, Dusit Wechakit, Somsak Piriyayota

Abstract:

Coastal erosion is a major problem in Thailand, in both the Gulf of Thailand and the Andaman Sea coasts. According to the Department of Marine and Coastal Resources, land erosion occurred along the 200 km coastline with an average rate of 5 meters/year. Coastal erosion affects public and government properties, as well as the socio-economy of the country, including emigration in coastal communities, loss of habitats, and decline in fishery production. To combat the problem of coastal erosion, projects utilizing bamboo sticks for coastal defense against erosion were carried out in 5 areas beginning in November, 2010, including: Pak Klong Munharn- Samut Songkhram Province; Ban Khun Samutmaneerat, Pak Klong Pramong and Chao Matchu Shrine-Samut Sakhon Province,and Pak Klong Hongthong – Chachoengsao Province by Marine and Coastal Resources Department. In 2012, an evaluation of the effectiveness of solving the problem of coastal erosion by using bamboo stick was carried out, with a focus on three aspects. Firstly, the change in physical and biological features after using the bamboo stick technique was assessed. Secondly, participation of people in the community in the way of managing the problem of coastal erosion were these aspects evaluated as part of the study. The last aspect that was evaluated is the satisfaction of the community toward this technique. The results of evaluation showed that the amounts of sediment have dramatically changed behind the bamboo sticks lines. The increase of sediment was found to be about 23.50-56.20 centimeters (during 2012-2013). In terms of biological aspect, there has been an increase in mangrove forest areas, especially at Bang Ya Prak, Samut Sakhon Province. Average tree density was found to be about 4,167 trees per square meter. Additionally, an increase in production of fisheries was observed. Presently, the change in the evaluated physical features tends to increase in every aspect, including the satisfaction of people in community toward the process of solving the erosion problem. People in the community are involved in the preparatory, operation, monitoring and evaluation process to resolve the problem in the medium levels.

Keywords: bamboo sticks, coastal erosion, rehabilitate, Thailand sustainable development approach

Procedia PDF Downloads 215
510 A Study on the Current Challenges Hindering Urban Park Development in Ulaanbaatar City, Mongolia

Authors: Bayarmaa Enkhbold, Kenichi Matsui

Abstract:

Urban parks are important assets to every community in terms of providing space for health, cultural and leisure activities. However, Ulaanbaatar, the capital of Mongolia, faces a shortage of green spaces, particularly urban parks, due to overpopulation and haphazard growth. Therefore, in order to increase green space per person, the city government has planned to increase green space per person up to 20m² by 2020 and 30m² by 2030 by establishing more urban parks throughout the city. But this plan was estimated that it is highly unlikely to reach those goals according to the analysis of the present status of plan implementation because the current amount of green space per person is still 4m². In the past studies globally, city planners and scientists agree that it is highly improbable to develop urban parks and keep maintenance sustainably without reflecting community perceptions and their involvement in the park establishment. Therefore, this research aims to find the challenges which stymie urban park development in Ulaanbaatar city and recommend dealing with the problems. In order to reach the goal, communities’ perceptions about the current challenges and their necessity for urban parks were identified and determined whether they differentiated depending on two different types of residential areas (urban and suburban areas). It also attempted to investigate international good practices on how they deal with similar problems. The research methodology was based on a questionnaire survey among city residents, a document review regarding the involvement of stakeholders, and a literature review of relevant past studies. According to the residents’ perceptions, the biggest challenge was a lack of land availability and followed by a lack of proper policy, planning, management, and maintenance out of seven key challenges identified. The biggest community demand from the urban park was a playground for children and followed by recreation and relaxation out of six types of needs. Based on research findings, the study proposed several recommendations for enhancements as institutional and legal framework, park plan and management, supportive environment and monitoring, evaluation, and reporting.

Keywords: challenges of urban park planning and maintenance, community-based urban park establishment, community perceptions and participation, urban parks in Ulaanbaatar, Mongolia

Procedia PDF Downloads 90
509 A Critical Examination of the Iranian National Legal Regulation of the Ecosystem of Lake Urmia

Authors: Siavash Ostovar

Abstract:

The Iranian national Law on the Ramsar Convention (officially known as the Convention of International Wetlands and Aquatic Birds' Habitat Wetlands) was approved by the Senate and became a law in 1974 after the ratification of the National Council. There are other national laws with the aim of preservation of environment in the country. However, Lake Urmia which is declared a wetland of international importance by the Ramsar Convention in 1971 and designated a UNESCO Biosphere Reserve in 1976 is now at the brink of total disappearance due mainly to the climate change, water mismanagement, dam construction, and agricultural deficiencies. Lake Urmia is located in the north western corner of Iran. It is the third largest salt water lake in the world and the largest lake in the Middle East. Locally, it is designated as a National Park. It is, indeed, a unique lake both nationally and internationally. This study investigated how effective the national legal regulation of the ecosystem of Lake Urmia is in Iran. To do so, the Iranian national laws as Enforcement of Ramsar Convention in the country including three nationally established laws of (i) Five sets of laws for the programme of economic, social and cultural development of Islamic Republic of Iran, (ii) The Iranian Penal Code, (iii) law of conservation, restoration and management of the country were investigated. Using black letter law methods, it was revealed that (i) regarding the national five sets of laws; the benchmark to force the implementation of the legislations and policies is not set clearly. In other words, there is no clear guarantee to enforce these legislations and policies at the time of deviation and violation; (ii) regarding the Penal Code, there is lack of determining the environmental crimes, determining appropriate penalties for the environmental crimes, implementing those penalties appropriately, monitoring and training programmes precisely; (iii) regarding the law of conservation, restoration and management, implementation of this regulation is adjourned to preparation, announcement and approval of several categories of enactments and guidelines. In fact, this study used a national environmental catastrophe caused by drying up of Lake Urmia as an excuse to direct the attention to the weaknesses of the existing national rules and regulations. Finally, as we all depend on the natural world for our survival, this study recommended further research on every environmental issue including the Lake Urmia.

Keywords: conservation, environmental law, Lake Urmia, national laws, Ramsar Convention, water management, wetlands

Procedia PDF Downloads 180
508 Optimization of Maintenance of PV Module Arrays Based on Asset Management Strategies: Case of Study

Authors: L. Alejandro Cárdenas, Fernando Herrera, David Nova, Juan Ballesteros

Abstract:

This paper presents a methodology to optimize the maintenance of grid-connected photovoltaic systems, considering the cleaning and module replacement periods based on an asset management strategy. The methodology is based on the analysis of the energy production of the PV plant, the energy feed-in tariff, and the cost of cleaning and replacement of the PV modules, with the overall revenue received being the optimization variable. The methodology is evaluated as a case study of a 5.6 kWp solar PV plant located on the Bogotá campus of the Universidad Nacional de Colombia. The asset management strategy implemented consists of assessing the PV modules through visual inspection, energy performance analysis, pollution, and degradation. Within the visual inspection of the plant, the general condition of the modules and the structure is assessed, identifying dust deposition, visible fractures, and water accumulation on the bottom. The energy performance analysis is performed with the energy production reported by the monitoring systems and compared with the values estimated in the simulation. The pollution analysis is performed using the soiling rate due to dust accumulation, which can be modelled by a black box with an exponential function dependent on historical pollution values. The pollution rate is calculated with data collected from the energy generated during two years in a photovoltaic plant on the campus of the National University of Colombia. Additionally, the alternative of assessing the temperature degradation of the PV modules is evaluated by estimating the cell temperature with parameters such as ambient temperature and wind speed. The medium-term energy decrease of the PV modules is assessed with the asset management strategy by calculating the health index to determine the replacement period of the modules due to degradation. This study proposes a tool for decision making related to the maintenance of photovoltaic systems. The above, projecting the increase in the installation of solar photovoltaic systems in power systems associated with the commitments made in the Paris Agreement for the reduction of CO2 emissions. In the Colombian context, it is estimated that by 2030, 12% of the installed power capacity will be solar PV.

Keywords: asset management, PV module, optimization, maintenance

Procedia PDF Downloads 12
507 Transformation of the Institutionality of International Cooperation in Ecuador from 2007 to 2017: 2017: A Case of State Identity Affirmation through Role Performance

Authors: Natalia Carolina Encalada Castillo

Abstract:

As part of an intended radical policy change compared to former administrations in Ecuador, the transformation of the institutionality of international cooperation during the period of President Rafael Correa was considered as a key element for the construction of the state of 'Good Living'. This intention led to several regulatory changes in the reception of cooperation for development, and even the departure of some foreign cooperation agencies. Moreover, Ecuador launched the initiative to become a donor of cooperation towards other developing countries through the ‘South-South Cooperation’ approach. All these changes were institutionalized through the Ecuadorian System of International Cooperation as a new framework to establish rules and policies that guarantee a sovereign management of foreign aid. Therefore, this research project has been guided by two questions: What were the factors that motivated the transformation of the institutionality of international cooperation in Ecuador from 2007 to 2017? and, what were the implications of this transformation in terms of the international role of the country? This paper seeks to answer these questions through Role Theory within a Constructivist meta-theoretical perspective, considering that in this case, changes at the institutional level in the field of cooperation, responded not only to material motivations but also to interests built on the basis of a specific state identity. The latter was only possible to affirm through specific roles such as ‘sovereign recipient of cooperation’ as well as ‘donor of international cooperation’. However, the performance of these roles was problematic as they were not easily accepted by the other actors in the international arena or in the domestic level. In terms of methodology, these dynamics are analyzed in a qualitative way mainly through interpretive analysis of the discourse of high-level decision-makers from Ecuador and other cooperation actors. Complementary to this, document-based research of relevant information as well as interviews have been conducted. Finally, it is concluded that even if material factors such as infrastructure needs, trade and investment interests, as well as reinforcement of state control and monitoring of cooperation flows, motivated the institutional transformation of international cooperation in Ecuador; the essential basis of these changes was the search for a new identity for the country to be projected in the international arena. This identity started to be built but continues to be unstable. Therefore, it is important to potentiate the achievements of the new international cooperation policies, and review their weaknesses, so that non-reimbursable cooperation funds received as well as ‘South-South cooperation’ actions, contribute effectively to national objectives.

Keywords: Ecuador, international cooperation, Role Theory, state identity

Procedia PDF Downloads 176