Search results for: vortex formation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3522

Search results for: vortex formation

612 Establishing a Communication Framework in Response to the COVID-19 Pandemic in a Tertiary Government Hospital in the Philippines

Authors: Nicole Marella G. Tan, Al Joseph R. Molina, Raisa Celine R. Rosete, Soraya Elisse E. Escandor, Blythe N. Ke, Veronica Marie E. Ramos, Apolinario Ericson B. Berberabe, Jose Jonas D. del Rosario, Regina Pascua-Berba, Eileen Liesl A. Cubillan, Winlove P. Mojica

Abstract:

Emergency risk and health communications play a vital role in any pandemic response. However, the Philippine General Hospital (PGH) lacked a system of information delivery that could effectively fulfill the hospital’s communication needs as a COVID-19 referral hospital. This study aimed to describe the establishment of a communication framework for information dissemination within a tertiary government hospital during the COVID-19 pandemic and evaluated the perceived usefulness of its outputs. This is a mixed quantitative-qualitative study with two phases. Phase 1 documented the formation and responsibilities of the Information Education Communication (IEC) Committee. Phase 2 evaluated its output and outcomes through a hospital-wide survey of 528 healthcare workers (HCWs) using a pre-tested questionnaire. In-depth explanations were obtained from five focused group discussions (FGD) amongst various HCW subgroups. Descriptive analysis was done using STATA 16 while qualitative data were synthesized thematically. Communication practices in PGH were loosely structured at the beginning of the pandemic until the establishment of the IEC Committee. The IEC Committee was well-represented by concerned stakeholders. Nine types of infographics tackled different aspects of the hospital’s health operations after thorough inputs from concerned offices. Internal and external feedback mechanisms ensured accurate infographics. Majority of the survey respondents (98.67%) perceived these as useful in their work or daily lives. FGD participants cited the relevance of infographics to their occupations, suggested improvements, and hoped that these efforts would be continued in the future. Sustainability and comprehensive reach were the main concerns in this undertaking. The PGH COVID-19 IEC framework was developed through trial and testing as there were no existing formal structures to communicate health risks and to properly direct the HCWs in the chaotic time of a pandemic. It is a continuously evolving framework which is perceived as useful by HCWs and is hoped to be sustained in the future.

Keywords: COVID-19, pandemic, health communication, infographics, social media

Procedia PDF Downloads 130
611 The Structural Analysis of Out-of-Sequence Thrust: Insights from Chaura Thrust of Higher Himalaya in Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

This paper focuses on the structural analysis of Chaura Thrust in Himachal Pradesh, India. It investigates mylonitised zones under microscopic observation, characterizes the box fold and its signature in the regional geology of Himachal Himalaya, and documents the Higher Himalayan Out-of-Sequence Thrust (OOST) in the region. The study aims to provide field evidence and documentation for Chaura Thrust (CT), which was previously considered a blind thrust. The research methodology involves geological field observation, microscopic studies, and strain analysis of oriented samples collected along the Jhakri-Chaura transect. The study presents findings such as the activation ages of MCT and STDS, the identification of mylonitised zones and various types of crenulated schistosity, and the manifestation of box folds and OOST. The presence of meso- and micro-scale box folds around Chaura suggests structural upliftment, while kink folds and shear sense indicators were identified. The research highlights the importance of microscopic studies and contributes to the understanding of the structural analysis of CT and its implications in the regional geology of the Himachal Himalaya. Mylonitised zones with S-C fabric were observed under the microscope, along with dynamic and bulging recrystallization and sub-grain formation. Various types of crenulated schistosity were documented, including a rare case of crenulation cleavage and sigmoid Muscovite occurring together. The conclusions emphasize the non-blind nature of Chaura Thrust, the characterization of box folds, the activation timing of different thrusts, and the significance of microscopic observations. Jhakri/Chaura/Sarahan thrusts are the zone of tectonic imbrication that transport Higher Himalayan gneissic rock on Rampur Quartzite. The evidence of frequent earthquakes and landslides in the Jhakri region confirm the study of morphometric conclusion that there is considerable neo-tectonic activity along an active fault in the Sutlej river basin. The study also documents the presence of OOST in Himachal Pradesh and its potential impact on strain accumulation.

Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust

Procedia PDF Downloads 93
610 Low Energy Technology for Leachate Valorisation

Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo

Abstract:

Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.

Keywords: forward osmosis, landfills, leachate valorization, solar evaporation

Procedia PDF Downloads 209
609 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 101
608 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase

Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He

Abstract:

Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.

Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification

Procedia PDF Downloads 317
607 Nitriding of Super-Ferritic Stainless Steel by Plasma Immersion Ion Implantation in Radio Frequency and Microwave Plasma System

Authors: H. Bhuyan, S. Mändl, M. Favre, M. Cisternas, A. Henriquez, E. Wyndham, M. Walczak, D. Manova

Abstract:

The 470 Li-24 Cr and 460Li-21 Cr are two alloys belonging to the next generation of super-ferritic nickel free stainless steel grades, containing titanium (Ti), niobium (Nb) and small percentage of carbon (C) and nitrogen (N). The addition of Ti and Nb improves in general the corrosion resistance while the low interstitial content of C and N assures finer precipitates and greater ductility compared to conventional ferritic grades. These grades are considered an economic alternative to AISI 316L and 304 due to comparable or superior corrosion. However, since 316L and 304 can be nitrided to improve the mechanical surface properties like hardness and wear; it is hypothesize that the tribological properties of these super-ferritic stainless steels grades can also be improved by plasma nitriding. Thus two sets of plasma immersion ion implantation experiments have been carried out, one with a high pressure capacitively coupled radio frequency plasma at PUC Chile and the other using a low pressure microwave plasma at IOM Leipzig, in order to explore further improvements in the mechanical properties of 470 Li-24 Cr and 460Li-21 Cr steel. Nitrided and unnitrided substrates have been subsequently investigated using different surface characterization techniques including secondary ion mass spectroscopy, scanning electron microscopy, energy dispersive x-ray analysis, Vickers hardness, wear resistance, as well as corrosion test. In most of the characterizations no major differences have been observed for nitrided 470 Li-24 Cr and 460Li-21 Cr. Due to the ion bombardment, an increase in the surface roughness is observed for higher treatment temperature, independent of the steel types. The formation of chromium nitride compound takes place only at a treatment temperature around 4000C-4500C, or above. However, corrosion properties deteriorate after treatment at higher temperatures. The physical characterization results show up to 25 at.% of nitrogen for a diffusion zone of 4-6 m, and a 4-5 times increase in hardness for different experimental conditions. The samples implanted with temperature higher than 400 °C presented a wear resistance around two orders of magnitude higher than the untreated substrates. The hardness is apparently affected by the different roughness of the samples and their different profile of nitrogen.

Keywords: ion implantation, plasma, RF and microwave plasma, stainless steel

Procedia PDF Downloads 466
606 Prevalence and Mechanisms of Antibiotic Resistance in Escherichia coli Isolated from Mastitic Dairy Cattle in Canada

Authors: Satwik Majumder, Dongyun Jung, Jennifer Ronholm, Saji George

Abstract:

Bovine mastitis is the most common infectious disease in dairy cattle, with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health. In this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with three heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors. Phenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics, and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = +0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates, corroborating phenotype observations. This investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through milk and dairy products.

Keywords: antimicrobial resistance, E. coli, bovine mastitis, antibiotics, heavy-metals, efflux pump, ß-lactamase enzyme, biofilm, whole-genome sequencing

Procedia PDF Downloads 223
605 Sensing Endocrine Disrupting Chemicals by Virus-Based Structural Colour Nanostructure

Authors: Lee Yujin, Han Jiye, Oh Jin-Woo

Abstract:

The adverse effects of endocrine disrupting chemicals (EDCs) has attracted considerable public interests. The benzene-like EDCs structure mimics the mechanisms of hormones naturally occurring in vivo, and alters physiological function of the endocrine system. Although, some of the most representative EDCs such as polychlorinated biphenyls (PCBs) and phthalates compounds already have been prohibited to produce and use in many countries, however, PCBs and phthalates in plastic products as flame retardant and plasticizer are still circulated nowadays. EDCs can be released from products while using and discarding, and it causes serious environmental and health issues. Here, we developed virus-based structurally coloured nanostructure that can detect minute EDCs concentration sensitively and selectively. These structurally coloured nanostructure exhibits characteristic angel-independent colors due to the regular virus bundle structure formation through simple pulling technique. The designed number of different colour bands can be formed through controlling concentration of virus solution and pulling speed. The virus, M-13 bacteriophage, was genetically engineered to react with specific ECDs, typically PCBs and phthalates. M-13 bacteriophage surface (pVIII major coat protein) was decorated with benzene derivative binding peptides (WHW) through phage library method. In the initial assessment, virus-based color sensor was exposed to several organic chemicals including benzene, toluene, phenol, chlorobenzene, and phthalic anhydride. Along with the selectivity evaluation of virus-based colour sensor, it also been tested for sensitivity. 10 to 300 ppm of phthalic anhydride and chlorobenzene were detected by colour sensor, and showed the significant sensitivity with about 90 of dissociation constant. Noteworthy, all measurements were analyzed through principal component analysis (PCA) and linear discrimination analysis (LDA), and exhibited clear discrimination ability upon exposure to 2 categories of EDCs (PCBs and phthalates). Because of its easy fabrication, high sensitivity, and the superior selectivity, M-13 bacteriophage-based color sensor could be a simple and reliable portable sensing system for environmental monitoring, healthcare, social security, and so on.

Keywords: M-13 bacteriophage, colour sensor, genetic engineering, EDCs

Procedia PDF Downloads 249
604 Low Plastic Deformation Energy to Induce High Superficial Strain on AZ31 Magnesium Alloy Sheet

Authors: Emigdio Mendoza, Patricia Fernandez, Cristian Gomez

Abstract:

Magnesium alloys have generated great interest for several industrial applications because their high specific strength and low density make them a very attractive alternative for the manufacture of various components; however, these alloys present a limitation with their hexagonal crystal structure that limits the deformation mechanisms at room temperature likewise the molding components alternatives, it is for this reason that severe plastic deformation processes have taken a huge relevance recently because these, allow high deformation rates to be applied that induce microstructural changes where the deficiency in the sliding systems is compensated with crystallographic grains reorientations or crystal twinning. The present study reports a statistical analysis of process temperature, number of passes and shear angle with respect to the shear stress in severe plastic deformation process denominated 'Equal Channel Angular Sheet Drawing (ECASD)' applied to the magnesium alloy AZ31B through Python Statsmodels libraries, additionally a Post-Hoc range test is performed using the Tukey statistical test. Statistical results show that each variable has a p-value lower than 0.05, which allows comparing the average values of shear stresses obtained, which are in the range of 7.37 MPa to 12.23 MPa, lower values in comparison to others severe plastic deformation processes reported in the literature, considering a value of 157.53 MPa as the average creep stress for AZ31B alloy. However, a higher stress level is required when the sheets are processed using a shear angle of 150°, due to a higher level of adjustment applied for the shear die of 150°. Temperature and shear passes are important variables as well, but there is no significant impact on the level of stress applied during the ECASD process. In the processing of AZ31B magnesium alloy sheets, ECASD technique is evidenced as a viable alternative in the modification of the elasto-plastic properties of this alloy, promoting the weakening of the basal texture, which means, a better response to deformation, whereby, during the manufacture of parts by drawing or stamping processes the formation of cracks on the surface can be reduced, presenting an adequate mechanical performance.

Keywords: plastic deformation, strain, sheet drawing, magnesium

Procedia PDF Downloads 115
603 Placement of Inflow Control Valve for Horizontal Oil Well

Authors: S. Thanabanjerdsin, F. Srisuriyachai, J. Chewaroungroj

Abstract:

Drilling horizontal well is one of the most cost-effective method to exploit reservoir by increasing exposure area between well and formation. Together with horizontal well technology, intelligent completion is often co-utilized to increases petroleum production by monitoring/control downhole production. Combination of both technological results in an opportunity to lower water cresting phenomenon, a detrimental problem that does not lower only oil recovery but also cause environmental problem due to water disposal. Flow of reservoir fluid is a result from difference between reservoir and wellbore pressure. In horizontal well, reservoir fluid around the heel location enters wellbore at higher rate compared to the toe location. As a consequence, Oil-Water Contact (OWC) at the heel side of moves upward relatively faster compared to the toe side. This causes the well to encounter an early water encroachment problem. Installation of Inflow Control Valve (ICV) in particular sections of horizontal well can involve several parameters such as number of ICV, water cut constrain of each valve, length of each section. This study is mainly focused on optimization of ICV configuration to minimize water production and at the same time, to enhance oil production. A reservoir model consisting of high aspect ratio of oil bearing zone to underneath aquifer is drilled with horizontal well and completed with variation of ICV segments. Optimization of the horizontal well configuration is firstly performed by varying number of ICV, segment length, and individual preset water cut for each segment. Simulation results show that installing ICV can increase oil recovery factor up to 5% of Original Oil In Place (OOIP) and can reduce of produced water depending on ICV segment length as well as ICV parameters. For equally partitioned-ICV segment, more number of segment results in better oil recovery. However, number of segment exceeding 10 may not give a significant additional recovery. In first production period, deformation of OWC strongly depends on number of segment along the well. Higher number of segment results in smoother deformation of OWC. After water breakthrough at heel location segment, the second production period begins. Deformation of OWC is principally dominated by ICV parameters. In certain situations that OWC is unstable such as high production rate, high viscosity fluid above aquifer and strong aquifer, second production period may give wide enough window to ICV parameter to take the roll.

Keywords: horizontal well, water cresting, inflow control valve, reservoir simulation

Procedia PDF Downloads 429
602 Antibacterial Effects of Some Medicinal and Aromatic Plant Extracts on Pathogenic Bacteria Isolated from Pear Orchards

Authors: Kubilay Kurtulus Bastas

Abstract:

Bacterial diseases are very destructive and cause economic losses on pears. Promising plant extracts for the management of plant diseases are environmentally safe, long-lasting and extracts of certain plants contain alkaloids, tannins, quinones, coumarins, phenolic compounds, and phytoalexins. In this study, bacteria were isolated from different parts of pear exhibiting characteristic symptoms of bacterial diseases from the Central Anatolia, Turkey. Pathogenic bacteria were identified by morphological, physiological, biochemical and molecular methods as fire blight (Erwinia amylovora (39%)), bacterial blossom blast and blister bark (Pseudomonas syringae pv. syringae (22%)), crown gall (Rhizobium radiobacter (1%)) from different pear cultivars, and determined virulence levels of the pathogens with pathogenicity tests. The air-dried 25 plant material was ground into fine powder and extraction was performed at room temperature by maceration with 80% (v/v) methanol/distilled water. The minimum inhibitory concentration (MIC) values were determined by using modified disc diffusion method at five different concentrations and streptomycin sulphate was used as control chemical. Bacterial suspensions were prepared as 108 CFU ml⁻¹ densities and 100 µl bacterial suspensions were spread to TSA medium. Antimicrobial activity was evaluated by measuring the inhibition zones in reference to the test organisms. Among the tested plants, Origanum vulgare, Hedera helix, Satureja hortensis, Rhus coriaria, Eucalyptus globulus, Rosmarinus officinalis, Ocimum basilicum, Salvia officinalis, Cuminum cyminum and Thymus vulgaris showed a good antibacterial activity and they inhibited the growth of the pathogens with inhibition zone diameter ranging from 7 to 27 mm at 20% (w/v) in absolute methanol in vitro conditions. In vivo, the highest efficacy was determined as 27% on reducing tumor formation of R. radiobacter, and 48% and 41% on reducing shoot blight of E. amylovora and P. s. pv. syringae on pear seedlings, respectively. Obtaining data indicated that some plant extracts may be used against the bacterial diseases on pome fruits within sustainable and organic management programs.

Keywords: bacteria, eco-friendly management, organic, pear, plant extract

Procedia PDF Downloads 345
601 Being an English Language Teaching Assistant in China: Understanding the Identity Evolution of Early-Career English Teacher in Private Tutoring Schools

Authors: Zhou Congling

Abstract:

The integration of private tutoring has emerged as an indispensable facet in the acquisition of language proficiency beyond formal educational settings. Notably, there has been a discernible surge in the demand for private English tutoring, specifically geared towards the preparation for internationally recognized gatekeeping examinations, such as IELTS, TOEFL, GMAT, and GRE. This trajectory has engendered an escalating need for English Language Teaching Assistants (ELTAs) operating within the realm of Private Tutoring Schools (PTSs). The objective of this study is to unravel the intricate process by which these ELTAs formulate their professional identities in the nascent stages of their careers as English educators, as well as to delineate their perceptions regarding their professional trajectories. The construct of language teacher identity is inherently multifaceted, shaped by an amalgamation of individual, societal, and cultural determinants, exerting a profound influence on how language educators navigate their professional responsibilities. This investigation seeks to scrutinize the experiential and influential factors that mold the identities of ELTAs in PTSs, particularly post the culmination of their language-oriented academic programs. Employing a qualitative narrative inquiry approach, this study aims to delve into the nuanced understanding of how ELTAs conceptualize their professional identities and envision their future roles. The research methodology involves purposeful sampling and the conduct of in-depth, semi-structured interviews with ten participants. Data analysis will be conducted utilizing Barkhuizen’s Short Story Analysis, a method designed to explore a three-dimensional narrative space, elucidating the intricate interplay of personal experiences and societal contexts in shaping the identities of ELTAs. The anticipated outcomes of this study are poised to contribute substantively to a holistic comprehension of ELTA identity formation, holding practical implications for diverse stakeholders within the private tutoring sector. This research endeavors to furnish insights into strategies for the retention of ELTAs and the enhancement of overall service quality within PTSs.

Keywords: China, English language teacher, narrative inquiry, private tutoring school, teacher identity

Procedia PDF Downloads 58
600 The Integrated Water Management of the Northern Saharan Aquifer System in a Climatic Changes Context

Authors: Mohamed Redha Menani

Abstract:

The Northern Saharan aquifer system “SASS” shared by Algeria, Libya, and Tunisia, covers a surface of about 1 100 000 km². It is composed of superposed aquifers; the upper one is the “Continental terminal – CT” (Eocene calcareous formation) situated at 400 m depth in average, while the” Continental Intercalaire – CI”(clay sands from Albian to Lower Cretaceous) is generally at 1500 m depth. This aquifer system is situated in a dry zone with a very weak current recharge but with a non-renewable big volume stored, estimated between 20 000 and 31 000 km³. From 1970 to nowadays, the exploitation of the SASS has increased from 0.6 to more than 2.5 km³/year. This situation provoked risks of water salinisation, reduction of the artesianisme, an increase of drawdowns, etc. which seriously threaten the sustainable socioeconomic development engaged in the SASS zone. Face the water shortage induced by the alarming dryness noted these last years, particularly in the MENA region, the joint management of this system by the three concerned countries, engaged for many years, needs a long-term strategy of integrated water resources management to meet the expected socio-economic goals projected not only in the SASS zone but also in other places, by water transfers. The sustainable management of this extensive aquifer system, aiming to satisfy various needs not only in the areas covered by the SASS but also in other areas through hydraulic transfers, can only be considered if this management is genuinely coordinated, incorporating schemes that primarily address the major constraint of climate change, which has been observed worldwide over the past two decades and is intensifying. In this particular climate context, management schemes must necessarily target several aspects, including (i) Updating the state of water resource exploitation in the SASS. (ii) Guiding agricultural usage as the primary consumer to ensure significant water savings. (iii) Constant monitoring through a network of piezometers to control the physicochemical parameters of the exploited aquifers. (iv) Other aspects related to governance within the framework of integrated management must also be taken into consideration, particularly environmental aspects and conflict resolution. However, problems, especially political ones as currently seen in Libya, may limit or at least disrupt the prospects of coordinated and sustainable management of this aquifer system, which is vital for the three countries.

Keywords: transboundary water resources, SASS, governance, climatic changes

Procedia PDF Downloads 87
599 Characterization of a Mesenchymal Stem Cells Pool in Killian Nasal Polyp

Authors: Emanuela Chiarella, Clelia Nisticò, Nicola Lombardo, Giovanna Lucia Piazzetta, Nadia Lobello, Maria Mesuraca

Abstract:

Killian’s Antrochoanal Polyp is a benign lesion of the maxillary sinus characterized by unilateral nasal obstruction, pus discharge, and headache. It affects, more commonly children and young adults. Although its etiology still remains unclear, chronic inflammation, autoreactivity, allergies, and viral infections are strongly associated with its formation and development, resulting in nasal tissue remodeling. We aimed to investigate the stem cells components which reside in this pathological tissue. In particular, we adopted a protocol for the isolation and culturing of mesenchymal stem cells from surgical biopsies of three Killian nasal polyp patients (KNP-MSCs) as well as from their healthy nasal tissue (HNT-MSCs) that were used as controls. The immunophenotype profile of HNT-MSCs and KNP-MSCs was more similar, with a marked positivity for CD73, CD90, and CD105 expression, while being negative for CD34 and CD14 haematopoietic genes. Cell proliferation assay showed that KNP-MSCs had a replicative disadvantage compared to HNT-MSCs, as evidenced by the significantly lower number of cells in the S-phase of the cell cycle. KNP-MSCs also took longer to close a wound than HNT-MSCs, indicating a partial epithelial phenotype in which low levels of ICAM-1 mRNA and a significant increase in E-CAD transcript were detectable. Subsequently, the differentiation potential of both MSCs populations was analyzed by inducing osteoblastic or adipocyte differentiation for up to 20 days. KNP-MSCs showed the ability to differentiate into osteoblasts, although ALP activity as well as the number and size of calcium deposits were lower than osteogenic induced-HNT-MSCs. Also, mRNA levels of osteoblastic marker genes (OCN, OPN, OSX, RUNX2) resulted lower compared to control cell population. Instead, the analysis of the adipogenic differentiation potential showed a similar behavior between KNP-MSCs and HNT-MSCs considering that the amount of lipid droplets, the expression of adipocyte-specific genes (FABP4, AdipoQ, PPARγ2, LPL) and the content of triacylglycerols were almost overlapping. Taken together, these results first demonstrated that Killian's nasal polyp is a source of mesenchymal stem cells with self-renewal and multi-differentiative capabilities.

Keywords: Mesenchymal stem cells, adipogenic differentiation, osteogenic differentiation, EMT

Procedia PDF Downloads 80
598 Understanding Magnetic Properties of Cd1-xSnxCr2Se4 Using Local Structure Probes

Authors: P. Suchismita Behera, V. G. Sathe, A. K. Nigam, P. A. Bhobe

Abstract:

Co-existence of long-range ferromagnetism and semi-conductivity with correlated behavior of structural, magnetic, optical and electrical properties in various sites doping at CdCr2Se4 makes it a most promising candidate for spin-based electronic applications and magnetic devices. It orders ferromagnetically below TC = 130 K with a direct band gap of ~ 1.5 eV. The magnetic ordering is believed to result from strong competition between the direct antiferromagnetic Cr-Cr spin couplings and the ferromagnetic Cr-Se-Cr exchange interactions. With an aim of understanding the influence of crystal structure on its magnetic properties without disturbing the magnetic site, we investigated four compositions with 3%, 5%, 7% and 10% of Sn-substitution at Cd-site. Partial substitution of Cd2+ (0.78Å) by small sized nonmagnetic ion, Sn4+ (0.55Å), is expected to bring about local lattice distortion as well as a change in electronic charge distribution. The structural disorder would affect the Cd/Sn – Se bonds thus affecting the Cr-Cr and Cr-Se-Cr bonds. Whereas, the charge imbalance created due to Sn4+ substitution at Cd2+ leads to the possibility of Cr mixed valence state. Our investigation of the local crystal structure using the EXAFS, Raman spectroscopy and magnetic properties using SQUID magnetometry of the Cd1-xSnxCr2Se4 series reflects this premise. All compositions maintain the Fd3m cubic symmetry with tetrahedral distribution of Sn at Cd-site, as confirmed by XRD analysis. Lattice parameters were determined from the Rietveld refinement technique of the XRD data and further confirmed from the EXAFS spectra recorded at Cr K-edge. Presence of five Raman-active phonon vibrational modes viz. (T2g (1), T2g (2), T2g (3), Eg, A1g) in the Raman spectra further confirms the crystal symmetry. Temperature dependence of the Raman data provides interesting insight to the spin– phonon coupling, known to dominate the magneto-capacitive properties in the parent compound. Below the magnetic ordering temperature, the longitudinal damping of Eg mode associated with Se-Cd/Sn-Se bending and T2g (2) mode associated to Cr-Se-Cr interaction, show interesting deviations with respect to increase in Sn substitution. Besides providing the estimate of TC, the magnetic measurements recorded as a function of field provide the values of total magnetic moment for all the studied compositions indicative of formation of multiple Cr valences.

Keywords: exchange interactions, EXAFS, ferromagnetism, Raman spectroscopy, spinel chalcogenides

Procedia PDF Downloads 279
597 The Infiltration Interface Structure of Suburban Landscape Forms in Bimen Township, Anji, Zhejiang Province, China

Authors: Ke Wang, Zhu Wang

Abstract:

Coordinating and promoting urban and rural development has been a new round of institutional change in Zhejiang province since 2004. And this plan was fully implemented, which showed that the isolation between the urban and rural areas had gradually diminished. Little by little, an infiltration interface that is dynamic, flexible and interactive is formed, and this morphological structure starts to appear on the landscape form in the surrounding villages. In order to study the specific function and formation of the structure in the context of industrial revolution, Bimen village located on the interface between Anji Township, Huzhou and Yuhang District, Hangzhou is taken as the case. Anji township is in the cross area between Yangtze River delta economic circle and innovation center in Hangzhou. Awarded with ‘Chinese beautiful village’, Bimen has witnessed the growing process of infiltration in ecology, economy, technology and culture on the interface. Within the opportunity, Bimen village presents internal reformation to adapt to the energy exchange with urban areas. In the research, the reformation is to adjust the industrial structure, to upgrade the local special bamboo crafts, to release space for activities, and to establish infrastructures on the interface. The characteristic of an interface is elasticity achieved by introducing an Internet platform using ‘O2O’ agriculture method to connect cities and farmlands. There is a platform of this kind in Bimen named ‘Xiao Mei’. ‘Xiao’ in Chinese means small, ‘Mei’ means beautiful, which indicates the method to refine the landscape form. It turns out that the new agriculture mode will strengthen the interface by orienting the Third Party Platform upon the old dynamic basis and will bring new vitality for economy development in Bimen village. The research concludes opportunities and challenges generated by the evolution of the infiltration interface. It also proposes strategies for how to organically adapt to the urbanization process. Finally it demonstrates what will happen by increasing flexibility in the landscape forms of suburbs in the Bimen village.

Keywords: Bimen village, infiltration interface, flexibility, suburban landscape form

Procedia PDF Downloads 380
596 A Study of Possible Approach to Facilitate Social Sustainability of Industrial Land Redevelopment-Led Urban Regeneration

Authors: Hung Hing Chan, Tai-Shan Hu

Abstract:

Kaohsiung has been an industrial city of Taiwan for over a hundred year. Consequently, there are several abandoned industrial lands left when the process of deindustrialization has started, resulting in the decay of the adjacent urban communities. These industrial lands, which are brownfields that are potentially or already contaminated by hazardous substances, have created social injustice to the surrounding communities. The redevelopments of industrial lands bring a sustainable development to the communities, while the redevelopments can be in different forms, depending on the natural conditions. This research studies the possible approaches to facilitate social sustainability of urban regeneration resulted from the industrial land redevelopment projects, which has always been ignored. The aim of the research is to find out the best western practices of brownfield redevelopment to facilitate social aspect of sustainable urban regeneration and make a contribution to the industrial land redevelopment of Taiwan. The research is conducted via literature review and case study. Industrial land redevelopment has been a social focus in the blighted communities to promote urban regeneration after the post-industrial age. The tendency of this kind of redevelopment is towards constructing the built environment, as a result the environmental and economic aspect of sustainability of the redeveloped industrial land will be boosted, while the social aspect will not be necessarily better since the local communities affected are rarely engaged in the decision-making process and inadequate resource allocation to the projects is not guaranteed. To ensure the improvement of social sustainability is reached, the recommendations of this research, such as civic engagement, a formation of dedicated brownfield regeneration agency and resource allocation to employ brownfield process manager and to strategic communication, should be incorporated into the real practices of industrial land-led urban regeneration. Besides, the case study also shows that the social sustainability of industrial land-led urban regeneration can be promoted by (1) upholding the local feature and public participation in the regeneration process, (2) allocating resources and enforcing responsibility system, and (3) assuring financial resource for the urban regeneration projects and residents. Subsequent research will involve in-depth interviews with the chiefs of the village of related communities in Kaohsiung and questionnaire with the community members to comprehend their opinions regarding social sustainability, aiming at evaluating the social sustainability and finding out which kind of redevelopment project tends to support the social dimension of sustainable development more.

Keywords: brownfield, industrial land, redevelopment, social sustainability, urban regeneration

Procedia PDF Downloads 220
595 2-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing Endoscopies After a 5-Year Follow-Up on Central Venous Access Receiving Home (HPN) Patients with Prophylaxis at Tertiary Healthcare Facility

Authors: Michelle Themalil, Celia Bueno, Rulla Al- Araji

Abstract:

Objective and Study: There are no established guidelines for antibiotic prophylaxis in children with central venous catheters (CVCs) on home parenteral nutrition (HPN), leading to varying practices across UK Centres. We hypothesize that children with intestinal failure are at increased risk for bacteraemia due to altered anatomy, dysmotility, inflammation, biofilm formation in long-term CVCs, and the use of central lines during procedures. Given the bacteraemia rates of up to 8% in upper and 25% in lower endoscopy for adults without central lines, we argue that prophylactic antibiotics are reasonable, given the increased risks faced by this high-risk group of children. Methods: We conducted a five-year review of patients with central venous access receiving home parenteral nutrition (HPN) who underwent endoscopies with antibiotic prophylaxis at our center (tertiary). We documented and analyzed post-procedure infections and their associated risk factors. Results: A total of 15 patients on HPN underwent 29 endoscopic procedures, including 4 upper, 9 combined upper and lower, and 16 combined upper, lower, and ileoscopy. Confirmed infection rates remained at 0% up to 28 days post-procedure. The agreed-upon prophylaxis regimen was implemented, with ciprofloxacin and metronidazole administered as the primary antibiotics. Notably, only 51.7% of patients received a peripheral cannula despite recommendations to avoid central line use during anesthesia, and 20.6% had small intestinal bacterial overgrowth. Conclusions: This study is the first to investigate post-endoscopy infection rates in pediatric patients on HPN. Despite a small sample size, we observed a 0% infection rate, significantly lower than reported rates in adults. These findings suggest that further research is warranted to explore the implications of antibiotic prophylaxis in this unique patient cohort and to establish guidelines that may enhance patient safety during endoscopic procedures.

Keywords: post endosopy infections, central venous access, home parenteral nutrition, intestinal failure

Procedia PDF Downloads 19
594 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices

Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das

Abstract:

The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.

Keywords: terahertz, detector, responsivity, topological-semimetals

Procedia PDF Downloads 168
593 Modernization of Translation Studies Curriculum at Higher Education Level in Armenia

Authors: A. Vahanyan

Abstract:

The paper touches upon the problem of revision and modernization of the current curriculum on translation studies at the Armenian Higher Education Institutions (HEIs). In the contemporary world where quality and speed of services provided are mostly valued, certain higher education centers in Armenia though do not demonstrate enough flexibility in terms of the revision and amendment of courses taught. This issue is present for various curricula at the university level and Translation Studies related curriculum, in particular. Technological innovations that are of great help for translators have been long ago smoothly implemented into the global Translation Industry. According to the European Master's in Translation (EMT) framework, translation service provision comprises linguistic, intercultural, information mining, thematic, and technological competencies. Therefore, to form the competencies mentioned above, the curriculum should be seriously restructured to meet the modern education and job market requirements, relevant courses should be proposed. New courses, in particular, should focus on the formation of technological competences. These suggestions have been made upon the author’s research of the problem across various HEIs in Armenia. The updated curricula should include courses aimed at familiarization with various computer-assisted translation (CAT) tools (MemoQ, Trados, OmegaT, Wordfast, etc.) in the translation process, creation of glossaries and termbases compatible with different platforms), which will ensure consistency in translation of similar texts and speeding up the translation process itself. Another aspect that may be strengthened via curriculum modification is the introduction of interdisciplinary and Project-Based Learning courses, which will enable info mining and thematic competences, which are of great importance as well. Of course, the amendment of the existing curriculum with the mentioned courses will require corresponding faculty development via training, workshops, and seminars. Finally, the provision of extensive internship with translation agencies is strongly recommended as it will ensure the synthesis of theoretical background and practical skills highly required for the specific area. Summing up, restructuring and modernization of the existing curricula on Translation Studies should focus on three major aspects, i.e., introduction of new courses that meet the global quality standards of education, professional development for faculty, and integration of extensive internship supervised by experts in the field.

Keywords: competencies, curriculum, modernization, technical literacy, translation studies

Procedia PDF Downloads 132
592 Different Stages for the Creation of Electric Arc Plasma through Slow Rate Current Injection to Single Exploding Wire, by Simulation and Experiment

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This work simulates the voltage drop and resistance of the explosion of copper wires of diameters 25, 40, and 100 µm surrounded by 1 bar nitrogen exposed to a 150 A current and before plasma formation. The absorption of electrical energy in an exploding wire is greatly diminished when the plasma is formed. This study shows the importance of considering radiation and heat conductivity in the accuracy of the circuit simulations. The radiation of the dense plasma formed on the wire surface is modeled with the Net Emission Coefficient (NEC) and is mixed with heat conductivity through PLASIMO® software. A time-transient code for analyzing wire explosions driven by a slow current rise rate is developed. It solves a circuit equation coupled with one-dimensional (1D) equations for the copper electrical conductivity as a function of its physical state and Net Emission Coefficient (NEC) radiation. At first, an initial voltage drop over the copper wire, current, and temperature distribution at the time of expansion is derived. The experiments have demonstrated that wires remain rather uniform lengthwise during the explosion and can be simulated utilizing 1D simulations. Data from the first stage are then used as the initial conditions of the second stage, in which a simplified 1D model for high-Mach-number flows is adopted to describe the expansion of the core. The current was carried by the vaporized wire material before it was dispersed in nitrogen by the shock wave. In the third stage, using a three-dimensional model of the test bench, the streamer threshold is estimated. Electrical breakdown voltage is calculated without solving a full-blown plasma model by integrating Townsend growth coefficients (TdGC) along electric field lines. BOLSIG⁺ and LAPLACE databases are used to calculate the TdGC at different mixture ratios of nitrogen/copper vapor. The simulations show both radiation and heat conductivity should be considered for an adequate description of wire resistance, and gaseous discharges start at lower voltages than expected due to ultraviolet radiation and the exploding shocks, which may have ionized the nitrogen.

Keywords: exploding wire, Townsend breakdown mechanism, streamer, metal vapor, shock waves

Procedia PDF Downloads 93
591 The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3

Authors: Enhui Wang, Qingzhu Ou, Yan Tang, Xiaodong Guo

Abstract:

As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol).

Keywords: cut-off voltage, de/intercalation kinetics, solid electrolyte interphase film, structural transformation

Procedia PDF Downloads 301
590 Understanding the Cultural Landscape of Kuttanad: Life within the Constraints of Nature

Authors: K. Nikilsha, Lakshmi Manohar, Debayan Chatterjee

Abstract:

Landscape is a setting that informs the way of life of a set of people, and the repository of intangible values and human meanings that nurture our very existence. Along with the linkage that it forms with our lives, it can be argued that landscape and memory cannot be separated, as landscape is the nucleus of our memories. In this context, this paper studies landscape evolution of a region with unique geographic setting, where the dependency of the inhabitants on its resources, led to the formation of certain peculiar beliefs and taboos that formed the basis of a set of unwritten rules and guidelines which they still follow as a part of their lifestyle. One such example is Kuttanad, a low lying region in Kerala which is a complex mosaic of fragmented agricultural landscape incorporating coastal backwaters, rivers, marshes, paddy fields and water channels. The more the physical involvement with the resources, the more was the inhabitants attachment towards it. This attachment of the inhabitants to the place is very strong because the creation of this land was the result of the toil of the low caste labourers who strived day and night to create Kuttanad, which was reclaimed from water with the help of the finance supplied by their landlords. However, the greatest challenge faced by them is posed by the forces of water in the form of floods. As this land is fed by five rivers, even the slight variation in rainfall in its watershed area can cause a large imbalance in the water level causing the reclaimed land to be inundated. The effects of climate change including increase in rainfall, rise in sea level and change of seasons can act as a catalyst to this damage. Hasty urbanization has led to the conversion of paddy fields to housing plots and coconut/plantain fields giving no regard to the traditional systems which had once respected nature and combated floods and draughts through the various cultural practices and taboos practiced by the people. Thus it is essential to look back at the landscape evolution of Kuttanad and to recognise methods used traditionally in the region to establish a cultural landscape, and to understand how climate change and urbanisation shall pose a challenge to the existing landscape and lifestyle. This research also explores the possibilities of alternative and sustainable approaches for resilient urban development learned from Kuttanad as a case study.

Keywords: ecological conservation, landscape and ecological engineering, landscape evolution, man-made landscapes

Procedia PDF Downloads 267
589 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.

Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)

Procedia PDF Downloads 363
588 Long Time Oxidation Behavior of Machined 316 Austenitic Stainless Steel in Primary Water Reactor

Authors: Siyang Wang, Yujin Hu, Xuelin Wang, Wenqian Zhang

Abstract:

Austenitic stainless steels are widely used in nuclear industry to manufacture critical components owing to their excellent corrosion resistance at high temperatures. Almost all the components used in nuclear power plants are produced by surface finishing (surface cold work) such as milling, grinding and so on. The change of surface states induced by machining has great influence on the corrosion behavior. In the present study, long time oxidation behavior of machined 316 austenitic stainless steel exposed to simulated pressure water reactor environment was investigated considering different surface states. Four surface finishes were produced by electro-polishing (P), grinding (G), and two milling (M and M1) processes respectively. Before oxidation, the surface Vickers micro-hardness, surface roughness of each type of sample was measured. Corrosion behavior of four types of sample was studied by using oxidation weight gain method for six oxidation periods. The oxidation time of each period was 120h, 216h, 336h, 504h, 672h and 1344h, respectively. SEM was used to observe the surface morphology of oxide film in several period. The results showed that oxide film on austenitic stainless steel has a duplex-layer structure. The inner oxide film is continuous and compact, while the outer layer is composed of oxide particles. The oxide particle consisted of large particles (nearly micron size) and small particles (dozens of nanometers to a few hundred nanometers). The formation of oxide particle could be significantly affected by the machined surface states. The large particle on cold worked samples (grinding and milling) appeared earlier than electro-polished one, and the milled sample has the largest particle size followed by ground one and electro-polished one. For machined samples, the large particles were almost distributed along the direction of machining marks. Severe exfoliation was observed on one milled surface (M) which had the most heavily cold worked layer, while rare local exfoliation occurred on the ground sample (G) and the other milled sample (M1). The electro-polished sample (P) entirely did not exfoliate.

Keywords: austenitic stainless steel, oxidation, machining, SEM

Procedia PDF Downloads 288
587 The Silent Tuberculosis: A Case Study to Highlight Awareness of a Global Health Disease and Difficulties in Diagnosis

Authors: Susan Scott, Dina Hanna, Bassel Zebian, Gary Ruiz, Sreena Das

Abstract:

Although the number of cases of TB in England has fallen over the last 4 years, it remains an important public health burden with 1 in 20 cases dying annually. The vast majority of cases present in non-UK born individuals with social risk factors. We present a case of non-pulmonary TB presenting in a healthy child born in the UK to professional parents. We present a case of a healthy 10 year old boy who developed acute back pain during school PE. Over the next 5 months, he was seen by various health and allied professionals with worsening back pain and kyphosis. He became increasing unsteady and for the 10 days prior to admission to our hospital, he developed fevers. He was admitted to his local hospital for tonsillitis where he suffered two falls on account of his leg weakness. A spinal X-ray revealed a pathological fracture and gibbus formation. He was transferred to our unit for further management. On arrival, the patient had lower motor neurone signs of his left leg. He underwent spinal fixture, laminectomy and decompression. Microbiology samples taken intra-operatively confirmed Mycobacterium Tuberculosis. He had a positive Mantoux and T-spot and treatment were commenced. There was no evidence of immune compromise. The patient was born in the UK, had a BCG scar and his only travel history had been two years prior to presentation when he travelled to the Phillipines for a short holiday. The patient continues to have issues around neuropathic pain, mobility, pill burden and mild liver side effects from treatment. Discussion: There is a paucity of case reports on spinal TB in paediatrics and diagnosis is often difficult due to the non-specific symptomatology. Although prognosis on treatment is good, a delayed diagnosis can have devastating consequences. This case highlights the continued need for higher index of suspicion and diagnosis in a world with changing patterns of migration and increase global travel. Surgical intervention is limited to the most serious cases to minimise further neurological damage and improve prognosis. There remains the need for a multi-disciplinary approach to deal with challenges of treatment and rehabilitation.

Keywords: tuberculosis, non-pulmonary TB, public health burden, diagnostic challenge

Procedia PDF Downloads 197
586 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag

Authors: L. Pu, C. Unluer

Abstract:

MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.

Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂

Procedia PDF Downloads 194
585 Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer

Authors: Erwin San Juan Martinez, Miguel Angel Aguilar Mendez, Manuel Sandoval Villa, Libia Iris Trejo Tellez

Abstract:

Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.

Keywords: calcium, controlled release, gelatin, nano spraydryer, nanofertilizer

Procedia PDF Downloads 186
584 Green-Synthesized β-Cyclodextrin Membranes for Humidity Sensors

Authors: Zeineb Baatout, Safa Teka, Nejmeddine Jaballah, Nawfel Sakly, Xiaonan Sun, Mustapha Majdoub

Abstract:

Currently, the economic interests linked to the development of bio-based materials make biomass one of the most interesting areas for science development. We are interested in the β-cyclodextrin (β-CD), one of the popular bio-sourced macromolecule, produced from the starch via enzymatic conversion. It is a cyclic oligosaccharide formed by the association of seven glucose units. It presents a rigid conical and amphiphilic structure with hydrophilic exterior, allowing it to be water-soluble. It has also a hydrophobic interior enabling the formation of inclusion complexes, which support its application for the elaboration of electrochemical and optical sensors. Nevertheless, the solubility of β-CD in water makes its use as sensitive layer limit and difficult due to their instability in aqueous media. To overcome this limitation, we chose to precede by modification of the hydroxyl groups to obtain hydrophobic derivatives which lead to water-stable sensing layers. Hence, a series of benzylated β-CDs were synthesized in basic aqueous media in one pot. This work reports the synthesis of a new family of substituted amphiphilic β-CDs using a green methodology. The obtained β-CDs showed different degree of substitution (DS) between 0.85 and 2.03. These organic macromolecular materials were soluble in common organic volatile solvents, and their structures were investigated by NMR, FT-IR and MALDI-TOF spectroscopies. Thermal analysis showed a correlation between the thermal properties of these derivatives and the benzylation degree. The surface properties of the thin films based on the benzylated β-CDs were characterized by contact angle measurements and atomic force microscopy (AFM). These organic materials were investigated as sensitive layers, deposited on quartz crystal microbalance (QCM) gravimetric transducer, for humidity sensor at room temperature. The results showed that the performances of the prepared sensors are greatly influenced by the benzylation degree of β-CD. The partially modified β-CD (DS=1) shows linear response with best sensitivity, good reproducibility, low hysteresis, fast response time (15s) and recovery time (17s) at higher relative humidity levels (RH) between 11% and 98% in room temperature.

Keywords: β-cyclodextrin, green synthesis, humidity sensor, quartz crystal microbalance

Procedia PDF Downloads 274
583 From Government-Led to Collective Action: A Case Study of the Transformation of Urban Renewal Governance in Nanjing, China

Authors: Hanjun Hu, Jinxiang Zhang

Abstract:

With the decline of "growthism", China's urbanization process has shifted from the stage of spatial expansion to the stage of optimization of built-up spaces, and urban renewal has gradually become a new wave of China's urban movement in recent years. The ongoing urban renewal movement in China not only needs to generate new motivation for urban development but also solve the backlog of social problems caused by rapid urbanization, which provides an opportunity for the transformation of China's urban governance model. Unlike previous approaches that focused on physical space and functional renewal, such as urban reconstruction, redevelopment, and reuse, the key challenge of urban renewal in the post-growth era lies in coordinating the complex interest relationships between multiple stakeholders. The traditional theoretical frameworks that focus on the structural relations between social groups are insufficient to explain the behavior logic and mutual cooperation mechanism of various groups and individuals in the current urban renewal practices. Therefore, based on the long-term tracking of the urban renewal practices in the Old City of Nanjing (OCN), this paper introduces the "collective action" theory to deeply analyze changes in the urban renewal governance model in OCN and tries to summarize the governance strategies that promote the formation of collective action within recent practices from a micro-scale. The study found that the practice in OCN experienced three different stages "government-led", "growth coalition" and "asymmetric game". With the transformation of government governance concepts, the rise of residents' consciousness of rights, and the wider participation of social organizations in recent years, the urban renewal in OCN is entering a new stage of "collective renewal action". Through the establishment of the renewal organization model, incentive policies, and dynamic negotiation mechanism, urban renewal in OCN not only achieves a relative balance between individual interests and collective interests but also makes the willingness of residents the dominant factor in formulating urban renewal policies. However, the presentation of "collective renewal action" in OCN is still mainly based on typical cases. Although the government is no longer the dominant role, a large number of resident-led collective actions have not yet emerged, which puts forward new research needs for a sustainable governance policy innovation in this action.

Keywords: urban renewal, collective action theory, governance, cooperation mechanism, China

Procedia PDF Downloads 59