Search results for: strengths-based approaches
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3974

Search results for: strengths-based approaches

1064 Human Resources Development and Management: A Guide to School Owners

Authors: Charita B. Lasala, Lakambini G. Reluya

Abstract:

The human factor composing the organization is an asset that needs to be managed conscientiously and to be in tuned with the organization’s need. Thus, the human resources add value to the organization by using their talents, skills and knowledge in transforming the other resources of the organization to either produce or to deliver products and services that generate profits or other valued forms for return. Keeping these kinds of employees has always been the main goal of each Human Resources Department in every company worldwide; regardless of the work being done. They are the most important resource a company can have and treating them well will make them priceless assets that can help make a business a success. Larmen de Guia Memorial College (LGMC) and Royal Oaks International School (ROIS) is one of the many organizations that seek ways to keep the human factor and are in the process of formalization and that people management is on the top of the list thus, this study was made since there was a need for the creation of the Human Resources Department due to its absence in the organization and to help the organization in keeping these valued employees. The study was anchored on the concept that human resources consist of people who perform its activities and that all decisions that affect the workforce concern the organization’s human resources functions. In conducting this study, it made use of the mixed method using both the qualitative and quantitative approaches with focus group discussions. The design has three stages namely: problem conceptualization, case analysis, and output. The output from the survey and interviews tells the abstracted ideas on the proposed HR program for the said institution. Based on the findings of the study, it can be concluded that the personnel in the institution is not in the correct perspective, much more that the personnel has no specific job descriptions. The hiring procedure is not extensive, nor the personnel was given the chance to be exposed to training that would aid them in job development and enhancement of their skills and talents. The compensation package offered by the institution does not commensurate to their services rendered. Lastly, it is concluded that in the opinion/decision rendered by the grievance committee is not fair and that the institution failed to give good motivation/initiative for the employees to be more productive.

Keywords: employee benefits, employee relations, human resources and management, people management, recruitment, trainings

Procedia PDF Downloads 317
1063 Selling Skills to Effect Customer Satisfaction in Digital Era

Authors: Teerapong Lorchitamnuay, Thirarut Worapishet

Abstract:

In the present digital age, today's customers explore various channels before finalizing a purchase, with abundant options and information at their disposal. Despite this, there is a strong digital interconnectedness. With just a few mouse clicks, customers can gather comprehensive information about a product, free from the influence of a salesperson. Salespeople must embrace cutting-edge technology to truly redefine the essence of selling if they are to thrive in this digital era. The significance of customer-salesperson communication in companies is becoming increasingly evident. It prompts the inquiry of how companies can modify or reshape their sales teams' approaches to effectively respond to evolving customer preferences and effectively manage external shifts, all in pursuit of sustaining and expanding their enterprises. Research highlights that digital and intercultural skills are the latest competencies sought by customers from salespeople in today's fast-paced world prior to making purchases of products and services. This study seeks to examine the pivotal influences of these salesperson skills in achieving customer satisfaction. The research design encompasses the analysis of descriptive statistics and quantitative data through a regression model. Data were gathered from an online convenience survey involving 260 respondents who are customers of an air express service provider in Thailand and who engage with salespeople in a traditional manner. The findings underscore that intercultural skills have a substantial impact on customer satisfaction in the digital era, particularly concerning adaptability, foreign language proficiency, active listening, and empathy skills. Organizations should focus on nurturing beneficial habits among their salespeople; since it signifies this effort, it should extend beyond just the frontline but should extend to encompass backline units and high-level management, ensuring that everyone possesses the same customer-oriented skills. The conclusions drawn from this research provide valuable insights, affirming that digital and intercultural skills can empower organizations to optimize their workforce's competencies, thereby achieving customer satisfaction in the digital age.

Keywords: customer behavior, customer satisfaction, digital era, digital skill, intercultural skill

Procedia PDF Downloads 84
1062 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management

Authors: A. Giannakopoulos, S. B. Buckley

Abstract:

Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.

Keywords: critical thinking, knowledge management, mathematics, problem solving

Procedia PDF Downloads 596
1061 Emotional Intelligence in Educational Arena and Its Pragmatic Concerns

Authors: Mehar Fatima

Abstract:

This study intends to make analysis of Emotional Intelligence (EI) in the process of pedagogy and look into its repercussions in different educational institutions including school, college, and university in the capital state of India, Delhi in 2015. Field of education is a complex area with challenging issues in a modern society. Education is the breeding ground for nurturing human souls, and personalities. Since antiquity, man has been in search of truth, wisdom, contentment, peace. His efforts have brought him to acquire these through hardship, evidently through the process of teaching and learning. Computer aids and artificial intelligence have made life easy but complex. Efficient pedagogy involves direct human intervention despite the flux of technological advancements. Time and again, pedagogical practices demand sincere human efforts to understand and improve upon life’s many pragmatic concerns. Apart from the intense academic scientific approaches, EI in academia plays a vital role in the growth of education, positively achieving national progression; ‘pedagogy of pragmatic purpose.’ Use of literature is found to be one of the valuable pragmatic tools of Emotional Intelligence. This research examines the way literature provides useful influence in building better practices in teaching-learning process. The present project also scrutinizes various pieces of world literature and translation, incorporating efforts of intellectuals in promoting comprehensive amity. The importance of EI in educational arena with its pragmatic uses was established by the study of interviews, and questionnaire collected from teachers and students. In summary the analysis of obtained empirical data makes it possible to accomplish that the use Emotional Intelligence in academic scenario yields multisided positive pragmatic outcomes; positive attitude, constructive aptitude, value-added learning, enthusiastic participation, creative thinking, lower apprehension, diminished fear, leading to individual as well as collective advancement, progress, and growth of pedagogical agents.

Keywords: emotional intelligence, human efforts, pedagogy, pragmatic concerns

Procedia PDF Downloads 370
1060 Formation Flying Design Applied for an Aurora Borealis Monitoring Mission

Authors: Thais Cardoso Franco, Caio Nahuel Sousa Fagonde, Willer Gomes dos Santos

Abstract:

Aurora Borealis is an optical phenomenon composed of luminous events observed in the night skies in the polar regions resulting from disturbances in the magnetosphere due to the impact of solar wind particles with the Earth's upper atmosphere, channeled by the Earth's magnetic field, which causes atmospheric molecules to become excited and emit electromagnetic spectrum, leading to the display of lights in the sky. However, there are still different implications of this phenomenon under study: high intensity auroras are often accompanied by geomagnetic storms that cause blackouts on Earth and impair the transmission of signals from the Global Navigation Satellite Systems (GNSS). Auroras are also known to occur on other planets and exoplanets, so the activity is an indication of active space weather conditions that can aid in learning about the planetary environment. In order to improve understanding of the phenomenon, this research aims to design a satellite formation flying solution for collecting and transmitting data for monitoring aurora borealis in northern hemisphere, an approach that allows studying the event with multipoint data collection in a reduced time interval, in order to allow analysis from the beginning of the phenomenon until its decline. To this end, the ideal number of satellites, the spacing between them, as well as the ideal topology to be used will be analyzed. From an orbital study, approaches from different altitudes, eccentricities and inclinations will also be considered. Given that at large relative distances between satellites in formation, controllers tend to fail, a study on the efficiency of nonlinear adaptive control methods from the point of view of position maintenance and propellant consumption will be carried out. The main orbital perturbations considered in the simulation: non-homogeneity terrestrial, atmospheric drag, gravitational action of the Sun and the Moon, accelerations due to solar radiation pressure and relativistic effects.

Keywords: formation flying, nonlinear adaptive control method, aurora borealis, adaptive SDRE method

Procedia PDF Downloads 39
1059 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy

Authors: Erick Pruchnicki, Nikhil Padhye

Abstract:

Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.

Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials

Procedia PDF Downloads 113
1058 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation

Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda

Abstract:

A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.

Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation

Procedia PDF Downloads 432
1057 Processing and Characterization of Oxide Dispersion Strengthened (ODS) Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) Ferritic Steel

Authors: Farha Mizana Shamsudin, Shahidan Radiman, Yusof Abdullah, Nasri Abdul Hamid

Abstract:

Oxide dispersion strengthened (ODS) ferritic steels are amongst the most promising candidates for large scale structural materials to be applied in next generation fission and fusion nuclear power reactors. This kind of material is relatively stable at high temperature, possess remarkable mechanical properties and comparatively good resistance from neutron radiation damage. The superior performance of ODS ferritic steels over their conventional properties is attributed to the high number density of nano-sized dispersoids that act as nucleation sites and stable sinks for many small helium bubbles resulting from irradiation, and also as pinning points to dislocation movement and grain growth. ODS ferritic steels are usually produced by powder metallurgical routes involving mechanical alloying (MA) process of Y2O3 and pre-alloyed or elemental metallic powders, and then consolidated by hot isostatic pressing (HIP) or hot extrusion (HE) techniques. In this study, Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (designated as 14YWT) was produced by mechanical alloying process and followed by hot isostatic pressing (HIP) technique. Crystal structure and morphology of this sample were identified and characterized by using X-ray Diffraction (XRD) and field emission scanning electron microscope (FESEM) respectively. The magnetic measurement of this sample at room temperature was carried out by using a vibrating sample magnetometer (VSM). FESEM micrograph revealed a homogeneous microstructure constituted by fine grains of less than 650 nm in size. The ultra-fine dispersoids of size between 5 nm to 19 nm were observed homogeneously distributed within the BCC matrix. The EDS mapping reveals that the dispersoids contain Y-Ti-O nanoclusters and from the magnetization curve plotted by VSM, this sample approaches the behavior of soft ferromagnetic materials. In conclusion, ODS Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) ferritic steel was successfully produced by HIP technique in this present study.

Keywords: hot isostatic pressing, magnetization, microstructure, ODS ferritic steel

Procedia PDF Downloads 320
1056 PhenoScreen: Development of a Systems Biology Tool for Decision Making in Recurrent Urinary Tract Infections

Authors: Jonathan Josephs-Spaulding, Hannah Rettig, Simon Graspeunter, Jan Rupp, Christoph Kaleta

Abstract:

Background: Recurrent urinary tract infections (rUTIs) are a global cause of emergency room visits and represent a significant burden for public health systems. Therefore, metatranscriptomic approaches to investigate metabolic exchange and crosstalk between uropathogenic Escherichia coli (UPEC), which is responsible for 90% of UTIs, and collaborating pathogens of the urogenital microbiome is necessary to better understand the pathogenetic processes underlying rUTIs. Objectives: This study aims to determine the level in which uropathogens optimize the host urinary metabolic environment to succeed during invasion. By developing patient-specific metabolic models of infection, these observations can be taken advantage of for the precision treatment of human disease. Methods: To date, we have set up an rUTI patient cohort and observed various urine-associated pathogens. From this cohort, we developed patient-specific metabolic models to predict bladder microbiome metabolism during rUTIs. This was done by creating an in silico metabolomic urine environment, which is representative of human urine. Metabolic models of uptake and cross-feeding of rUTI pathogens were created from genomes in relation to the artificial urine environment. Finally, microbial interactions were constrained by metatranscriptomics to indicate patient-specific metabolic requirements of pathogenic communities. Results: Metabolite uptake and cross-feeding are essential for strain growth; therefore, we plan to design patient-specific treatments by adjusting urinary metabolites through nutritional regimens to counteract uropathogens by depleting essential growth metabolites. These methods will provide mechanistic insights into the metabolic components of rUTI pathogenesis to provide an evidence-based tool for infection treatment.

Keywords: recurrent urinary tract infections, human microbiome, uropathogenic Escherichia coli, UPEC, microbial ecology

Procedia PDF Downloads 135
1055 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction

Authors: Joy Cao, Min Zhou

Abstract:

Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.

Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.

Procedia PDF Downloads 89
1054 Correlation between Calpain 1 Expression and Proliferating/Apoptotic Index and Prognostic Factors in Triple Negative Breast Cancer

Authors: Shadia Al-Bahlani, Ruqaya Al-Rashdi, Shadia Al-Sinawi, Maya Al-Bahri

Abstract:

Background: Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer, which is defined by the absence of Estrogen (ER), Progesterone (PR) and Human epidermal growth factor (Her-2) receptors. The calpain system plays an important role in many cellular processes including apoptosis, necrosis, cell signaling and proliferation. The role of clapins in pathogenesis and tumor progression has been studied in certain cancer types; however, its definite role is not yet established in breast cancer especially in the TNBC subtype. Objectives: This study aims to measure calpain-1 expression and correlate this measurement with the proliferating/apoptotic index as well with the prognostic factors in TNBC patients’ tissue. Materials and Methods: Thirty nine paraffin blocks from patients diagnosed with TNBC were used to measure the expression of calpain-1 and Ki-67 (proliferating marker) proteins using immunohistochemistry. Apoptosis was assessed morphological and biochemically using conventional Haematoxylin and Eosin (H&E) staining method and terminal deoxynucleotidyl transferase-mediate dUTP nick and labeling (TUNEL) assay respectively. Data was statistically analyzed using Pearson X2 test of association. Results: Calpain-1 content was visualized in the nucleus of the TNBC cells and its expression varied from low to high among the patients tissue. Calpain expression showed no significant correlation with the proliferating/apoptotic index as well with the clinicopathological variables. Apoptotic counts quantified by H&E staining showed significant association with the apoptotic TUNEL assay, validating both approaches. Conclusion: Although calpain-1 expression showed no significant association with the clinical outcome, its variable level of expression might indicate a hidden role in breast cancer tissue. Larger number of samples and different mode of assessments are needed to fully investigate such role. Exploring the involvement of calpain-1 in cancer progression might help in considering it as a biomarker of breast cancer.

Keywords: breast cancer, calpain, apoptosis, prognosis

Procedia PDF Downloads 442
1053 The Role of Muzara’ah Islamic Financing in Supporting Smallholder Farmers among Muslim Communities: An Empirical Experience of Yobe Microfinance Bank

Authors: Sheriff Muhammad Ibrahim

Abstract:

The contemporary world has seen many agents of market liberalization, globalization, and expansion in agribusiness, which pose a big threat to the existence of smallholder farmers in the farming business or, at most, being marginalized against government interventions, investors' partnerships and further stretched by government policies in an effort to promote subsistent farming that can generate profits and speedy growth through attracting foreign businesses. The consequence of these modern shifts ends basically at the expense of smallholder farmers. Many scholars believed that this shift was among the major causes of urban-rural drift facing almost all communities in the World. In an effort to address these glaring economic crises, various governments at different levels and development agencies have created different programs trying to identify other sources of income generation for rural farmers. However, despite the different approaches adopted by many communities and states, the mass rural exodus continues to increase as the rural farmers continue to lose due to a lack of reliable sources for cost-efficient inputs such as agricultural extension services, mechanization supports, quality, and improved seeds, soil matching fertilizers and access to credit facilities and profitable markets for rural farmers output. Unfortunately for them, they see these agricultural requirements provided by large-scale farmers making their farming activities cheaper and yields higher. These have further created other social problems between the smallholder farmers and the large-scale farmers in many areas. This study aims to suggest the Islamic mode of agricultural financing named Muzara’ah for smallholder farmers as a microfinance banking product adopted and practiced by Yobe Microfinance Bank as a model to promote agricultural financing to be adopted in other communities. The study adopts a comparative research method to conclude that the Muzara’ah model of financing can be adopted as a valid means of financing smallholder farmers and reducing food insecurity.

Keywords: Muzara'ah, Islamic finance, agricultural financing, microfinance, smallholder farmers

Procedia PDF Downloads 62
1052 Metoo in China: An Analysis of the Metoo Movement in China's Social Media

Authors: Xinrui Zhao

Abstract:

Connective actions acquired a completely different outlook of a social movement which credited with the rapid developed of social media technologies. New social movements amalgamate and mobilize around hashtags, memes, and personalized action frames. In 2017, the #MeToo movements from America spread to a variety of countries as a hashtag on social media. It attempted to demonstrate the widespread prevalence of sexual assault and harassment movement. It also encouraged Chinese women to participate by devoting and contributing their voices and acts. Furthermore, China’s #MeToo movement shows certain characteristics which are strongly shaped by particular political and cultural backgrounds, that also need to be studied. This paper serves as supplementary materials of connective action studies by addressing the #MeToo movement issues in China, which is rarely mentioned previously in the literature, it also supports a view that suggests that ideological and cultural drivers both strategically contribute to personalized action frames. This paper combines textual analysis methods, collecting attached materials from search engines in China’s social media, portrays the structure of China’s #MeToo movements by showing prominent activists, scholars, organization and the public’s action frame in China’s social media(Weibo, wechat, zhihu, douban). In doing so, it seeks to find how China’s #MeToo movements are organized and reveal diversities of social action approaches among those three subjects, digs out the correlations of their actions related to different social media platforms. This analysis suggests that while facing the government's censorship and moral judgments from the public, China’s #MeToo movement combines with few influential sexual assault and harassment events and is lead by the prominent activists who also are the victims in the events. The debates and critiques among Chinese scholars concerned the outcomes and significance of China’s #MeToo movement are divided into sides. Organizations still show less power in participating China’s movement social media. Public’s participation is varied of platforms which hugely affected by their personal experiences and knowledge.

Keywords: connective action, China, MeToo movement, social media

Procedia PDF Downloads 128
1051 Adopting a Stakeholder Perspective to Profile Successful Sustainable Circular Business Approaches: A Single Case Study

Authors: Charleen von Kolpinski, Karina Cagarman, Alina Blaute

Abstract:

The circular economy concept is often framed by politicians, scientists and practitioners as being the solution to sustainability problems of our times. However, the focus of these discussions and publications is very often set on environmental and economic aspects. In contrast, the social dimension of sustainability has been neglected and only a few recent and mostly conceptual studies targeted the inclusion of social aspects and the SDGs into circular economy research. All stakeholders of this new circular system have to be included to represent a truly sustainable solution to all the environmental, economic and social challenges caused by the linear economic system. Hence, this empirical research aims to analyse, next to the environmental and economic dimension, also explicitly the social dimension of a sustainable circular business model. This inductive and explorative approach applies the single case study method. A multi-stakeholder view is adopted to shed light on social aspects of the circular business model. Different stakeholder views, tensions between stakeholders and conflicts of interest are detected. In semi-structured interviews with different stakeholders of the company, this study compares the different stakeholder views to profile the success factors of its business model in terms of sustainability implementation and to detect its shortcomings. These findings result in the development of propositions which cover different social aspects of sustainable circular business model implementation. This study is an answer to calls for future empirical research about the social dimension of the circular economy and contributes to sustainable business model thinking in entrepreneurial contexts of the circular economy. It helps identifying all relevant stakeholders and their needs to successfully and inclusively implement a sustainable circular business model. The method of a single case study has some limitations by nature as it only covers one enterprise with its special business model. Therefore, more empirical studies are needed to research sustainable circular business models from multiple stakeholder perspectives, in different countries and industries. Future research can build upon the developed propositions of this study and develop hypotheses to be tested.

Keywords: circular economy, single case study, social dimension, sustainable circular business model

Procedia PDF Downloads 176
1050 Barriers for Appropriate Palliative Symptom Management: A Qualitative Research in Kazakhstan, a Medium-Income Transitional-Economy Country

Authors: Ibragim Issabekov, Byron Crape, Lyazzat Toleubekova

Abstract:

Background: Palliative care substantially improves the quality of life of terminally-ill patients. Symptom control is one of the keystones in the management of patients in palliative care settings, lowering distress as well as improving the quality of life of patients with end-stage diseases. The most common symptoms causing significant distress for patients are pain, nausea and vomiting, increased respiratory secretions and mental health issues like depression. Aims are: 1. to identify best practices in symptom management in palliative patients in accordance with internationally approved guidelines and compare aforementioned with actual practices in Kazakhstan; to evaluate the criteria for assessing symptoms in terminally-ill patients, 2. to review the availability and utilization of pharmaceutical agents for pain control, management of excessive respiratory secretions, nausea, and vomiting, and delirium and 3. to develop recommendations for the systematic approach to end-of-life symptom management in Kazakhstan. Methods: The use of qualitative research methods together with systematic literature review have been employed to provide a rigorous research process to evaluate current approaches for symptom management of palliative patients in Kazakhstan. Qualitative methods include in-depth semi-structured interviews of the healthcare professionals involved in palliative care provision. Results: Obstacles were found in appropriate provision of palliative care. Inadequate education and training to manage severe symptoms, poorly defined laws and regulations for palliative care provision, and a lack of algorithms and guidelines for care were major barriers in the effective provision of palliative care. Conclusion: Assessment of palliative care in this medium-income transitional-economy country is one of the first steps in the initiation of integration of palliative care into the existing health system. Achieving this requires identifying obstacles and resolving these issues.

Keywords: end-of-life care, middle income country, palliative care, symptom control

Procedia PDF Downloads 200
1049 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218
1048 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 50
1047 A Systematic Review on Orphan Drugs Pricing, and Prices Challenges

Authors: Seyran Naghdi

Abstract:

Background: Orphan drug development is limited by very high costs attributed to the research and development and small size market. How health policymakers address this challenge to consider both supply and demand sides need to be explored for directing the policies and plans in the right way. The price is an important signal for pharmaceutical companies’ profitability and the patients’ accessibility as well. Objective: This study aims to find out the orphan drugs' price-setting patterns and approaches in health systems through a systematic review of the available evidence. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) approach was used. MedLine, Embase, and Web of Sciences were searched via appropriate search strategies. Through Medical Subject Headings (MeSH), the appropriate terms for pricing were 'cost and cost analysis', and it was 'orphan drug production', and 'orphan drug', for orphan drugs. The critical appraisal was performed by the Joanna-Briggs tool. A Cochrane data extraction form was used to obtain the data about the studies' characteristics, results, and conclusions. Results: Totally, 1,197 records were found. It included 640 hits from Embase, 327 from Web of Sciences, and 230 MedLine. After removing the duplicates, 1,056 studies remained. Of them, 924 studies were removed in the primary screening phase. Of them, 26 studies were included for data extraction. The majority of the studies (>75%) are from developed countries, among them, approximately 80% of the studies are from European countries. Approximately 85% of evidence has been produced in the recent decade. Conclusions: There is a huge variation of price-setting among countries, and this is related to the specific pharmacological market structure and the thresholds that governments want to intervene in the process of pricing. On the other hand, there is some evidence on the availability of spaces to reduce the very high costs of orphan drugs development through an early agreement between pharmacological firms and governments. Further studies need to focus on how the governments could incentivize the companies to agree on providing the drugs at lower prices.

Keywords: orphan drugs, orphan drug production, pricing, costs, cost analysis

Procedia PDF Downloads 163
1046 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 296
1045 Modification of Polyolefin Membrane Using Supercritical Carbon Dioxide for Redox Flow Batteries

Authors: Vadim V. Zefirov, Victor E. Sizov, Marina A. Pigaleva, Igor V. Elmanovich, Mikhail S. Kondratenko, Marat O. Gallyamov

Abstract:

This work presents a novel method for treating porous hydrophobic polyolefin membranes using supercritical carbon dioxide that allows usage of the modified membrane in redox flow batteries with an aqueous electrolyte. Polyolefin membranes are well known and widely used, however, they cannot be used as separators in redox flow batteries with an aqueous electrolyte since they have insufficient wettability, and therefore do not provide sufficient proton conductivity. The main aim of the presented work was the development of hydrophilic composites based on cheap membranes and precursors. Supercritical fluid was used as a medium for the deposition of the hydrophilic phase on the hydrophobic surface of the membrane. Due to the absence of negative capillary effects in a supercritical medium, a homogeneous composite is obtained as a result of synthesis. The in-situ synthesized silicon oxide nanoparticles and the chitosan polymer layer act as the hydrophilic phase and not only increase the affinity of the membrane towards the electrolyte, but also reduce the pore size of the polymer matrix, which positively affects the ion selectivity of the membrane. The composite material obtained as a result of synthesis has enhanced hydrophilic properties and is capable of providing proton conductivity in redox flow batteries. The morphology of the obtained composites was characterized by electron microscopy. To analyze the phase composition, infrared spectroscopy was used. The hydrophilic properties were studied by water contact angle measurements. In addition, the proton conductivity and ion selectivity of the obtained samples were studied, and tests in real redox flow batteries were performed. As a result, modified membrane was characterised in detail and moreover it was shown that modified cheap polyolefin membranes have pronounced proton conductivity and high ion selectivity, so their performance in a real redox flow battery approaches expensive commercial analogues, reaching 70% of energy efficiency.

Keywords: carbon dioxide, chitosan, polymer membrane, redox flow batteries, silica nanoparticles, supercritical fluid

Procedia PDF Downloads 153
1044 Formulating a Definition of Hate Speech: From Divergence to Convergence

Authors: Avitus A. Agbor

Abstract:

Numerous incidents, ranging from trivial to catastrophic, do come to mind when one reflects on hate. The victims of these belong to specific identifiable groups within communities. These experiences evoke discussions on Islamophobia, xenophobia, homophobia, anti-Semitism, racism, ethnic hatred, atheism, and other brutal forms of bigotry. Common to all these is an invisible but portent force that drives all of them: hatred. Such hatred is usually fueled by a profound degree of intolerance (to diversity) and the zeal to impose on others their beliefs and practices which they consider to be the conventional norm. More importantly, the perpetuation of these hateful acts is the unfortunate outcome of an overplay of invectives and hate speech which, to a greater extent, cannot be divorced from hate. From a legal perspective, acknowledging the existence of an undeniable link between hate speech and hate is quite easy. However, both within and without legal scholarship, the notion of “hate speech” remains a conundrum: a phrase that is quite easily explained through experiences than propounding a watertight definition that captures the entire essence and nature of what it is. The problem is further compounded by a few factors: first, within the international human rights framework, the notion of hate speech is not used. In limiting the right to freedom of expression, the ICCPR simply excludes specific kinds of speeches (but does not refer to them as hate speech). Regional human rights instruments are not so different, except for the subsequent developments that took place in the European Union in which the notion has been carefully delineated, and now a much clearer picture of what constitutes hate speech is provided. The legal architecture in domestic legal systems clearly shows differences in approaches and regulation: making it more difficult. In short, what may be hate speech in one legal system may very well be acceptable legal speech in another legal system. Lastly, the cornucopia of academic voices on the issue of hate speech exude the divergence thereon. Yet, in the absence of a well-formulated and universally acceptable definition, it is important to consider how hate speech can be defined. Taking an evidence-based approach, this research looks into the issue of defining hate speech in legal scholarship and how and why such a formulation is of critical importance in the prohibition and prosecution of hate speech.

Keywords: hate speech, international human rights law, international criminal law, freedom of expression

Procedia PDF Downloads 76
1043 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia

Authors: Rohan Bhasin

Abstract:

Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.

Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM

Procedia PDF Downloads 164
1042 A Study on ZnO Nanoparticles Properties: An Integration of Rietveld Method and First-Principles Calculation

Authors: Kausar Harun, Ahmad Azmin Mohamad

Abstract:

Zinc oxide (ZnO) has been extensively used in optoelectronic devices, with recent interest as photoanode material in dye-sensitize solar cell. Numerous methods employed to experimentally synthesized ZnO, while some are theoretically-modeled. Both approaches provide information on ZnO properties, but theoretical calculation proved to be more accurate and timely effective. Thus, integration between these two methods is essential to intimately resemble the properties of synthesized ZnO. In this study, experimentally-grown ZnO nanoparticles were prepared by sol-gel storage method with zinc acetate dihydrate and methanol as precursor and solvent. A 1 M sodium hydroxide (NaOH) solution was used as stabilizer. The optimum time to produce ZnO nanoparticles were recorded as 12 hours. Phase and structural analysis showed that single phase ZnO produced with wurtzite hexagonal structure. Further work on quantitative analysis was done via Rietveld-refinement method to obtain structural and crystallite parameter such as lattice dimensions, space group, and atomic coordination. The lattice dimensions were a=b=3.2498Å and c=5.2068Å which were later used as main input in first-principles calculations. By applying density-functional theory (DFT) embedded in CASTEP computer code, the structure of synthesized ZnO was built and optimized using several exchange-correlation functionals. The generalized-gradient approximation functional with Perdew-Burke-Ernzerhof and Hubbard U corrections (GGA-PBE+U) showed the structure with lowest energy and lattice deviations. In this study, emphasize also given to the modification of valence electron energy level to overcome the underestimation in DFT calculation. Both Zn and O valance energy were fixed at Ud=8.3 eV and Up=7.3 eV, respectively. Hence, the following electronic and optical properties of synthesized ZnO were calculated based on GGA-PBE+U functional within ultrasoft-pseudopotential method. In conclusion, the incorporation of Rietveld analysis into first-principles calculation was valid as the resulting properties were comparable with those reported in literature. The time taken to evaluate certain properties via physical testing was then eliminated as the simulation could be done through computational method.

Keywords: density functional theory, first-principles, Rietveld-refinement, ZnO nanoparticles

Procedia PDF Downloads 309
1041 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems

Authors: Thomas Meier

Abstract:

One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.

Keywords: Internet of Things, smart building, device interoperability, device integration, smart home

Procedia PDF Downloads 271
1040 Mental Health Conditions and Their Risk Factors Among Women in Garissa County, Kenya

Authors: Njoroge Margaret W., Johnson Deborah

Abstract:

Gender-specific risk factors for common mental disorders that disproportionately affect women include but are not limited to gender-based violence, socioeconomic disadvantage, sociocultural factors and unrelenting responsibility for the care of others. The overall objective of this study was to assess mental health conditions and their risk factors among women in Garissa County, Kenya. The study adopted both quantitative and qualitative research designs. The study participants were 100 adult women and 20 key informants from different sectors in the region. Data was collected using DSM-5 (PCL-5) and Kessler Psychological Distress, interviews schedule and focus group discussions. Analysis of quantitative data was done using univariate analysis, while qualitative data was analyzed using thematic analysis. The results revealed that about 60% of women presented with moderate to severe psychological distress (PD), while 53% presented with PTSD. Additionally, women who have undergone female genital mutilation had higher PTSD and PD scores. They also presented with low self-esteem, depressive symptoms, sex anxiety, avoidance of reminders and intrusive memories of the event, especially those who developed fistula. The risk factors for poor mental health outcomes include lack of awareness/knowledge of mental health, retrogressive cultural practices (child marriage and female genital mutilation), as well as beliefs about the causes of mental disorders. The study also established that people with mental illness are neglected, abused and stigmatized. Preferred treatment approaches include prayers and the use of witch doctors and traditional healers. The study recommends gendered and culturally responsive interventions geared towards increasing community awareness and knowledge on mental health, reducing stigma and improving mental-health-seeking behaviors for women and girls in the region. Supported by the Ministry of Health, the approach should be spearheaded by trained community lay counselors.

Keywords: women, mental health conditions, cultural beliefs/practices, stigma, poverty, psychological distress, PTSD

Procedia PDF Downloads 52
1039 Characteristics of Children Heart Rhythm Regulation with Acute Respiratory Diseases

Authors: D. F. Zeynalov, T. V. Kartseva, O. V. Sorokin

Abstract:

Currently, approaches to assess cardiointervalography are based on the calculation of data variance intervals RR. However, they do not allow the evaluation of features related to a period of the cardiac cycle, so how electromechanical phenomena during cardiac subphase are characterized by differently directed changes. Therefore, we have proposed a method of subphase analysis of the cardiac cycle, developed in the department of hominal physiology Novosibirsk State Medical University to identify the features of the dispersion subphase of the cardiac cycle. In the present paper we have examined the 5-minute intervals cardiointervalography (CIG) to isolate RR-, QT-, ST-ranges in healthy children and children with acute respiratory diseases (ARD) in comparison. It is known that primary school-aged children suffer at ARD 5-7 times per year. Consequently, it is one of the most relevant problems in pediatrics. It is known that the spectral indices and indices of temporal analysis of heart rate variability are highly sensitive to the degree of intoxication during immunological process. We believe that the use of subphase analysis of heart rate will allow more thoroughly evaluate responsiveness of the child organism during the course of ARD. The study involved 60 primary school-aged children (30 boys and 30 girls). In order to assess heart rhythm regulation, the record CIG was used on the "VNS-Micro" device of Neurosoft Company (Ivanovo) for 5 minutes in the supine position and 5 minutes during active orthostatic test. Subphase analysis of variance QT-interval and ST-segment was performed on the "KardioBOS" software Biokvant Company (Novosibirsk). In assessing the CIG in the supine position and in during orthostasis of children with acute respiratory diseases only RR-intervals are observed typical trend of general biological reactions through pressosensitive compensation mechanisms to lower blood pressure, but compared with healthy children the severity of the changes is different, of sick children are more pronounced indicators of heart rate regulation. But analysis CIG RR-intervals and analysis subphase ST-segment have yielded conflicting trends, which may be explained by the different nature of the intra- and extracardiac influences on regulatory mechanisms that implement the various phases of the cardiac cycle.

Keywords: acute respiratory diseases, cardiointervalography, subphase analysis, cardiac cycle

Procedia PDF Downloads 275
1038 The Communicational Behaviors of the Nurses Towards 'Crying Patient'

Authors: Hacer Kobya Bulut, Kıymet Yeşilçiçek Çalık, Birsel Canan Demirbağ, Hacer Erdöl, Songül Aktaş

Abstract:

Introduction: As an expression of an emotion which always exists in life, crying is regarded as one of the problematic behaviors of patients by nurses. Towards such patients, nurses may exhibit emotional and behavioral reactions such as feeling helpless, anger, indifferent, defense, and opposition. However crying either meets a need, reduces the tension to cope with problems or helps patient to gain strength. Therefore, nurses must accept that crying is a normal mechanism that reduces emotional tension and should approach a crying patient accordingly. Objective: This study was carried out to evaluate the communicational behaviors of the nurses towards ‘crying patient’. Methods: This descriptive study was conducted with the nurses working at a university hospital in a city in the Eastern Black Sea in June-September 2015. The entire universe was tried to be reached without sampling. 90% of the population was reached and the study was completed with 309 nurses who volunteered to participate in the study. Data were collected through a questionnaire which was prepared reviewing the literature by researchers. Data were evaluated in SPSS analysis program using percentages, numbers and chi-square test with the 95% confidence interval and p <0.05significance level. Findings: The findings showed that the average age of nurses was 31.52 ± 7.96, work experience was 10:09 ± 7.69 and only 22.7% had training about ‘approach to crying patient’ during their education. 97.1% of the nurses often faced with crying patients in their professional lives, 62.8% stated that they faced crying women patients. When they see crying patients, 84.8% of the nurses ‘do not want the patient to cry’, 80.9% wonder ‘why they are crying’, % 79.6 ‘feel uneasiness’,% 79.3 ‘feel sorry’ and 41.4% ‘ feel helpless’. The question ‘Why do you think the patient is crying?’ was answered by 93.5% nurses as ‘they are suffering’, by 86.1% ‘they are helpless’, 80.9% ‘they are sad’, 79.6% ‘they need help’, 54.4% ‘because they feel inadequate,’ and 44.7% ‘they fail to control their crying behavior. ‘How do you approach to your patient when she/he is crying?’ question was answered by 82.5% of nurses as ‘I would console’, 77.3% as ‘I would ask the reason’, 63.1% as ‘I would try to stop her from crying’ all of which are actually inappropriate nursing approaches. However, 92.2% of the nurses stated that ‘I do not judge the crying patient’, ‘87.1% said ‘I allocate time to crying patients’ and 85.8% said ‘ I ask patient whether they want to cry alone’. The study showed that educational background and work experience of the nurses affected the appropriate approach to crying patients (P <0.05). Conclusion: As a result of the study, it was found out that nurses do not want patients to cry, so they exhibit inappropriate approach such as consoling the patients and they have difficulty in approaching crying patients.

Keywords: approach to patient, communication, crying patient, nurse, Turkey

Procedia PDF Downloads 205
1037 Open Innovation for Crowdsourced Product Development: The Case Study of Quirky.com

Authors: Ana Bilandzic, Marcus Foth, Greg Hearn

Abstract:

In a narrow sense, innovation is the invention and commercialisation of a new product or service in the marketplace. The literature suggests places that support knowledge exchange and social interaction, e.g. coffee shops, to nurture innovative ideas. With the widespread success of Internet, interpersonal communication and interaction changed. Online platforms complement physical places for idea exchange and innovation – the rise of hybrid, ‘net localities.’ Further, since its introduction in 2003 by Chesbrough, the concept of open innovation received increased attention as a topic in academic research as well as an innovation strategy applied by companies. Open innovation allows companies to seek and release intellectual property and new ideas from outside of their own company. As a consequence, the innovation process is no longer only managed within the company, but it is pursued in a co-creation process with customers, suppliers, and other stakeholders. Quirky.com (Quirky), a company founded by Ben Kaufman in 2009, recognised the opportunity given by the Internet for knowledge exchange and open innovation. Quirky developed an online platform that makes innovation available to everyone. This paper reports on a study that analysed Quirky’s business process in an extended event-driven process chain (eEPC). The aim was to determine how the platform enabled crowdsourced innovation for physical products on the Internet. The analysis reveals that key elements of the business model are based on open innovation. Quirky is an example of how open innovation can support crowdsourced and crowdfunded product ideation, development and selling. The company opened up various stages in the innovation process to its members to contribute in the product development, e.g. product ideation, design, and market research. Throughout the process, members earn influence through participating in the product development. Based on the influence they receive, shares on the product’s turnover. The outcomes of the study’s analysis highlighted certain benefits of open innovation for product development. The paper concludes with recommendations for future research to look into opportunities of open innovation approaches to be adopted by tertiary institutions as a novel way to commercialise research intellectual property.

Keywords: business process, crowdsourced innovation, open innovation, Quirky

Procedia PDF Downloads 228
1036 Exploration of the Protection Theory of Chinese Scenic Heritage Based on Local Chronicles

Authors: Mao Huasong, Tang Siqi, Cheng Yu

Abstract:

The cognition and practice of Chinese landscapes have distinct uniqueness. The intergenerational inheritance of urban and rural landscapes is a common objective fact which has created a unique type of heritage in China - scenic heritage. The current generalization of the concept of scenic heritage has affected the lack of innovation in corresponding protection practices. Therefore, clarifying the concepts and connotations of scenery and scenic heritage, clarifying the protection objects of scenic heritage and the methods and approaches in intergenerational inheritance can provide theoretical support for the practice of Chinese scenic heritage and contribute Chinese wisdom to the transformation of world heritage sites. Taking ancient Shaoxing, which has a long time span and rich descriptions of scenic types and quantities, as the research object and using local chronicles as the basic research material, based on text analysis, word frequency analysis, case statistics, and historical, geographical spatial annotation methods, this study traces back to ancient scenic practices and conducts in-depth descriptions in both text and space. it have constructed a scenic heritage identification method based on the basic connotation characteristics and morphological representation characteristics of natural and cultural correlations, combined with the intergenerational and representative characteristics of scenic heritage; Summarized the bidirectional integration of "scenic spots" and "form scenic spots", "outstanding people" and "local spirits" in the formation process of scenic heritage; In inheritance, guided by Confucian values of education; In communication, the cultural interpretation constructed by scenery and the way of landscape life are used to strengthen the intergenerational inheritance of natural, artificial material elements, and intangible spirits. As a unique type of heritage in China, scenic heritage should improve its standards, values, and connotations in current protection practices and actively absorb historical experience.

Keywords: scenic heritage, heritage protection, cultural landscape, shaoxing, chinese landscape

Procedia PDF Downloads 69
1035 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 95