Search results for: electric supply
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3628

Search results for: electric supply

718 Oestrous Synchronization: A Technical Note for Nepalese Goat Farmers

Authors: Pravin Mishra, Ajeet K. Jha, Pankaj K. Jha

Abstract:

This technical note is aimed at providing a brief information on goat breeds, its breeding seasonality and different methods of oestrous synchronization for Nepalese goat farmers. It was observed that, these goats are seasonal breeder and showed oestrous during mainly two season; December- February and March-May. This leads to an irregular supply of goat to market and a wide variations in market price. Oestrus synchronization is only an alternative reproductive tool to overcome this scarcity by enhancing production and productivity. This technique enables goat producers breed their animals within a short pre-determined period and permits breeding round the year. The principle of oestrus synchronisation is based on controlling of the luteal phase of the oestrous cycle. There are two basic mechanisms; one by shortening the luteal life (premature luteolysis) using prostaglandins or its analogues and the other by prolonging the luteal life (simulating the activity of natural progesterone produced by the corpus luteum) using exogenous progesterone source. The former is easy to apply and only effective during breeding season, whereas the latter is advantageous when the reproductive status of the goat flock is unknown. The common hormonal products easily available in Nepal includes; prostaglandins or its analogues (Oviprost® Dinoprost® Lutalyse® and Estrumate®), exogenous progesterone (Fluorogestone acetate® and Controlled Internal Drug Release®, CIDR) devices). However, before practicing the oestrous synchronization protocol, it needs to be validated for oestrous response rate, time to onset of oestrous, duration of oestrous and pregnancy rates at farmer’s field. In conclusion, application of oestrus synchronisation practice enhanced goat production and surplus the goat meat demand in Nepal.

Keywords: goat, Nepal, oestrous, synchronization

Procedia PDF Downloads 133
717 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling

Authors: Syed Masood Hussain

Abstract:

An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.

Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter

Procedia PDF Downloads 528
716 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas

Authors: J. Szolomicki, H. Golasz-Szolomicka

Abstract:

The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.

Keywords: core structures, damping system, high-rise building, seismic zone

Procedia PDF Downloads 152
715 Relationship between Creative Market Actor and Traditional Market Vendor toward a Sustainable Market Model in Jakarta, Indonesia

Authors: Galuh Pramesti

Abstract:

In Indonesia, the rise of the middle class and consumer purchasing power has created a trend of shifting the traditional into a modern retail market. Development of the creative economy as an impact of the global economy has invaded the traditional market, due to low rents and minimum innovation, raising the issue of sustainability and urban resilience for survival of the traditional market. The study aims to understand the current market conditions by examining the challenges, resiliency, and identify the relationship between the traditional market and creative market. Using a single-case study approach as the research methodology, Santa Market has been chosen as the case study. It is a pilot project of collaboration between a traditional market and creative economy in Jakarta, Indonesia. The research was conducted as a qualitative study through in-depth interviews with the market vendors and the market management, besides a desk-based study of the leasing data and spatial analysis. The findings indicate traffic fluctuation as the main challenge. It is related to the tenant’s presence, rental fluctuation, gentrification, infrastructure, and market competition. Thus, the findings on resilience show a different response for creative and traditional markets. The traditional market’s response remained stable with minimum innovation, whereas the creative market relies on technological development. Regarding the relationship, supply and demand have become the main relationship occurring in Santa Market. It is then developed into the context of society and regulation. The conclusion provides recommendations for more solid regulation to protect the market tenants from stakeholder interests that can disrupt market viability, and a critical discussion on the concept of collaboration between traditional and creative markets. There is also a suggestion for further study on relation with the surroundings, to create a holistic study on how the collaboration can work well in the traditional market.

Keywords: creative economy, market sustainability, traditional market, urban resilience

Procedia PDF Downloads 177
714 Developing a Cultural Policy Framework for Small Towns and Cities

Authors: Raymond Ndhlovu, Jen Snowball

Abstract:

It has long been known that the Cultural and Creative Industries (CCIs) have the potential to aid in physical, social and economic renewal and regeneration of towns and cities, hence their importance when dealing with regional development. The CCIs can act as a catalyst for activity and investment in an area because the ‘consumption’ of cultural activities will lead to the activities and use of other non-cultural activities, for example, hospitality development including restaurants and bars, as well as public transport. ‘Consumption’ of cultural activities also leads to employment creation, and diversification. However, CCIs tend to be clustered, especially around large cities. There is, moreover, a case for development of CCIs around smaller towns and cities, because they do not rely on high technology inputs, and long supply chains, and, their direct link to rural and isolated places makes them vital in regional development. However, there is currently little research on how to craft cultural policy for regions with smaller towns and cities. Using the Sarah Baartman District (SBDM) in South Africa as an example, this paper describes the process of developing cultural policy for a region that has potential, and existing, cultural clusters, but currently no one, coherent policy relating to CCI development. The SBDM was chosen as a case study because it has no large cities, but has some CCI clusters, and has identified them as potential drivers of local economic development. The process of developing cultural policy is discussed in stages: Identification of what resources are present; including human resources, soft and hard infrastructure; Identification of clusters; Analysis of CCI labour markets and ownership patterns; Opportunities and challenges from the point of view of CCIs and other key stakeholders; Alignment of regional policy aims with provincial and national policy objectives; and finally, design and implementation of a regional cultural policy.

Keywords: cultural and creative industries, economic impact, intrinsic value, regional development

Procedia PDF Downloads 212
713 Bench-scale Evaluation of Alternative-to-Chlorination Disinfection Technologies for the Treatment of the Maltese Tap-water

Authors: Georgios Psakis, Imren Rahbay, David Spiteri, Jeanice Mallia, Martin Polidano, Vasilis P. Valdramidis

Abstract:

Absence of surface water and progressive groundwater quality deterioration have exacerbated scarcity rapidly, making the Mediterranean island of Malta one of the most water-stressed countries in Europe. Water scarcity challenges have been addressed by reverse osmosis desalination of seawater, 60% of which is blended with groundwater to form the current potable tap-water supply. Chlorination has been the adopted method of water disinfection prior to distribution. However, with the Malteseconsumer chlorine sensory-threshold being as low as 0.34 ppm, presence of chorine residuals and chlorination by-products in the distributed tap-water impacts negatively on its organoleptic attributes, deterring the public from consuming it. As part of the PURILMA initiative, and with the aim of minimizing the impact of chlorine residual on the quality of the distributed water, UV-C, and hydrosonication, have been identified as cost- and energy-effective decontamination alternatives, paving the way for more sustainable water management. Bench-scale assessment of the decontamination efficiency of UV-C (254 nm), revealed 4.7-Log10 inactivation for both Escherichia coli and Enterococcus faecalis at 36 mJ/cm2. At >200 mJ/cm2fluence rates, there was a systematic 2-Log10 difference in the reductions exhibited by E. coli and E. faecalis to suggest that UV-C disinfection was more effective against E. coli. Hybrid treatment schemes involving hydrosonication(at 9.5 and 12.5 dm3/min flow rates with 1-5 MPa maximum pressure) and UV-C showed at least 1.1-fold greater bactericidal activity relative to the individualized UV-C treatments. The observed inactivation appeared to have stemmed from additive effects of the combined treatments, with hydrosonication-generated reactive oxygen species enhancing the biocidal activity of UV-C.

Keywords: disinfection, groundwater, hydrosonication, UV-C

Procedia PDF Downloads 148
712 A Framework for Auditing Multilevel Models Using Explainability Methods

Authors: Debarati Bhaumik, Diptish Dey

Abstract:

Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.

Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics

Procedia PDF Downloads 71
711 The Financial and Metallurgical Benefits of Niobium Grain Refined As-Rolled 460 MPa H-Beam to the Construction Industry in SE Asia

Authors: Michael Wright, Tiago Costa

Abstract:

The construction industry in SE Asia has been relying on S355 MPa “as rolled” H-beams for many years now. It is an easily sourced, metallurgically simple, reliable product that all designers, fabricators and constructors are familiar with. However, as the Global demand to better use our finite resources gets stronger, the need for an as-rolled S460 MPa H-Beam is becoming more apparent. The Financial benefits of an “as-rolled” S460 MPa H-beam are obvious. The S460 MPa beam which is currently available and used is fabricated from rolled strip. However, making H-beam from 3 x 460 MPa strips requires costly equipment, valuable welding skills & production time, all of which can be in short supply or better used for other purposes. The Metallurgical benefits of an “as-rolled” S460 MPa H-beam are consistency in the product. Fabricated H-beams have inhomogeneous areas where the strips have been welded together - parent metal, heat affected zone and weld metal all in the one body. They also rely heavily on the skill of the welder to guarantee a perfect, defect free weld. If this does not occur, the beam is intrinsically flawed and could lead to failure in service. An as-rolled beam is a relatively homogenous product, with the optimum strength and ductility produced by delivering steel with as fine as possible uniform cross sectional grain size. This is done by cost effective alloy design coupled with proper metallurgical process control implemented into an existing mill’s equipment capability and layout. This paper is designed to highlight the benefits of bring an “as-rolled” S460 MPa H-beam to the construction market place in SE Asia, and hopefully encourage the current “as-rolled” H-beam producers to rise to the challenge and produce an innovative high quality product for the local market.

Keywords: fine grained, As-rolled, long products, process control, metallurgy

Procedia PDF Downloads 284
710 Simulation-Based Evaluation of Indoor Air Quality and Comfort Control in Non-Residential Buildings

Authors: Torsten Schwan, Rene Unger

Abstract:

Simulation of thermal and electrical building performance more and more becomes part of an integrative planning process. Increasing requirements on energy efficiency, the integration of volatile renewable energy, smart control and storage management often cause tremendous challenges for building engineers and architects. This mainly affects commercial or non-residential buildings. Their energy consumption characteristics significantly distinguish from residential ones. This work focuses on the many-objective optimization problem indoor air quality and comfort, especially in non-residential buildings. Based on a brief description of intermediate dependencies between different requirements on indoor air treatment it extends existing Modelica-based building physics models with additional system states to adequately represent indoor air conditions. Interfaces to corresponding HVAC (heating, ventilation, and air conditioning) system and control models enable closed-loop analyzes of occupants' requirements and energy efficiency as well as profitableness aspects. A complex application scenario of a nearly-zero-energy school building shows advantages of presented evaluation process for engineers and architects. This way, clear identification of air quality requirements in individual rooms together with realistic model-based description of occupants' behavior helps to optimize HVAC system already in early design stages. Building planning processes can be highly improved and accelerated by increasing integration of advanced simulation methods. Those methods mainly provide suitable answers on engineers' and architects' questions regarding more exuberant and complex variety of suitable energy supply solutions.

Keywords: indoor air quality, dynamic simulation, energy efficient control, non-residential buildings

Procedia PDF Downloads 211
709 Relative Importance of Different Mitochondrial Components in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-associated Retinal Diseases

Authors: Shaimaa Eltanani, Thangal Yumnamcha, Ahmed S. Ibrahim

Abstract:

Purpose: Mitochondria dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to dissect the role of different mitochondrial components, specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. Methods: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real-time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components; the capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I; Oligomycin for ATP synthase; and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). Results: Rotenone (1 µM) produced the greatest reduction in the Z, followed by FCCP (1 µM), whereas no reduction in the Z was observed after the treatment with Oligomycin (1 µM). Following this further, we deconvoluted the effect of these inhibitors on Rb, α, and Cm. Firstly, rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 hours and increased Cm without considerable effect on α. Lastly, Oligomycin had the lowest impact among these inhibitors on Rb, which became similar to the control group at the end of the experiment without noticeable effects on Cm or α. Conclusion: These results demonstrate differential roles for complex I, complex V, and coupling of OxPhos in maintaining the barrier functionality of HRECs, in which complex I being the most important component in regulating the barrier functionality and the spreading behavior of HRECs. Such differences can be used in investigating gene expression as well as for screening selective agents that improve the functionality of complex I to be used in the therapeutic approach for treating REC-related retinal diseases.

Keywords: human retinal endothelial cells (hrecs), rotenone, oligomycin, fccp, oxidative phosphorylation, oxphos, capacitance, impedance, ecis modeling, rb resistance, α resistance, and barrier integrity

Procedia PDF Downloads 82
708 Comparison of Blockchain Ecosystem for Identity Management

Authors: K. S. Suganya, R. Nedunchezhian

Abstract:

In recent years, blockchain technology has been found to be the most significant discovery in this digital era, after the discovery of the Internet and Cloud Computing. Blockchain is a simple, distributed public ledger that contains all the user’s transaction details in a block. The global copy of the block is then shared among all its peer-peer network users after validation by the Blockchain miners. Once a block is validated and accepted, it cannot be altered by any users making it a trust-free transaction. It also resolves the problem of double-spending by using traditional cryptographic methods. Since the advent of bitcoin, blockchain has been the backbone for all its transactions. But in recent years, it has found its roots and uses in many fields like Smart Contracts, Smart City management, healthcare, etc. Identity management against digital identity theft has become a major concern among financial and other organizations. To solve this digital identity theft, blockchain technology can be employed with existing identity management systems, which maintain a distributed public ledger containing details of an individual’s identity containing information such as Digital birth certificates, Citizenship number, Bank details, voter details, driving license in the form of blocks verified on the blockchain becomes time-stamped, unforgeable and publicly visible for any legitimate users. The main challenge in using blockchain technology to prevent digital identity theft is ensuring the pseudo-anonymity and privacy of the users. This survey paper will exert to study the blockchain concepts, consensus protocols, and various blockchain-based Digital Identity Management systems with their research scope. This paper also discusses the role of Blockchain in COVID-19 pandemic management by self-sovereign identity and supply chain management.

Keywords: blockchain, consensus protocols, bitcoin, identity theft, digital identity management, pandemic, COVID-19, self-sovereign identity

Procedia PDF Downloads 105
707 Research on Intercity Travel Mode Choice Behavior Considering Traveler’s Heterogeneity and Psychological Latent Variables

Authors: Yue Huang, Hongcheng Gan

Abstract:

The new urbanization pattern has led to a rapid growth in demand for short-distance intercity travel, and the emergence of new travel modes has also increased the variety of intercity travel options. In previous studies on intercity travel mode choice behavior, the impact of functional amenities of travel mode and travelers’ long-term personality characteristics has rarely been considered, and empirical results have typically been calibrated using revealed preference (RP) or stated preference (SP) data. This study designed a questionnaire that combines the RP and SP experiment from the perspective of a trip chain combining inner-city and intercity mobility, with consideration for the actual condition of the Huainan-Hefei traffic corridor. On the basis of RP/SP fusion data, a hybrid choice model considering both random taste heterogeneity and psychological characteristics was established to investigate travelers’ mode choice behavior for traditional train, high-speed rail, intercity bus, private car, and intercity online car-hailing. The findings show that intercity time and cost exert the greatest influence on mode choice, with significant heterogeneity across the population. Although inner-city cost does not demonstrate a significant influence, inner-city time plays an important role. Service attributes of travel mode, such as catering and hygiene services, as well as free wireless network supply, only play a minor role in mode selection. Finally, our study demonstrates that safety-seeking tendency, hedonism, and introversion all have differential and significant effects on intercity travel mode choice.

Keywords: intercity travel mode choice, stated preference survey, hybrid choice model, RP/SP fusion data, psychological latent variable, heterogeneity

Procedia PDF Downloads 90
706 [Keynote Talk]: Quest for Sustainability in the Midst of Conflict Between Climate and Energy Security

Authors: Deepak L. Waikar

Abstract:

Unprecedented natural as well as human made disasters have been responsible for loss of hundreds of thousands of lives, injury & displacement of millions of people and damages in billions of dollars in various parts of the world. Scientists, experts, associations and united nation have been warning about colossal disregard for human safety and environment in exploiting natural resources for insatiable greed for economic growth and rising lavish life style of the rich. Usual blame game is routinely played at international forums & summits by vested interests in developing and developed nations, while billions of people continue to suffer in abject energy poverty. Energy security, on the other hand, is becoming illusive with the dominance of few players in the market, poor energy governance mechanisms, volatile prices and geopolitical conflicts in supply chain. Conflicting scenarios have been cited as one of the major barriers for transformation to a low carbon economy. Policy makers, researchers, academics, businesses, industries and communities have been evaluating sustainable alternatives, albeit at snail’s pace. This presentation focuses on technologies, energy governance, policies & practices, economics and public concerns about safe, prudent & sustainable harnessing of energy resources. Current trends and potential research & development projects in power & energy sectors which students can undertake will be discussed. Speaker will highlight on how youths can be engaged in meaningful, safe, enriching, inspiring and value added self-development programmes in our quest for sustainability in the midst of conflict between climate and energy security.

Keywords: clean energy, energy policy, energy security, sustainable energy

Procedia PDF Downloads 470
705 Study of a Cross-Flow Membrane to a Kidney Encapsulation Engineering Structures for Immunosuppression Filter

Authors: Sihyun Chae, Ryoto Arai, Waldo Concepcion, Paula Popescu

Abstract:

The kidneys perform an important role in the human hormones that regulate the blood pressure, produce an active form of vitamin D and control the production of red blood cells. Kidney disease can cause health problems, such as heart disease. Also, increase the chance of having a stroke or heart attack. There are mainly to types of treatments for kidney disease, dialysis, and kidney transplant. For a better quality of life, the kidney transplant is desirable. However, kidney transplant can cause antibody reaction and patients’ body would be attacked by immune system of their own. For solving that issue, patients with transplanted kidney always take immunosuppressive drugs which can hurt kidney as side effects. Patients willing to do a kidney transplant have a waiting time of 3.6 years in average searching to find an appropriate kidney, considering there are almost 96,380 patients waiting for kidney transplant. There is a promising method to solve these issues: bioartificial kidney. Our membrane is specially designed with unique perforations capable to filter the blood cells separating the white blood cells from red blood cells. White blood cells will not pass through the encapsulated kidney preventing the immune system to attack the new organ and eliminating the need of a matching donor. It is possible to construct life-time long encapsulation without needing pumps or a power supply on the cell’s separation method preventing futures surgeries due the Cross-Channel Flow inside the device. This technology allows the possibility to use an animal kidney, prevent cancer cells to spread through the body, arm and leg transplants in the future. This project aims to improve the quality of life of patients with kidney disease.

Keywords: kidney encapsulation, immunosuppression filter, leukocyte filter, leukocyte

Procedia PDF Downloads 186
704 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications

Authors: Dejenie Birile Gemeda, Wilhelm Stork

Abstract:

The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.

Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines

Procedia PDF Downloads 121
703 An Analysis of Humanitarian Data Management of Polish Non-Governmental Organizations in Ukraine Since February 2022 and Its Relevance for Ukrainian Humanitarian Data Ecosystem

Authors: Renata Kurpiewska-Korbut

Abstract:

Making an assumption that the use and sharing of data generated in humanitarian action constitute a core function of humanitarian organizations, the paper analyzes the position of the largest Polish humanitarian non-governmental organizations in the humanitarian data ecosystem in Ukraine and their approach to non-personal and personal data management since February of 2022. Both expert interviews and document analysis of non-profit organizations providing a direct response in the Ukrainian crisis context, i.e., the Polish Humanitarian Action, Caritas, Polish Medical Mission, Polish Red Cross, and the Polish Center for International Aid and the applicability of theoretical perspective of contingency theory – with its central point that the context or specific set of conditions determining the way of behavior and the choice of methods of action – help to examine the significance of data complexity and adaptive approach to data management by relief organizations in the humanitarian supply chain network. The purpose of this study is to determine how the existence of well-established and accurate internal procedures and good practices of using and sharing data (including safeguards for sensitive data) by the surveyed organizations with comparable human and technological capabilities are implemented and adjusted to Ukrainian humanitarian settings and data infrastructure. The study also poses a fundamental question of whether this crisis experience will have a determining effect on their future performance. The obtained finding indicate that Polish humanitarian organizations in Ukraine, which have their own unique code of conduct and effective managerial data practices determined by contingencies, have limited influence on improving the situational awareness of other assistance providers in the data ecosystem despite their attempts to undertake interagency work in the area of data sharing.

Keywords: humanitarian data ecosystem, humanitarian data management, polish NGOs, Ukraine

Procedia PDF Downloads 74
702 Genomics Approach for Excavation of NAS Genes from Nutri Rich Minor Millet Crops: Transforming Perspective from Orphan Plants to Future Food Crops

Authors: Mahima Dubey, Girish Chandel

Abstract:

Minor millets are highly nutritious and climate resilient cereal crops. These features make them ideal candidates to excavate the physiology of the underlying mechanism. In an attempt to understand the basis of mineral nutrition in minor millets, a set of five Barnyard millet genotypes were analyzed for grain Fe and Zn content under contrasting Fe-Zn supply to identify genotypes proficient in tolerating mineral deficiency. This resulted in the identification of Melghat-1 genotype to be nutritionally superior with better ability to withstand deficiency. Expression analysis of several Nicotianamine synthase (NAS) genes showed that HvNAS1 and OsNAS2 genes were prominent in positively mediating mineral deficiency response in Barnyard millet. Further, strategic efforts were employed for fast-track identification of more effective orthologous NAS genes from Barnyard millet. This resulted in the identification of two genes namely EfNAS1 (orthologous to HvNAS1 of barley) and EfNAS2 (orthologous to OsNAS2 gene of rice). Sequencing and thorough characterization of these sequences revealed the presence of intact NAS domain and signature tyrosine and di-leucine motifs in their predicted proteins and thus established their candidature as functional NAS genes in Barnyard millet. Moreover, EfNAS1 showed structural superiority over previously known NAS genes and is anticipated to have role in more efficient metal transport. Findings of the study provide insight into Fe-Zn deficiency response and mineral nutrition in millets. This provides millets with a physiological edge over micronutrient deficient staple cereals such as rice in withstanding Fe-Zn deficiency and subsequently accumulating higher levels of Fe and Zn in millet grains.

Keywords: gene expression, micronutrient, millet, ortholog

Procedia PDF Downloads 218
701 Exploring the Use of Drones for Corn Borer Management: A Case Study in Central Italy

Authors: Luana Centorame, Alessio Ilari, Marco Giustozzi, Ester Foppa Pedretti

Abstract:

Maize is one of the most important agricultural cash crops in the world, involving three different chains: food, feed, and bioenergy production. Nowadays, the European corn borer (ECB), Ostrinia nubilalis, to the best of the author's knowledge, is the most important pest to control for maize growers. The ECB is harmful to maize; young larvae are responsible for minor damage to the leaves, while the most serious damage is tunneling by older larvae that burrow into the stock. Soon after, larvae can affect cobs, and it was found that ECB can foster mycotoxin contamination; this is why it is crucial to control it. There are multiple control methods available: agronomic, biological, and microbiological means, agrochemicals, and genetically modified plants. Meanwhile, the European Union’s policy focuses on the transition to sustainable supply chains and translates into the goal of reducing the use of agrochemicals by 50%. The current work aims to compare the agrochemical treatment of ECB and biological control through beneficial insects released by drones. The methodology used includes field trials of both chemical and biological control, considering a farm in central Italy as a case study. To assess the mechanical and technical efficacy of drones with respect to standard machinery, the available literature was consulted. The findings are positive because drones allow them to get in the field promptly, in difficult conditions and with lower costs if compared to traditional techniques. At the same time, it is important to consider the limits of drones regarding pilot certification, no-fly zones, etc. In the future, it will be necessary to deepen the topic with the real application in the field of both systems, expanding the scenarios in which drones can be used and the type of material distributed.

Keywords: beneficial insects, corn borer management, drones, precision agriculture

Procedia PDF Downloads 83
700 One-Pot Synthesis of 5-Hydroxymethylfurfural from Hexose Sugar over Chromium Impregnated Zeolite Based Catalyst, Cr/H-ZSM-5

Authors: Samuel K. Degife, Kamal K. Pant, Sapna Jain

Abstract:

The world´s population and industrialization of countries continued to grow in an alarming rate irrespective of the security for food, energy supply, and pure water availability. As a result, the global energy consumption is observed to increase significantly. Fossil energy resources that mainly comprised of crude oil, coal, and natural gas have been used by mankind as the main energy source for almost two centuries. However, sufficient evidences are revealing that the consumption of fossil resource as transportation fuel emits environmental pollutants such as CO2, NOx, and SOx. These resources are dwindling rapidly besides enormous amount of problems associated such as fluctuation of oil price and instability of oil-rich regions. Biomass is a promising renewable energy candidate to replace fossil-based transportation fuel and chemical production. The present study aims at valorization of hexose sugars (glucose and fructose) using zeolite based catalysts in imidazolium based ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM] Cl) reaction media. The catalytic effect chromium impregnated H-ZSM-5 (Cr/H-ZSM-5) was studied for dehydration of hexose sugars. The wet impregnation method was used to prepare Cr/H-ZSM-5 catalyst. The characterization of the prepared catalyst was performed using techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Temperature-programmed desorption of ammonia (NH3-TPD) and BET-surface area analysis. The dehydration product, 5-hydroxymethylfurfural (5-HMF), was analyzed using high-performance liquid chromatography (HPLC). Cr/H-ZSM-5 was effective in dehydrating fructose with 87% conversion and 55% yield 5-HMF at 180 oC for 30 min of reaction time compared with H-ZSM-5 catalyst which yielded only 31% of 5-HMF at identical reaction condition.

Keywords: chromium, hexose, ionic liquid, , zeolite

Procedia PDF Downloads 154
699 Switching Studies on Ge15In5Te56Ag24 Thin Films

Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das

Abstract:

Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.

Keywords: Chalcogenides, Vapor deposition, Electrical switching, PCM.

Procedia PDF Downloads 359
698 Enhancing Power System Resilience: An Adaptive Under-Frequency Load Shedding Scheme Incorporating PV Generation and Fast Charging Stations

Authors: Sami M. Alshareef

Abstract:

In the rapidly evolving energy landscape, the integration of renewable energy sources and the electrification of transportation are essential steps toward achieving sustainability goals. However, these advancements introduce new challenges, particularly in maintaining frequency stability due to variable photovoltaic (PV) generation and the growing demand for fast charging stations. The variability of photovoltaic (PV) generation due to weather conditions can disrupt the balance between generation and load, resulting in frequency deviations. To ensure the stability of power systems, it is imperative to develop effective under frequency load-shedding schemes. This research proposal presents an adaptive under-frequency load shedding scheme based on the power swing equation, designed explicitly for the IEEE-9 Bus Test System, that includes PV generation and fast charging stations. This research aims to address these challenges by developing an advanced scheme that dynamically disconnects fast charging stations based on power imbalances. The scheme prioritizes the disconnection of stations near affected areas to expedite system frequency stabilization. To achieve these goals, the research project will leverage the power swing equation, a widely recognized model for analyzing system dynamics during under-frequency events. By utilizing this equation, the proposed scheme will adaptively adjust the load-shedding process in real-time to maintain frequency stability and prevent power blackouts. The research findings will support the transition towards sustainable energy systems by ensuring a reliable and uninterrupted electricity supply while enhancing the resilience and stability of power systems during under-frequency events.

Keywords: load shedding, fast charging stations, pv generation, power system resilience

Procedia PDF Downloads 61
697 Feasibility of BioMass Power Generation in Punjab Province of Pakistan

Authors: Muhammad Ghaffar Doggar, Farah

Abstract:

The primary objective of this feasibility study is to conduct a techno-financial assessment for installation of biomass based power plant in Faisalabad division. The study involves identification of best site for power plant followed by an assessment of biomass resource potential in the area and propose power plant of suitable size. The study also entailed comprehensive supply chain analysis to determine biomass fuel pricing, transportation and storage. Further technical and financial analyses have been done for selection of appropriate technology for the power plant and its financial viability, respectively. The assessment of biomass resources and the subsequent technical analysis revealed that 20 MW biomass power plant could be implemented at one of the locations near Faisalabad city i.e. AARI Site, Near Chak Jhumra district Faisalabad, Punjab province. Three options for steam pressure; namely, 70 bar, 90 bar and 100 bar boilers have been considered. Using international experience and prices on power plant technology and local prices on locally available equipment, the study concludes biomass fuel price of around 50 US dollars (USD) per ton when delivered to power plant site. The electricity prices used for feasibility calculations were 0.13 USD per KWh for electricity from a locally financed project and 0.11 USD per KWh for internationally financed power plant. For local financing the most viable choice is the 70 bar solution and with international financing, the most feasible solution is using a 90 bar boiler. Between the two options, the internationally financed 90 bar boiler setup gives better financial results than the locally financed 70 bar boiler project. It has been concluded that 20 MW with 90 bar power plant and internationally financed would have an equity IRR of 23% and a payback period of 7 years. This will be a cheap option for installation of power plants.

Keywords: AARI, Ayub agriculture research institute, biomass - crops residue, KWh - electricity Units, MG - Muhammad Ghaffar

Procedia PDF Downloads 320
696 A Study of Impact of Changing Fuel Practices on Organic Carbon and Elemental Carbon Levels in Indoor Air in Two States of India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

India is a rural major country and majority of rural population is dependent on burning of biomass as fuel for domestic cooking on traditional stoves (Chullahs) and heating purposes. This results into indoor air pollution and ultimately affects health of the residents. Still, a very small fraction of rural population has been benefitted by the facilities of Liquefied Petroleum Gas (LPG) cylinders. Different regions of country follow different methods and use different type of biomass for cooking. So in order to study the differences in cooking practices and resulting indoor air pollution, this study was carried out in two rural areas of India viz. Budhwada, Madhya Pradesh and Baggi, Himachal Pradesh. Both the regions have significant differences in terms of topography, culture and daily practices. Budhwada lies in plain area and Baggi belongs to hilly terrain. The study of carbonaceous aerosols was carried out in four different houses of each village. The residents were asked to bring slight change in their practices by cooking only with biomass (BB) then with a mix of biomass and LPG (BL) and then finally only with LPG (LP). It was found that in BB, average values of organic carbon (OC) and elemental carbon (EC) were 28% and 44% lower in Budhwada than in Baggi whereas a reverse trend was found where OC and EC was respectively more by 56% and 26% with BL and by 54% and 29% with LP in Budhwada than in Baggi. Although, a significant reduction was found both in Budhwada (OC by 49% and EC by 34%) as well as in Baggi (OC by 84% and EC by 73%) when cooking was shifted from BB to LP. The OC/EC ratio was much higher for Budhwada (BB=9.9; BL=2.5; LP=6.1) than for Baggi (BB=1.7; BL=1.6; LP=1.3). The correlation in OC and EC was found to be excellent in Baggi (r²=0.93) and relatively poor in Budhwada (r²=0.65). A questionnaire filled by the residents suggested that they agree to the health benefits of using LPG over biomass burning but the challenges of supply of LPG and changing the prevailing tradition of cooking on Chullah are making it difficult for them to make this shift.

Keywords: biomass burning, elemental carbon, liquefied petroluem gas, organic carbon

Procedia PDF Downloads 174
695 Effect of Phaseolus vulgaris Inoculation on P. vulgaris and Zea mays Growth and Yield Cultivated in Intercropping

Authors: Nour Elhouda Abed, Bedj Mimi, Wahid Slimani, Mourad Atif, Abdelhakim Ouzzane, Hocine Irekti, Abdelkader Bekki

Abstract:

The most frequent system of cereal production in Algeria is fallow-wheat. This is an extensive system that meets only the half needs some cereals and fodder demand. Resorption of fallow has become a strategic necessity to ensure food security in response to the instability of supply and the persistence of higher food prices on the world market. Despite several attempts to replace the fallow by crop cultures, choosing the best crop remains. Today, the agronomic and economic interests of legumes are demonstrated. However, their crop culture remains marginalized because of the weakness and instability of their performance. In the context of improving legumes and cereals crops as well as fallow resorption, we undertook to test, in the field, the effect of rhizobial inoculation of Phaseolus vulgaris in association with Zea Mays. We firstly studied the genetic diversity of rhizobial strains that nodulate P.vulgaris isolated from fifteen (15) different regions. ARDRA had shown 18 different genetic profiles. Symbiotic characterization highlighted a strain that highly significantly improved the fresh and dry weight of the host plant, in comparison to the negative control (un-inoculated) and the positive control (inoculated with the reference strain CIAT 899). In the field, the selected strain increased significantly the growth and yield of P.vulgaris and Zea Mays comparing to the non-inoculated control. However, the mix inoculation (selected strain+ Ciat 899) had not given the best parameters showing, thus, no synergy between the strains. These results indicate the replacing fallow by a crop legume in intercropping with cereals crops.

Keywords: fallow, intercropping, inoculation, legumes-cereals

Procedia PDF Downloads 344
694 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring

Procedia PDF Downloads 182
693 Digitalized Cargo Coordination to Eliminate Emissions in the Shipping Ecosystem: A System Dynamical Approach

Authors: Henry Schwartz, Bogdan Iancu, Magnus Gustafsson, Johan Lilius

Abstract:

The shipping sector generates significant amounts of carbon emissions on annual basis. The excess amount of carbon dioxide is harmful for both the environment and the society, and partly for that reason, there is acute interest to decrease the volume of anthropogenic carbon dioxide emissions in shipping. The usage of the existing cargo carrying capacity can be maximized, and the share of time used in actual transportation operations could be increased if the whole transportation and logistics chain was optimized with the aid of information sharing done through a centralized marketplace and an information-sharing platform. The outcome of this change would be decreased carbon dioxide emission volumes produced per each metric ton of cargo transported by a vessel. Cargo coordination is a platform under development that matches the need for waterborne transportation services with the ships that operate at a given moment in time. In this research, the transition towards adopting cargo coordination is modelled with system dynamics. The model encompasses the complex supply-demand relationships of ship operators and cargo owners. The built scenarios predict the pace at which different stakeholders start using the digitalized platform and by doing so reduce the amount of annual CO2 emissions generated. To improve the reliability of the results, various sensitivity analyses considering the pace of transition as well as the overall impact on the environment (carbon dioxide emissions per amount of cargo transported) are conducted. The results of the study can be used to support investors and politicians in decision making towards more environmentally sustainable solutions. In addition, the model provides concepts and ideas for a wider discussion considering the paths towards carbon neutral transportation.

Keywords: carbon dioxide emissions, energy efficiency, sustainable transportation, system dynamics

Procedia PDF Downloads 127
692 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells

Authors: Moustafa Elhamouly, Masayuki Shimada

Abstract:

The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.

Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).

Procedia PDF Downloads 62
691 Identification of the Putative Interactome of Escherichia coli Glutaredoxin 2 by Affinity Chromatography

Authors: Eleni Poulou-Sidiropoulou, Charalampos N. Bompas, Martina Samiotaki, Alexios Vlamis-Gardikas

Abstract:

The glutaredoxin (Grx) and thioredoxin (Trx) systems keep the intracellular environment reduced in almost all organisms. In Escherichia coli (E. coli), the Grx system relies on NADPH+ to reduce GSH reductase (GR), the latter reducing oxidized diglutathione to glutathione (GSH) which in turn reduces cytosolic Grxs, the electron donors for different intracellular substrates. In the Trx system, GR and GSH are replaced by Trx reductase (TrxR). Three of the Grxs of E. coli (Grx1, 2, 3) are reduced by GSH, while Grx4 is likely reduced by TrxR. Trx1 and Grx1 from E. coli may reduce ribonucleotide reductase Ia to ensure a constant supply of deoxyribonucleotides for the synthesis of DNA. The role of the other three Grxs is relatively unknown, especially for Grx2 that may amount up to 1 % of total cellular protein in the stationary phase of growth. The protein is known as a potent antioxidant, but no specific functions have been attributed to it. Herein, affinity chromatography of cellular extracts on immobilized Grx2, followed by MS analysis of the resulting eluates, was employed to identify protein ligands that could provide insights into the biological role of Grx2. Ionic, strong non-covalent, and covalent (disulfide) interactions with relevant proteins were detected. As a means of verification, the identified ligands were subjected to in silico docking with monothiol Grx2. In other experiments, protein extracts from E. coli cells lacking the gene for Grx2 (grxB) were compared to those of wild type. Taken together, the two approaches suggest that Grx2 is involved in protein synthesis, nucleotide metabolism, DNA damage repair, stress responses, and various metabolic processes. Grx2 appears as a versatile protein that may participate in a wide range of biological pathways beyond its known general antioxidant function.

Keywords: Escherichia coli, glutaredoxin 2, interactome, thiol-disulfide oxidoreductase

Procedia PDF Downloads 33
690 Quantitative Detection of the Conformational Transitions between Open and Closed Forms of Cytochrome P450 Oxidoreductase (CYPOR) at the Membrane Surface in Different Functional States

Authors: Sara Arafeh, Kovriguine Evguine

Abstract:

Cytochromes P450 are enzymes that require a supply of electrons to catalyze the synthesis of steroid hormones, fatty acids, and prostaglandin hormone. Cytochrome P450 Oxidoreductase (CYPOR), a membrane bound enzyme, provides these electrons in its open conformation. CYPOR has two cytosolic domains (FAD domain and FMN domain) and an N-terminal in the membrane. In its open conformation, electrons flow from NADPH, FAD, and finally to FMN where cytochrome P450 picks up these electrons. In the closed conformation, cytochrome P450 does not bind to the FMN domain to take the electrons. It was found that when the cytosolic domains are isolated, CYPOR could not bind to cytochrome P450. This suggested that the membrane environment is important for CYPOR function. This project takes the initiative to better understand the dynamics of CYPOR in its full length. Here, we determine the distance between specific sites in the FAD and FMN binding domains in CYPOR by Forster Resonance Energy Transfer (FRET) and Ultrafast TA spectroscopy with and without NADPH. The approach to determine these distances will rely on labeling these sites with red and infrared fluorophores. Mimic membrane attachment is done by inserting CYPOR in lipid nanodiscs. By determining the distances between the donor-acceptor sites in these domains, we can observe the open/closed conformations upon reducing CYPOR in the presence and absence of cytochrome P450. Such study is important to better understand CYPOR mechanism of action in various endosomal membranes including hepatic CYPOR which is vital in plasma cholesterol homeostasis. By investigating the conformational cycles of CYPOR, we can synthesize drugs that would be more efficient in affecting the steroid hormonal levels and metabolism of toxins catalyzed by Cytochrome P450.

Keywords: conformational cycle of CYPOR, cytochrome P450, cytochrome P450 oxidoreductase, FAD domain, FMN domain, FRET, Ultrafast TA Spectroscopy

Procedia PDF Downloads 255
689 Nighttime Power Generation Using Thermoelectric Devices

Authors: Abdulrahman Alajlan

Abstract:

While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.

Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management

Procedia PDF Downloads 40