Search results for: waste conditioning
185 Assessment of Urban Infrastructure and Health Using Principal Component Analysis and Geographic Information System: A Case of Ahmedabad, India
Authors: Anusha Vaddiraj Pallapu
Abstract:
Across the globe, there is a steady increase in people residing in urban areas. Due to this increase in urban population, urban health is affecting. The major issues identified like overcrowding, air pollution, unhealthy diet, inadequate infrastructure, poor solid waste management systems and insufficient access to health facilities, these issues are gradually clearly observed in health statistics of diseases and deaths rapidly increase in urban areas. Therefore, the present study aims to assess the health statistics and infrastructure services at urban areas to know the cause and effect between Infrastructure, its management and diseases (water borne). Most of the Indian cities have the municipal boundaries, which authorized by their respective municipal corporations and development authorities. Generally, cities have various zones under which municipal wards exist. The paper focuses on the city Ahmedabad, at Gujarat state. Ahmedabad Municipal Corporation (AMC) is divided into six zones namely Central zone, West zone, New-West zone, East zone, North zone, and South zone. Each zone includes various wards within it. Incidence of diseases in Ahmadabad which are linked to infrastructure was identified such as water-borne diseases. Later on, the occurrence of water-borne diseases at urban area was examined at each zone level. The study methodology follows four steps i.e. 1) Pre-Field literature study: Study on Sewerage system in urban areas and its best practices and public health status globally and Indian scenario; 2) Field study: Data collection and interviews of stakeholders regarding heal status and issues at each zone and ward level; 3) Post field: Data analysis with qualitative description of each ward of zones, followed by correlation coefficient analysis between sewerage coverage, diseases and density of each ward using geographic information system mapping (GIS); 4) Identification of reasons: Affected health on each of zone and wards followed by correlation analysis on each reason. The results reveal that the health conditions in Ahmedabad municipal zones or boundaries are effected due to the slums created by the migrated people from various rural and urban areas. It is also observed that due to increase in population water supply and sewerage management is affecting. The overall effect on infrastructure is creating the health diseases which detailed in the paper using geographical information system in Indian city.Keywords: infrastructure, municipal wards, GIS, water supply, sewerage, medical facilities, water borne diseases
Procedia PDF Downloads 217184 Olive Stone Valorization to Its Application on the Ceramic Industry
Authors: M. Martín-Morales, D. Eliche-Quesada, L. Pérez-Villarejo, M. Zamorano
Abstract:
Olive oil is a product of particular importance within the Mediterranean and Spanish agricultural food system, and more specifically in Andalusia, owing to be the world's main production area. Olive oil processing generates olive stones which are dried and cleaned to remove pulp and olive stones fines to produce biofuel characterized to have high energy efficiency in combustion processes. Olive stones fine fraction is not too much appreciated as biofuel, so it is important the study of alternative solutions to be valorized. Some researchers have studied recycling different waste to produce ceramic bricks. The main objective of this study is to investigate the effects of olive stones addition on the properties of fired clay bricks for building construction. Olive stones were substituted by volume (7.5%, 15%, and 25%) to brick raw material in three different sizes (lower than 1 mm, lower than 2 mm and between 1 and 2 mm). In order to obtain comparable results, a series without olive stones was also prepared. The prepared mixtures were compacted in laboratory type extrusion under a pressure of 2.5MPa for rectangular shaped (30 mm x 60 mm x 10 mm). Dried and fired industrial conditions were applied to obtain laboratory brick samples. Mass loss after sintering, bulk density, porosity, water absorption and compressive strength of fired samples were investigated and compared with a sample manufactured without biomass. Results obtained have shown that olive stone addition decreased mechanical properties due to the increase in water absorption, although values tested satisfied the requirements in EN 772-1 about methods of test for masonry units (Part 1: Determination of compressive strength). Finally, important advantages related to the properties of bricks as well as their environmental effects could be obtained with the use of biomass studied to produce ceramic bricks. The increasing of the percentage of olive stones incorporated decreased bulk density and then increased the porosity of bricks. On the one hand, this lower density supposes a weight reduction of bricks to be transported, handled as well as the lightening of building; on the other hand, biomass in clay contributes to auto thermal combustion which involves lower fuel consumption during firing step. Consequently, the production of porous clay bricks using olive stones could reduce atmospheric emissions and improve their life cycle assessment, producing eco-friendly clay bricks.Keywords: clay bricks, olive stones, sustainability, valorization
Procedia PDF Downloads 156183 Development and Validation of a Green Analytical Method for the Analysis of Daptomycin Injectable by Fourier-Transform Infrared Spectroscopy (FTIR)
Authors: Eliane G. Tótoli, Hérida Regina N. Salgado
Abstract:
Daptomycin is an important antimicrobial agent used in clinical practice nowadays, since it is very active against some Gram-positive bacteria that are particularly challenges for the medicine, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The importance of environmental preservation has receiving special attention since last years. Considering the evident need to protect the natural environment and the introduction of strict quality requirements regarding analytical procedures used in pharmaceutical analysis, the industries must seek environmentally friendly alternatives in relation to the analytical methods and other processes that they follow in their routine. In view of these factors, green analytical chemistry is prevalent and encouraged nowadays. In this context, infrared spectroscopy stands out. This is a method that does not use organic solvents and, although it is formally accepted for the identification of individual compounds, also allows the quantitation of substances. Considering that there are few green analytical methods described in literature for the analysis of daptomycin, the aim of this work was the development and validation of a green analytical method for the quantification of this drug in lyophilized powder for injectable solution, by Fourier-transform infrared spectroscopy (FT-IR). Method: Translucent potassium bromide pellets containing predetermined amounts of the drug were prepared and subjected to spectrophotometric analysis in the mid-infrared region. After obtaining the infrared spectrum and with the assistance of the IR Solution software, quantitative analysis was carried out in the spectral region between 1575 and 1700 cm-1, related to a carbonyl band of the daptomycin molecule, and this band had its height analyzed in terms of absorbance. The method was validated according to ICH guidelines regarding linearity, precision (repeatability and intermediate precision), accuracy and robustness. Results and discussion: The method showed to be linear (r = 0.9999), precise (RSD% < 2.0), accurate and robust, over a concentration range from 0.2 to 0.6 mg/pellet. In addition, this technique does not use organic solvents, which is one great advantage over the most common analytical methods. This fact contributes to minimize the generation of organic solvent waste by the industry and thereby reduces the impact of its activities on the environment. Conclusion: The validated method proved to be adequate to quantify daptomycin in lyophilized powder for injectable solution and can be used for its routine analysis in quality control. In addition, the proposed method is environmentally friendly, which is in line with the global trend.Keywords: daptomycin, Fourier-transform infrared spectroscopy, green analytical chemistry, quality control, spectrometry in IR region
Procedia PDF Downloads 382182 Deep Mill Level Zone (DMLZ) of Ertsberg East Skarn System, Papua; Correlation between Structure and Mineralization to Determined Characteristic Orebody of DMLZ Mine
Authors: Bambang Antoro, Lasito Soebari, Geoffrey de Jong, Fernandy Meiriyanto, Michael Siahaan, Eko Wibowo, Pormando Silalahi, Ruswanto, Adi Budirumantyo
Abstract:
The Ertsberg East Skarn System (EESS) is located in the Ertsberg Mining District, Papua, Indonesia. EESS is a sub-vertical zone of copper-gold mineralization hosted in both diorite (vein-style mineralization) and skarn (disseminated and vein style mineralization). Deep Mill Level Zone (DMLZ) is a mining zone in the lower part of East Ertsberg Skarn System (EESS) that product copper and gold. The Deep Mill Level Zone deposit is located below the Deep Ore Zone deposit between the 3125m to 2590m elevation, measures roughly 1,200m in length and is between 350 and 500m in width. DMLZ planned start mined on Q2-2015, being mined at an ore extraction rate about 60,000 tpd by the block cave mine method (the block cave contain 516 Mt). Mineralization and associated hydrothermal alteration in the DMLZ is hosted and enclosed by a large stock (The Main Ertsberg Intrusion) that is barren on all sides and above the DMLZ. Late porphyry dikes that cut through the Main Ertsberg Intrusion are spatially associated with the center of the DMLZ hydrothermal system. DMLZ orebody hosted in diorite and skarn, both dominantly by vein style mineralization. Percentage Material Mined at DMLZ compare with current Reserves are diorite 46% (with 0.46% Cu; 0.56 ppm Au; and 0.83% EqCu); Skarn is 39% (with 1.4% Cu; 0.95 ppm Au; and 2.05% EqCu); Hornfels is 8% (with 0.84% Cu; 0.82 ppm Au; and 1.39% EqCu); and Marble 7 % possible mined waste. Correlation between Ertsberg intrusion, major structure, and vein style mineralization is important to determine characteristic orebody in DMLZ Mine. Generally Deep Mill Level Zone has 2 type of vein filling mineralization from both hosted (diorite and skarn), in diorite hosted the vein system filled by chalcopyrite-bornite-quartz and pyrite, in skarn hosted the vein filled by chalcopyrite-bornite-pyrite and magnetite without quartz. Based on orientation the stockwork vein at diorite hosted and shallow vein in skarn hosted was generally NW-SE trending and NE-SW trending with shallow-moderate dipping. Deep Mill Level Zone control by two main major faults, geologist founded and verified local structure between major structure with NW-SE trending and NE-SW trending with characteristics slickenside, shearing, gauge, water-gas channel, and some has been re-healed.Keywords: copper-gold, DMLZ, skarn, structure
Procedia PDF Downloads 506181 Bringing the World to Net Zero Carbon Dioxide by Sequestering Biomass Carbon
Authors: Jeffrey A. Amelse
Abstract:
Many corporations aspire to become Net Zero Carbon Carbon Dioxide by 2035-2050. This paper examines what it will take to achieve those goals. Achieving Net Zero CO₂ requires an understanding of where energy is produced and consumed, the magnitude of CO₂ generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between CO₂ and biomass carbon sequestration. Short reviews are provided for prior technologies proposed for reducing CO₂ emissions from fossil fuels or substitution by renewable energy, to focus on their limitations and to show that none offer a complete solution. Of these, CO₂ sequestration is poised to have the largest impact. It will just cost money, scale-up is a huge challenge, and it will not be a complete solution. CO₂ sequestration is still in the demonstration and semi-commercial scale. Transportation accounts for only about 30% of total U.S. energy demand, and renewables account for only a small fraction of that sector. Yet, bioethanol production consumes 40% of U.S. corn crop, and biodiesel consumes 30% of U.S. soybeans. It is unrealistic to believe that biofuels can completely displace fossil fuels in the transportation market. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient and inefficient use of biomass carbon. Both biofuels and CO₂ sequestration reduce future CO₂ emissions from continued use of fossil fuels. They will not remove CO₂ already in the atmosphere. Planting more trees has been proposed as a way to reduce atmospheric CO₂. Trees are a temporary solution. When they complete their Carbon Cycle, they die and release their carbon as CO₂ to the atmosphere. Thus, planting more trees is just 'kicking the can down the road.' The only way to permanently remove CO₂ already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO₂ and sequestering biomass carbon. Sequestering tree leaves is proposed as a solution. Unlike wood, leaves have a short Carbon Cycle time constant. They renew and decompose every year. Allometric equations from the USDA indicate that theoretically, sequestrating only a fraction of the world’s tree leaves can get the world to Net Zero CO₂ without disturbing the underlying forests. How can tree leaves be permanently sequestered? It may be as simple as rethinking how landfills are designed to discourage instead of encouraging decomposition. In traditional landfills, municipal waste undergoes rapid initial aerobic decomposition to CO₂, followed by slow anaerobic decomposition to methane and CO₂. The latter can take hundreds to thousands of years. The first step in anaerobic decomposition is hydrolysis of cellulose to release sugars, which those who have worked on cellulosic ethanol know is challenging for a number of reasons. The key to permanent leaf sequestration may be keeping the landfills dry and exploiting known inhibitors for anaerobic bacteria.Keywords: carbon dioxide, net zero, sequestration, biomass, leaves
Procedia PDF Downloads 132180 Evaluation of Invasive Tree Species for Production of Phosphate Bonded Composites
Authors: Stephen Osakue Amiandamhen, Schwaller Andreas, Martina Meincken, Luvuyo Tyhoda
Abstract:
Invasive alien tree species are currently being cleared in South Africa as a result of the forest and water imbalances. These species grow wildly constituting about 40% of total forest area. They compete with the ecosystem for natural resources and are considered as ecosystem engineers by rapidly changing disturbance regimes. As such, they are harvested for commercial uses but much of it is wasted because of their form and structure. The waste is being sold to local communities as fuel wood. These species can be considered as potential feedstock for the production of phosphate bonded composites. The presence of bark in wood-based composites leads to undesirable properties, and debarking as an option can be cost implicative. This study investigates the potentials of these invasive species processed without debarking on some fundamental properties of wood-based panels. Some invasive alien tree species were collected from EC Biomass, Port Elizabeth, South Africa. They include Acacia mearnsii (Black wattle), A. longifolia (Long-leaved wattle), A. cyclops (Red-eyed wattle), A. saligna (Golden-wreath wattle) and Eucalyptus globulus (Blue gum). The logs were chipped as received. The chips were hammer-milled and screened through a 1 mm sieve. The wood particles were conditioned and the quantity of bark in the wood was determined. The binding matrix was prepared using a reactive magnesia, phosphoric acid and class S fly ash. The materials were mixed and poured into a metallic mould. The composite within the mould was compressed at room temperature at a pressure of 200 KPa. After initial setting which took about 5 minutes, the composite board was demoulded and air-cured for 72 h. The cured product was thereafter conditioned at 20°C and 70% relative humidity for 48 h. Test of physical and strength properties were conducted on the composite boards. The effect of binder formulation and fly ash content on the properties of the boards was studied using fitted response surface technology, according to a central composite experimental design (CCD) at a fixed wood loading of 75% (w/w) of total inorganic contents. The results showed that phosphate/magnesia ratio of 3:1 and fly ash content of 10% was required to obtain a product of good properties and sufficient strength for intended applications. The proposed products can be used for ceilings, partitioning and insulating wall panels.Keywords: invasive alien tree species, phosphate bonded composites, physical properties, strength
Procedia PDF Downloads 297179 Circular Economy Maturity Models: A Systematic Literature Review
Authors: Dennis Kreutzer, Sarah Müller-Abdelrazeq, Ingrid Isenhardt
Abstract:
Resource scarcity, energy transition and the planned climate neutrality pose enormous challenges for manufacturing companies. In order to achieve these goals and a holistic sustainable development, the European Union has listed the circular economy as part of the Circular Economy Action Plan. In addition to a reduction in resource consumption, reduced emissions of greenhouse gases and a reduced volume of waste, the principles of the circular economy also offer enormous economic potential for companies, such as the generation of new circular business models. However, many manufacturing companies, especially small and medium-sized enterprises, do not have the necessary capacity to plan their transformation. They need support and strategies on the path to circular transformation, because this change affects not only production but also the entire company. Maturity models offer an approach, as they enable companies to determine the current status of their transformation processes. In addition, companies can use the models to identify transformation strategies and thus promote the transformation process. While maturity models are established in other areas, e.g. IT or project management, only a few circular economy maturity models can be found in the scientific literature. The aim of this paper is to analyse the identified maturity models of the circular economy through a systematic literature review (SLR) and, besides other aspects, to check their completeness as well as their quality. Since the terms "maturity model" and "readiness model" are often used to assess the transformation process, this paper considers both types of models to provide a more comprehensive result. For this purpose, circular economy maturity models at the company (micro) level were identified from the literature, compared, and analysed with regard to their theoretical and methodological structure. A specific focus was placed, on the one hand, on the analysis of the business units considered in the respective models and, on the other hand, on the underlying metrics and indicators in order to determine the individual maturity level of the entire company. The results of the literature review show, for instance, a significant difference in the holism of their assessment framework. Only a few models include the entire company with supporting areas outside the value-creating core process, e.g. strategy and vision. Additionally, there are large differences in the number and type of indicators as well as their metrics. For example, most models often use subjective indicators and very few objective indicators in their surveys. It was also found that there are rarely well-founded thresholds between the levels. Based on the generated results, concrete ideas and proposals for a research agenda in the field of circular economy maturity models are made.Keywords: maturity model, circular economy, transformation, metric, assessment
Procedia PDF Downloads 118178 Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization
Authors: Cheng-Jui Li, Chien-Chou Tseng
Abstract:
This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency.Keywords: Computational Fluid Dynamics (CFD), Eulerian-Eulerian Model, Flue Gas Desulfurization (FGD), perforated sieve tray
Procedia PDF Downloads 287177 The Potential Fresh Water Resources of Georgia and Sustainable Water Management
Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili
Abstract:
Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.Keywords: GIS, management, rivers, water resources
Procedia PDF Downloads 374176 Environmental Contamination of Water Bodies by Waste Produced by Slaughterhouses and the Prevalence of Waterborne Diseases in Kumba Municipality
Authors: Maturin Désiré Sop Sop, Didien Njumba Besende, Samuel Fosso Wamba
Abstract:
This study seeks to examine the nexus between drinking water sources in the Kumba municipality and its related health implications vis-à-vis the recurrent incidences of waterborne diseases such as Typhoid, Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The study adopted a purposive sampling technique in which surveys were conducted between the months of June to December 2022. 150 questionnaires were retrieved from the 210 administered to the affected population of Kosala, Buea Road and Mambanda. Information for the study was collected using surveys, questionnaires, key informant interviews, the laboratory analysis of collected drinking water samples, the researcher’s direct observation as well and hospital reports on the prevalence of waterborne diseases. Water samples from the nearby streams and wells, which were communally used by the local population for drinking, and five slaughterhouses within the affected areas were laboratory tested to determine alterations in their chemical, physical and microbiological characteristics. The collected water samples from all the streams and wells used for drinking were tested for changes in properties such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. These results were then compared with the WHO regulations for water quality. The results from the laboratory analysis of drinking water sources, which were at the same time used by the surrounding abattoirs revealed significant alterations in the water quality parameters such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. This is due to the channeling of untreated wastes into the different drinking water points as well as the inter-use of dirty utensils such as buckets from slaughterhouses to fetch water from the streams and wells that serve as drinking water sources for the local population. On the human health aspect, the results were later compared with hospital data, and they revealed that the consumption of such contaminated water in the localities of Kosala, Mambanda, and Buea road negatively affected the local population because of the high incidences of Typhoid Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The poor management of drinking water sources pollutes streams and significantly exposes the local population to lots of waterborne diseases. Efforts should be made to provide clean pipe-borne water to the affected localities of Kumba as well as to ensure the proper management of wastes.Keywords: drinking water, diseases, Kumba, municipality
Procedia PDF Downloads 84175 Development of a Bus Information Web System
Authors: Chiyoung Kim, Jaegeol Yim
Abstract:
Bus service is often either main or the only public transportation available in cities. In metropolitan areas, both subways and buses are available whereas in the medium sized cities buses are usually the only type of public transportation available. Bus Information Systems (BIS) provide current locations of running buses, efficient routes to travel from one place to another, points of interests around a given bus stop, a series of bus stops consisting of a given bus route, and so on to users. Thanks to BIS, people do not have to waste time at a bus stop waiting for a bus because BIS provides exact information on bus arrival times at a given bus stop. Therefore, BIS does a lot to promote the use of buses contributing to pollution reduction and saving natural resources. BIS implementation costs a huge amount of budget as it requires a lot of special equipment such as road side equipment, automatic vehicle identification and location systems, trunked radio systems, and so on. Consequently, medium and small sized cities with a low budget cannot afford to install BIS even though people in these cities need BIS service more desperately than people in metropolitan areas. It is possible to provide BIS service at virtually no cost under the assumption that everybody carries a smartphone and there is at least one person with a smartphone in a running bus who is willing to reveal his/her location details while he/she is sitting in a bus. This assumption is usually true in the real world. The smartphone penetration rate is greater than 100% in the developed countries and there is no reason for a bus driver to refuse to reveal his/her location details while driving. We have developed a mobile app that periodically reads values of sensors including GPS and sends GPS data to the server when the bus stops or when the elapsed time from the last send attempt is greater than a threshold. This app detects the bus stop state by investigating the sensor values. The server that receives GPS data from this app has also been developed. Under the assumption that the current locations of all running buses collected by the mobile app are recorded in a database, we have also developed a web site that provides all kinds of information that most BISs provide to users through the Internet. The development environment is: OS: Windows 7 64bit, IDE: Eclipse Luna 4.4.1, Spring IDE 3.7.0, Database: MySQL 5.1.7, Web Server: Apache Tomcat 7.0, Programming Language: Java 1.7.0_79. Given a start and a destination bus stop, it finds a shortest path from the start to the destination using the Dijkstra algorithm. Then, it finds a convenient route considering number of transits. For the user interface, we use the Google map. Template classes that are used by the Controller, DAO, Service and Utils classes include BUS, BusStop, BusListInfo, BusStopOrder, RouteResult, WalkingDist, Location, and so on. We are now integrating the mobile app system and the web app system.Keywords: bus information system, GPS, mobile app, web site
Procedia PDF Downloads 223174 Functional Surfaces and Edges for Cutting and Forming Tools Created Using Directed Energy Deposition
Authors: Michal Brazda, Miroslav Urbanek, Martina Koukolikova
Abstract:
This work focuses on the development of functional surfaces and edges for cutting and forming tools created through the Directed Energy Deposition (DED) technology. In the context of growing challenges in modern engineering, additive technologies, especially DED, present an innovative approach to manufacturing tools for forming and cutting. One of the key features of DED is its ability to precisely and efficiently deposit Fully dense metals from powder feedstock, enabling the creation of complex geometries and optimized designs. Gradually, it becomes an increasingly attractive choice for tool production due to its ability to achieve high precision while simultaneously minimizing waste and material costs. Tools created using DED technology gain significant durability through the utilization of high-performance materials such as nickel alloys and tool steels. For high-temperature applications, Nimonic 80A alloy is applied, while for cold applications, M2 tool steel is used. The addition of ceramic materials, such as tungsten carbide, can significantly increase the tool's resistance. The introduction of functionally graded materials is a significant contribution, opening up new possibilities for gradual changes in the mechanical properties of the tool and optimizing its performance in different sections according to specific requirements. In this work, you will find an overview of individual applications and their utilization in the industry. Microstructural analyses have been conducted, providing detailed insights into the structure of individual components alongside examinations of the mechanical properties and tool life. These analyses offer a deeper understanding of the efficiency and reliability of the created tools, which is a key element for successful development in the field of cutting and forming tools. The production of functional surfaces and edges using DED technology can result in financial savings, as the entire tool doesn't have to be manufactured from expensive special alloys. The tool can be made from common steel, onto which a functional surface from special materials can be applied. Additionally, it allows for tool repairs after wear and tear, eliminating the need for producing a new part and contributing to an overall cost while reducing the environmental footprint. Overall, the combination of DED technology, functionally graded materials, and verified technologies collectively set a new standard for innovative and efficient development of cutting and forming tools in the modern industrial environment.Keywords: additive manufacturing, directed energy deposition, DED, laser, cutting tools, forming tools, steel, nickel alloy
Procedia PDF Downloads 53173 Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L
Authors: Yunhan Zhang, Xiaopeng Li, Zhongxiao Peng
Abstract:
Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life.Keywords: degradation process, additive manufacturing, stainless steel, surface features
Procedia PDF Downloads 82172 Evaluation of Low-Global Warming Potential Refrigerants in Vapor Compression Heat Pumps
Authors: Hamed Jafargholi
Abstract:
Global warming presents an immense environmental risk, causing detrimental impacts on ecological systems and putting coastal areas at risk. Implementing efficient measures to minimize greenhouse gas emissions and the use of fossil fuels is essential to reducing global warming. Vapor compression heat pumps provide a practical method for harnessing energy from waste heat sources and reducing energy consumption. However, traditional working fluids used in these heat pumps generally contain a significant global warming potential (GWP), which might cause severe greenhouse effects if they are released. The goal of the emphasis on low-GWP (below 150) refrigerants is to further the vapor compression heat pumps. A classification system for vapor compression heat pumps is offered, with different boundaries based on the needed heat temperature and advancements in heat pump technology. A heat pump could be classified as a low temperature heat pump (LTHP), medium temperature heat pump (MTHP), high temperature heat pump (HTHP), or ultra-high temperature heat pump (UHTHP). The HTHP/UHTHP border is 160 °C, the MTHP/HTHP and LTHP/MTHP limits are 100 and 60 °C, respectively. The refrigerant is one of the most important parts of a vapor compression heat pump system. Presently, the main ways to choose a refrigerant are based on ozone depletion potential (ODP) and GWP, with GWP being the lowest possible value and ODP being zero. Pure low-GWP refrigerants, such as natural refrigerants (R718 and R744), hydrocarbons (R290, R600), hydrofluorocarbons (R152a and R161), hydrofluoroolefins (R1234yf, R1234ze(E)), and hydrochlorofluoroolefin (R1233zd(E)), were selected as candidates for vapor compression heat pump systems based on these selection principles. The performance, characteristics, and potential uses of these low-GWP refrigerants in heat pump systems are investigated in this paper. As vapor compression heat pumps with pure low-GWP refrigerants become more common, more and more low-grade heat can be recovered. This means that energy consumption would decrease. The research outputs showed that the refrigerants R718 for UHTHP application, R1233zd(E) for HTHP application, R600, R152a, R161, R1234ze(E) for MTHP, and R744, R290, and R1234yf for LTHP application are appropriate. The selection of an appropriate refrigerant should, in fact, take into consideration two different environmental and thermodynamic points of view. It might be argued that, depending on the situation, a trade-off between these two groups should constantly be considered. The environmental approach is now far stronger than it was previously, according to the European Union regulations. This will promote sustainable energy consumption and social development in addition to assisting in the reduction of greenhouse gas emissions and the management of global warming.Keywords: vapor compression, global warming potential, heat pumps, greenhouse
Procedia PDF Downloads 40171 A Proposal for an Excessivist Social Welfare Ordering
Authors: V. De Sandi
Abstract:
In this paper, we characterize a class of rank-weighted social welfare orderings that we call ”Excessivist.” The Excessivist Social Welfare Ordering (eSWO) judges incomes above a fixed threshold θ as detrimental to society. To accomplish this, the identification of a richness or affluence line is necessary. We employ a fixed, exogenous line of excess. We define an eSWF in the form of a weighted sum of individual’s income. This requires introducing n+1 vectors of weights, one for all possible numbers of individuals below the threshold. To do this, the paper introduces a slight modification of the class of rank weighted class of social welfare function. Indeed, in our excessivist social welfare ordering, we allow the weights to be both positive (for individuals below the line) and negative (for individuals above). Then, we introduce ethical concerns through an axiomatic approach. The following axioms are required: continuity above and below the threshold (Ca, Cb), anonymity (A), absolute aversion to excessive richness (AER), pigou dalton positive weights preserving transfer (PDwpT), sign rank preserving full comparability (SwpFC) and strong pareto below the threshold (SPb). Ca, Cb requires that small changes in two income distributions above and below θ do not lead to changes in their ordering. AER suggests that if two distributions are identical in any respect but for one individual above the threshold, who is richer in the first, then the second should be preferred by society. This means that we do not care about the waste of resources above the threshold; the priority is the reduction of excessive income. According to PDwpT, a transfer from a better-off individual to a worse-off individual despite their relative position to the threshold, without reversing their ranks, leads to an improved distribution if the number of individuals below the threshold is the same after the transfer or the number of individuals below the threshold has increased. SPb holds only for individuals below the threshold. The weakening of strong pareto and our ethics need to be justified; we support them through the notion of comparative egalitarianism and income as a source of power. SwpFC is necessary to ensure that, following a positive affine transformation, an individual does not become excessively rich in only one distribution, thereby reversing the ordering of the distributions. Given the axioms above, we can characterize the class of the eSWO, getting the following result through a proof by contradiction and exhaustion: Theorem 1. A social welfare ordering satisfies the axioms of continuity above and below the threshold, anonymity, sign rank preserving full comparability, aversion to excessive richness, Pigou Dalton positive weight preserving transfer, and strong pareto below the threshold, if and only if it is an Excessivist-social welfare ordering. A discussion about the implementation of different threshold lines reviewing the primary contributions in this field follows. What the commonly implemented social welfare functions have been overlooking is the concern for extreme richness at the top. The characterization of Excessivist Social Welfare Ordering, given the axioms above, aims to fill this gap.Keywords: comparative egalitarianism, excess income, inequality aversion, social welfare ordering
Procedia PDF Downloads 68170 Effect of Packaging Material and Water-Based Solutions on Performance of Radio Frequency Identification for Food Packaging Applications
Authors: Amelia Frickey, Timothy (TJ) Sheridan, Angelica Rossi, Bahar Aliakbarian
Abstract:
The growth of large food supply chains demanded improved end-to-end traceability of food products, which has led to companies being increasingly interested in using smart technologies such as Radio Frequency Identification (RFID)-enabled packaging to track items. As technology is being widely used, there are several technological or economic issues that should be overcome to facilitate the adoption of this track-and-trace technology. One of the technological challenges of RFID technology is its sensitivity to different environmental form factors, including packaging materials and the content of the packaging. Although researchers have assessed the performance loss due to the proximity of water and aqueous solutions, there is still the need to further investigate the impacts of food products on the reading range of RFID tags. However, to the best of our knowledge, there are not enough studies to determine the correlation between RFID tag performance and food beverages properties. The goal of this project was to investigate the effect of the solution properties (pH and conductivity) and different packaging materials filled with food-like water-based solutions on the performance of an RFID tag. Three commercially available ultra high-frequency RFID tags were placed on three different bottles and filled with different concentrations of water-based solutions, including sodium chloride, citric acid, sucrose, and ethanol. Transparent glass, Polyethylneterephtalate (PET), and Tetrapak® were used as the packaging materials commonly used in the beverage industries. Tag readability (Theoretical Read Range, TRR) and sensitivity (Power on Tag Forward, PoF) were determined using an anechoic chamber. First, the best place to attach the tag for each packaging material was investigated using empty and water-filled bottles. Then, the bottles were filled with the food-like solutions and tested with the three different tags and the PoF and TRR at the fixed frequency of 915MHz. In parallel, the pH and conductivity of solutions were measured. The best-performing tag was then selected to test the bottles filled with wine, orange, and apple juice. Despite various solutions altering the performance of each tag, the change in tag performance had no correlation with the pH or conductivity of the solution. Additionally, packaging material played a significant role in tag performance. Each tag tested performed optimally under different conditions. This study is the first part of comprehensive research to determine the regression model for the prediction of tag performance behavior based on the packaging material and the content. More investigations, including more tags and food products, are needed to be able to develop a robust regression model. The results of this study can be used by RFID tag manufacturers to design suitable tags for specific products with similar properties.Keywords: smart food packaging, supply chain management, food waste, radio frequency identification
Procedia PDF Downloads 118169 A Preliminary in vitro Investigation of the Acetylcholinesterase and α-Amylase Inhibition Potential of Pomegranate Peel Extracts
Authors: Zoi Konsoula
Abstract:
The increasing prevalence of Alzheimer’s disease (AD) and diabetes mellitus (DM) constitutes them major global health problems. Recently, the inhibition of key enzyme activity is considered a potential treatment of both diseases. Specifically, inhibition of acetylcholinesterase (AChE), the key enzyme involved in the breakdown of the neurotransmitter acetylcholine, is a promising approach for the treatment of AD, while inhibition of α-amylase retards the hydrolysis of carbohydrates and, thus, reduces hyperglycemia. Unfortunately, commercially available AChE and α-amylase inhibitors are reported to possess side effects. Consequently, there is a need to develop safe and effective treatments for both diseases. In the present study, pomegranate peel (PP) was extracted using various solvents of increasing polarity, while two extraction methods were employed, the conventional maceration and the ultrasound assisted extraction (UAE). The concentration of bioactive phytoconstituents, such as total phenolics (TPC) and total flavonoids (TFC) in the prepared extracts was evaluated by the Folin-Ciocalteu and the aluminum-flavonoid complex method, respectively. Furthermore, the anti-neurodegenerative and anti-hyperglycemic activity of all extracts was determined using AChE and α-amylase inhibitory activity assays, respectively. The inhibitory activity of the extracts against AChE and α-amylase was characterized by estimating their IC₅₀ value using a dose-response curve, while galanthamine and acarbose were used as positive controls, respectively. Finally, the kinetics of AChE and α-amylase in the presence of the most inhibitory potent extracts was determined by the Lineweaver-Burk plot. The methanolic extract prepared using the UAE contained the highest amount of phytoconstituents, followed by the respective ethanolic extract. All extracts inhibited acetylcholinesterase in a dose-dependent manner, while the increased anticholinesterase activity of the methanolic (IC₅₀ = 32 μg/mL) and ethanolic (IC₅₀ = 42 μg/mL) extract was positively correlated with their TPC content. Furthermore, the activity of the aforementioned extracts was comparable to galanthamine. Similar results were obtained in the case of α-amylase, however, all extracts showed lower inhibitory effect on the carbohydrate hydrolyzing enzyme than on AChE, since the IC₅₀ value ranged from 84 to 100 μg/mL. Also, the α-amylase inhibitory effect of the extracts was lower than acarbose. Finally, the methanolic and ethanolic extracts prepared by UAE inhibited both enzymes in a mixed (competitive/noncompetitive) manner since the Kₘ value of both enzymes increased in the presence of extracts, while the Vmax value decreased. The results of the present study indicate that PP may be a useful source of active compounds for the management of AD and DM. Moreover, taking into consideration that PP is an agro-industrial waste product, its valorization could not only result in economic efficiency but also reduce the environmental pollution.Keywords: acetylcholinesterase, Alzheimer’s disease, α-amylase, diabetes mellitus, pomegranate
Procedia PDF Downloads 123168 A Hydrometallurgical Route for the Recovery of Molybdenum from Spent Mo-Co Catalyst
Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra
Abstract:
Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum has increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. The present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3.0 mol/L HCl, and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2.0 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe- Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by countercurrent simulation studies. According to McCabe- Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two-stage counter current at A/O= 1:1 with the negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO₃ in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO₃ was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO₃ correspond to molybdite Syn-MoO₃ structure. FE-SEM depicts the rod-like morphology of synthesized MoO₃. EDX analysis of MoO₃ shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO₃ can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as a catalyst.Keywords: cyphos Il 102, extraction, spent mo-co catalyst, recovery
Procedia PDF Downloads 175167 Secondhand Clothing and the Future of Fashion
Authors: Marike Venter de Villiers, Jessica Ramoshaba
Abstract:
In recent years, the fashion industry has been associated with the exploitation of both people and resources. This is largely due to the emergence of the fast fashion concept, which entails rapid and continual style changes where clothes quickly lose their appeal, become out-of-fashion, and are then disposed of. This cycle often entails appalling working conditions in sweatshops with low wages, child labor, and a significant amount of textile waste that ends up in landfills. Although the awareness of the negative implications of ‘mindless fashion production and consumption’ is growing, fast fashion remains to be a popular choice among the youth. This is especially prevalent in South Africa, a poverty-stricken country where a vast number of young adults are unemployed and living in poverty. Despite being in poverty, the celebrity conscious culture and fashion products frequently portrayed on the growing intrusive social media platforms in South Africa pressurizes the consumers to purchase fashion and luxury products. Young adults are therefore more vulnerable to the temptation to purchase fast fashion products. A possible solution to the detrimental effects that the fast fashion industry has on the environment is the revival of the secondhand clothing trend. Although the popularity of secondhand clothing has gained momentum among selected consumer segments, the adoption rate of such remains slow. The main purpose of this study was to explore consumers’ perceptions of the secondhand clothing trend and to gain insight into factors that inhibit the adoption of secondhand clothing. This study also aimed to investigate whether consumers are aware of the negative implications of the fast fashion industry and their likelihood to shift their clothing purchases to that of secondhand clothing. By means of a quantitative study, fifty young females were asked to complete a semi-structured questionnaire. The researcher approached females between the ages of 18 and 35 in a face-to-face setting. The results indicated that although they had an awareness of the negative consequences of fast fashion, they lacked detailed insight into the pertinent effects of fast fashion on the environment. Further, a number of factors inhibit their decision to buy from secondhand stores: firstly, the accessibility to the latest trends was not always available in secondhand stores; secondly, the convenience of shopping from a chain store outweighs the inconvenience of searching for and finding a secondhand store; and lastly, they perceived secondhand clothing to pose a hygiene risk. The findings of this study provide fashion marketers, and secondhand clothing stores, with insight into how they can incorporate the secondhand clothing trend into their strategies and marketing campaigns in an attempt to make the fashion industry more sustainable.Keywords: eco-friendly fashion, fast fashion, secondhand clothing, eco-friendly fashion
Procedia PDF Downloads 137166 Characteristics of Wood Plastics Nano-Composites Made of Agricultural Residues and Urban Recycled Polymer Materials
Authors: Amir Nourbakhsh Habibabadi, Alireza Ashori
Abstract:
Context: The growing concern over the management of plastic waste and the high demand for wood-based products have led to the development of wood-plastic composites. Agricultural residues, which are abundantly available, can be used as a source of lignocellulosic fibers in the production of these composites. The use of recycled polymers and nanomaterials is also a promising approach to enhance the mechanical and physical properties of the composites. Research Aim: The aim of this study was to investigate the feasibility of using recycled high-density polyethylene (rHDPE), polypropylene (rPP), and agricultural residues fibers for manufacturing wood-plastic nano-composites. The effects of these materials on the mechanical properties of the composites, specifically tensile and flexural strength, were studied. Methodology: The study utilized an experimental approach where extruders and hot presses were used to fabricate the composites. Five types of cellulosic residues fibers (bagasse, corn stalk, rice straw, sunflower, and canola stem), three levels of nanomaterials (carbon nanotubes, nano silica, and nanoclay), and coupling agent were used to chemically bind the wood/polymer fibers, chemicals, and reinforcement. The mechanical properties of the composites were then analyzed. Findings: The study found that composites made with rHDPE provided moderately superior tensile and flexural properties compared to rPP samples. The addition of agricultural residues in several types of wood-plastic nano-composites significantly improved their bending and tensile properties, with bagasse having the most significant advantage over other lignocellulosic materials. The use of recycled polymers, agricultural residues, and nano-silica resulted in composites with the best strength properties. Theoretical Importance: The study's findings suggest that using agricultural fiber residues as reinforcement in wood/plastic nanocomposites is a viable approach to improve the mechanical properties of the composites. Additionally, the study highlights the potential of using recycled polymers in the development of value-added products without compromising the product's properties. Data Collection and Analysis Procedures: The study collected data on the mechanical properties of the composites using tensile and flexural tests. Statistical analyses were performed to determine the significant effects of the various materials used. Question addressed: Can agricultural residues and recycled polymers be used to manufacture wood-plastic nano-composites with enhanced mechanical properties? Conclusion: The study demonstrates the feasibility of using agricultural residues and recycled polymers in the production of wood-plastic nano-composites. The addition of these materials significantly improved the mechanical properties of the composites, with bagasse being the most effective agricultural residue. The study's findings suggest that composites made from recycled materials can offer value-added products without sacrificing performance.Keywords: polymer, composites, wood, nano
Procedia PDF Downloads 74165 Impact of Alkaline Activator Composition and Precursor Types on Properties and Durability of Alkali-Activated Cements Mortars
Authors: Sebastiano Candamano, Antonio Iorfida, Patrizia Frontera, Anastasia Macario, Fortunato Crea
Abstract:
Alkali-activated materials are promising binders obtained by an alkaline attack on fly-ashes, metakaolin, blast slag among others. In order to guarantee the highest ecological and cost efficiency, a proper selection of precursors and alkaline activators has to be carried out. These choices deeply affect the microstructure, chemistry and performances of this class of materials. Even if, in the last years, several researches have been focused on mix designs and curing conditions, the lack of exhaustive activation models, standardized mix design and curing conditions and an insufficient investigation on shrinkage behavior, efflorescence, additives and durability prevent them from being perceived as an effective and reliable alternative to Portland. The aim of this study is to develop alkali-activated cements mortars containing high amounts of industrial by-products and waste, such as ground granulated blast furnace slag (GGBFS) and ashes obtained from the combustion process of forest biomass in thermal power plants. In particular, the experimental campaign was performed in two steps. In the first step, research was focused on elucidating how the workability, mechanical properties and shrinkage behavior of produced mortars are affected by the type and fraction of each precursor as well as by the composition of the activator solutions. In order to investigate the microstructures and reaction products, SEM and diffractometric analyses have been carried out. In the second step, their durability in harsh environments has been evaluated. Mortars obtained using only GGBFS as binder showed mechanical properties development and shrinkage behavior strictly dependent on SiO2/Na2O molar ratio of the activator solutions. Compressive strengths were in the range of 40-60 MPa after 28 days of curing at ambient temperature. Mortars obtained by partial replacement of GGBFS with metakaolin and forest biomass ash showed lower compressive strengths (≈35 MPa) and shrinkage values when higher amount of ashes were used. By varying the activator solutions and binder composition, compressive strength up to 70 MPa associated with shrinkage values of about 4200 microstrains were measured. Durability tests were conducted to assess the acid and thermal resistance of the different mortars. They all showed good resistance in a solution of 5%wt of H2SO4 also after 60 days of immersion, while they showed a decrease of mechanical properties in the range of 60-90% when exposed to thermal cycles up to 700°C.Keywords: alkali activated cement, biomass ash, durability, shrinkage, slag
Procedia PDF Downloads 328164 Time to Retire Rubber Crumb: How Soft Fall Playgrounds are Threatening Australia’s Great Barrier Reef
Authors: Michelle Blewitt, Scott P. Wilson, Heidi Tait, Juniper Riordan
Abstract:
Rubber crumb is a physical and chemical pollutant of concern for the environment and human health, warranting immediate investigations into its pathways to the environment and potential impacts. This emerging microplastic is created by shredding end-of-life tyres into ‘rubber crumb’ particles between 1-5mm used on synthetic turf fields and soft-fall playgrounds as a solution to intensifying tyre waste worldwide. Despite having known toxic and carcinogenic properties, studies into the transportation pathways and movement patterns of rubber crumbs from these surfaces remain in their infancy. To address this deficit, AUSMAP, the Australian Microplastic Assessment Project, in partnership with the Tangaroa Blue Foundation, conducted a study to quantify crumb loss from soft-fall surfaces. To our best knowledge, this is the first of its kind, with funding for the audits being provided by the Australian Government’s Reef Trust. Sampling occurred at 12 soft-fall playgrounds within the Great Barrier Reef Catchment Area on Australia’s North-East coast, in close proximity to the United Nations World Heritage Listed Reef. Samples were collected over a 12-month period using randomized sediment cores at 0, 2 and 4 meters away from the playground edge along a 20-meter transect. This approach facilitated two objectives pertaining to particle movement: to establish that crumb loss is occurring and that it decreases with distance from the soft-fall surface. Rubber crumb abundance was expressed as a total value and used to determine an expected average of rubber crumb loss per m2. An Analysis of Variance (ANOVA) was used to compare the differences in crumb abundance at each interval from the playground. Site characteristics, including surrounding sediment type, playground age, degree of ultra-violet exposure and amount of foot traffic, were additionally recorded for the comparison. Preliminary findings indicate that crumb is being lost at considerable rates from soft-fall playgrounds in the region, emphasizing an urgent need to further examine it as a potential source of aquatic pollution, soil contamination and threat to individuals who regularly utilize these surfaces. Additional implications for the future of rubber crumbs as a fit-for-purpose recycling initiative will be discussed with regard to industry, governments and the economic burden of surface maintenance and/ or replacement.Keywords: microplastics, toxic rubber crumb, litter pathways, marine environment
Procedia PDF Downloads 94163 Life Cycle Assessment to Study the Acidification and Eutrophication Impacts of Sweet Cherry Production
Authors: G. Bravo, D. Lopez, A. Iriarte
Abstract:
Several organizations and governments have created a demand for information about the environmental impacts of agricultural products. Today, the export oriented fruit sector in Chile is being challenged to quantify and reduce their environmental impacts. Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Chilean sweet cherry production reached a volume of 80,000 tons in 2012. The main destination market for the Chilean cherry in 2012 was Asia (including Hong Kong and China), taking in 69% of exported volume. Another important market was the United States with 16% participation, followed by Latin America (7%) and Europe (6%). Concerning geographical distribution, the Chilean conventional cherry production is focused in the center-south area, between the regions of Maule and O’Higgins; both regions represent 81% of the planted surface. The Life Cycle Assessment (LCA) is widely accepted as one of the major methodologies for assessing environmental impacts of products or services. The LCA identifies the material, energy, material, and waste flows of a product or service, and their impact on the environment. There are scant studies that examine the impacts of sweet cherry cultivation, such as acidification and eutrophication. Within this context, the main objective of this study is to evaluate, using the LCA, the acidification and eutrophication impacts of sweet cherry production in Chile. The additional objective is to identify the agricultural inputs that contributed significantly to the impacts of this fruit. The system under study included all the life cycle stages from the cradle to the farm gate (harvested sweet cherry). The data of sweet cherry production correspond to nationwide representative practices and are based on technical-economic studies and field information obtained in several face-to-face interviews. The study takes into account the following agricultural inputs: fertilizers, pesticides, diesel consumption for agricultural operations, machinery and electricity for irrigation. The results indicated that the mineral fertilizers are the most important contributors to the acidification and eutrophication impacts of the sheet cherry cultivation. Improvement options are suggested for the hotspot in order to reduce the environmental impacts. The results allow planning and promoting low impacts procedures across fruit companies, as well as policymakers, and other stakeholders on the subject. In this context, this study is one of the first assessments of the environmental impacts of sweet cherry production. New field data or evaluation of other life cycle stages could further improve the knowledge on the impacts of this fruit. This study may contribute to environmental information in other countries where there is similar agricultural production for sweet cherry.Keywords: acidification, eutrophication, life cycle assessment, sweet cherry production
Procedia PDF Downloads 273162 Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique
Authors: Cindy Sithole, Didier Nyembwe, Peter Olubambi
Abstract:
The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage.Keywords: defects, foundries, quality improvement, sand moulding, six sigma (DMAIC)
Procedia PDF Downloads 198161 A Hydrometallurgical Route for the Recovery of Molybdenum from Mo-Co Spent Catalyst
Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra
Abstract:
Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum have increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. Present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3 mol/L HCl and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe-Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by counter current simulation studies. According to McCabe-Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two stage counter current at A/O= 1:1 with negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO3 in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO3 was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO3correspond to molybdite Syn-MoO3 structure. FE-SEM depicts the rod like morphology of synthesized MoO3. EDX analysis of MoO3 shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO3 can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as catalyst.Keywords: cyphos IL 102, extraction, Mo-Co spent catalyst, recovery
Procedia PDF Downloads 269160 Experimental Analysis of the Performance of a System for Freezing Fish Products Equipped with a Modulating Vapour Injection Scroll Compressor
Authors: Domenico Panno, Antonino D’amico, Hamed Jafargholi
Abstract:
This paper presents an experimental analysis of the performance of a system for freezing fish products equipped with a modulating vapour injection scroll compressor operating with R448A refrigerant. Freezing is a critical process for the preservation of seafood products, as it influences quality, food safety, and environmental sustainability. The use of a modulating scroll compressor with vapour injection, associated with the R448A refrigerant, is proposed as a solution to optimize the performance of the system, reducing energy consumption and mitigating the environmental impact. The stream injection modulating scroll compressor represents an advanced technology that allows you to adjust the compressor capacity based on the actual cooling needs of the system. Vapour injection allows the optimization of the refrigeration cycle, reducing the evaporation temperature and improving the overall efficiency of the system. The use of R448A refrigerant, with a low Global Warming Potential (GWP), is part of an environmental sustainability perspective, helping to reduce the climate impact of the system. The aim of this research was to evaluate the performance of the system through a series of experiments conducted on a pilot plant for the freezing of fish products. Several operational variables were monitored and recorded, including evaporation temperature, condensation temperature, energy consumption, and freezing time of seafood products. The results of the experimental analysis highlighted the benefits deriving from the use of the modulating vapour injection scroll compressor with the R448A refrigerant. In particular, a significant reduction in energy consumption was recorded compared to conventional systems. The modulating capacity of the compressor made it possible to adapt the cold production to variations in the thermal load, ensuring optimal operation of the system and reducing energy waste. Furthermore, the use of an electronic expansion valve highlighted greater precision in the control of the evaporation temperature, with minimal deviation from the desired set point. This helped ensure better quality of the final product, reducing the risk of damage due to temperature changes and ensuring uniform freezing of the fish products. The freezing time of seafood has been significantly reduced thanks to the configuration of the entire system, allowing for faster production and greater production capacity of the plant. In conclusion, the use of a modulating vapour injection scroll compressor operating with R448A has proven effective in improving the performance of a system for freezing fish products. This technology offers an optimal balance between energy efficiency, temperature control, and environmental sustainability, making it an advantageous choice for food industries.Keywords: scroll compressor, vapor injection, refrigeration system, EER
Procedia PDF Downloads 53159 Fly ash Contamination in Groundwater and its Implications on Local Climate Change
Authors: Rajkumar Ghosh
Abstract:
Fly ash, a byproduct of coal combustion, has become a prevalent environmental concern due to its potential impact on both groundwater quality and local climate change. This study aims to provide an in-depth analysis of the various mechanisms through which fly ash contaminates groundwater, as well as the possible consequences of this contamination on local climate change. The presence of fly ash in groundwater not only poses a risk to human health but also has the potential to influence local climate change through complex interactions. Although fly ash has various applications in construction and other industries, improper disposal and lack of containment measures have led to its infiltration into groundwater systems. Through a comprehensive review of existing literature and case studies, the interactions between fly ash and groundwater systems, assess the effects on hydrology, and discuss the implications for the broader climate. This section reviews the pathways through which fly ash enters groundwater, including leaching from disposal sites, infiltration through soil, and migration from surface water bodies. The physical and chemical characteristics of fly ash that contribute to its mobility and persistence in groundwater. The introduction of fly ash into groundwater can alter its chemical composition, leading to an increase in the concentration of heavy metals, metalloids, and other potentially toxic elements. The mechanisms of contaminant transport and highlight the potential risks to human health and ecosystems. Fly ash contamination in groundwater may influence the hydrological cycle through changes in groundwater recharge, discharge, and flow dynamics. This section examines the implications of altered hydrology on local water availability, aquatic habitats, and overall ecosystem health. The presence of fly ash in groundwater may have direct and indirect effects on local climate change. The role of fly ash as a potent greenhouse gas absorber and its contribution to radiative forcing. Additionally, investigation of the possible feedback mechanisms between groundwater contamination and climate change, such as altered vegetation patterns and changes in local temperature and precipitation patterns. In this section, potential mitigation and remediation techniques to minimize fly ash contamination in groundwater are analyzed. These may include improved waste management practices, engineered barriers, groundwater remediation technologies, and sustainable fly ash utilization. This paper highlights the critical link between fly ash contamination in groundwater and its potential contribution to local climate change. It emphasizes the importance of addressing this issue promptly through a combination of preventive measures, effective management strategies, and continuous monitoring. By understanding the interconnections between fly ash contamination, groundwater quality, and local climate, towards creating a more resilient and sustainable environment for future generations. The findings of this research can assist policymakers and environmental managers in formulating sustainable strategies to mitigate fly ash contamination and minimize its contribution to climate change.Keywords: groundwater, climate, sustainable environment, fly ash contamination
Procedia PDF Downloads 93158 Plastic Pollution: Analysis of the Current Legal Framework and Perspectives on Future Governance
Authors: Giorgia Carratta
Abstract:
Since the beginning of mass production, plastic items have been crucial in our daily lives. Thanks to their physical and chemical properties, plastic materials have proven almost irreplaceable in a number of economic sectors such as packaging, automotive, building and construction, textile, and many others. At the same time, the disruptive consequences of plastic pollution have been progressively brought to light in all environmental compartments. The overaccumulation of plastics in the environment, and its adverse effects on habitats, wildlife, and (most likely) human health, represents a call for action to decision-makers around the globe. From a regulatory perspective, plastic production is an unprecedented challenge at all levels of governance. At the international level, the design of new legal instruments, the amendment of existing ones, and the coordination among the several relevant policy areas requires considerable effort. Under the pressure of both increasing scientific evidence and a concerned public opinion, countries seem to slowly move towards the discussion of a new international ‘plastic treaty.’ However, whether, how, and with which scopes such instrument would be adopted is still to be seen. Additionally, governments are establishing regional-basedstrategies, prone to consider the specificities of the plastic issue in a certain geographical area. Thanks to the new Circular Economy Action Plan, approved in March 2020 by the European Commission, EU countries are slowly but steadily shifting to a carbon neutral, circular economy in the attempt to reduce the pressure on natural resources and, parallelly, facilitate sustainable economic growth. In this context, the EU Plastic Strategy is promising to change the way plastic is designed, produced, used, and treated after consumption. In fact, only in the EU27 Member States, almost 26 million tons of plastic waste are generated herein every year, whose 24,9% is still destined to landfill. Positive effects of the Strategy also include a more effective protection of our environment, especially the marine one, the reduction of greenhouse gas emissions, a reduced need for imported fossil energy sources, more sustainable production and consumption patterns. As promising as it may sound, the road ahead is still long. The need to implement these measures in domestic legislations makes their outcome difficult to predict at the moment. An analysis of the current international and European Union legal framework on plastic pollution, binding, and voluntary instruments included, could serve to detect ‘blind spots’ in the current governance as well as to facilitate the development of policy interventions along the plastic value chain, where it appears more needed.Keywords: environmental law, European union, governance, plastic pollution, sustainability
Procedia PDF Downloads 112157 Spare Part Carbon Footprint Reduction with Reman Applications
Authors: Enes Huylu, Sude Erkin, Nur A. Özdemir, Hatice K. Güney, Cemre S. Atılgan, Hüseyin Y. Altıntaş, Aysemin Top, Muammer Yılman, Özak Durmuş
Abstract:
Remanufacturing (reman) applications allow manufacturers to contribute to the circular economy and help to introduce products with almost the same quality, environment-friendly, and lower cost. The objective of this study is to present that the carbon footprint of automotive spare parts used in vehicles could be reduced by reman applications based on Life Cycle Analysis which was framed with ISO 14040 principles. In that case, it was aimed to investigate reman applications for 21 parts in total. So far, research and calculations have been completed for the alternator, turbocharger, starter motor, compressor, manual transmission, auto transmission, and DPF (diesel particulate filter) parts, respectively. Since the aim of Ford Motor Company and Ford OTOSAN is to achieve net zero based on Science-Based Targets (SBT) and the Green Deal that the European Union sets out to make it climate neutral by 2050, the effects of reman applications are researched. In this case, firstly, remanufacturing articles available in the literature were searched based on the yearly high volume of spare parts sold. Paper review results related to their material composition and emissions released during incoming production and remanufacturing phases, the base part has been selected to take it as a reference. Then, the data of the selected base part from the research are used to make an approximate estimation of the carbon footprint reduction of the relevant part used in Ford OTOSAN. The estimation model is based on the weight, and material composition of the referenced paper reman activity. As a result of this study, it was seen that remanufacturing applications are feasible to apply technically and environmentally since it has significant effects on reducing the emissions released during the production phase of the vehicle components. For this reason, the research and calculations of the total number of targeted products in yearly volume have been completed to a large extent. Thus, based on the targeted parts whose research has been completed, in line with the net zero targets of Ford Motor Company and Ford OTOSAN by 2050, if remanufacturing applications are preferred instead of recent production methods, it is possible to reduce a significant amount of the associated greenhouse gas (GHG) emissions of spare parts used in vehicles. Besides, it is observed that remanufacturing helps to reduce the waste stream and causes less pollution than making products from raw materials by reusing the automotive components.Keywords: greenhouse gas emissions, net zero targets, remanufacturing, spare parts, sustainability
Procedia PDF Downloads 86156 Co-pyrolysis of Sludge and Kaolin/Zeolite to Stabilize Heavy Metals
Authors: Qian Li, Zhaoping Zhong
Abstract:
Sewage sludge, a typical solid waste, has inevitably been produced in enormous quantities in China. Still worse, the amount of sewage sludge produced has been increasing due to rapid economic development and urbanization. Compared to the conventional method to treat sewage sludge, pyrolysis has been considered an economic and ecological technology because it can significantly reduce the sludge volume, completely kill pathogens, and produce valuable solid, gas, and liquid products. However, the large-scale utilization of sludge biochar has been limited due to the considerable risk posed by heavy metals in the sludge. Heavy metals enriched in pyrolytic biochar could be divided into exchangeable, reducible, oxidizable, and residual forms. The residual form of heavy metals is the most stable and cannot be used by organisms. Kaolin and zeolite are environmentally friendly inorganic minerals with a high surface area and heat resistance characteristics. So, they exhibit the enormous potential to immobilize heavy metals. In order to reduce the risk of leaching heavy metals in the pyrolysis biochar, this study pyrolyzed sewage sludge mixed with kaolin/zeolite in a small rotary kiln. The influences of additives and pyrolysis temperature on the leaching concentration and morphological transformation of heavy metals in pyrolysis biochar were investigated. The potential mechanism of stabilizing heavy metals in the co-pyrolysis of sludge blended with kaolin/zeolite was explained by scanning electron microscopy, X-ray diffraction, and specific surface area and porosity analysis. The European Community Bureau of Reference sequential extraction procedure has been applied to analyze the forms of heavy metals in sludge and pyrolysis biochar. All the concentrations of heavy metals were examined by flame atomic absorption spectrophotometry. Compared with the proportions of heavy metals associated with the F4 fraction in pyrolytic carbon prepared without additional agents, those in carbon obtained by co-pyrolysis of sludge and kaolin/zeolite increased. Increasing the additive dosage could improve the proportions of the stable fraction of various heavy metals in biochar. Kaolin exhibited a better effect on stabilizing heavy metals than zeolite. Aluminosilicate additives with excellent adsorption performance could capture more released heavy metals during sludge pyrolysis. Then heavy metal ions would react with the oxygen ions of additives to form silicate and aluminate, causing the conversion of heavy metals from unstable fractions (sulfate, chloride, etc.) to stable fractions (silicate, aluminate, etc.). This study reveals that the efficiency of stabilizing heavy metals depends on the formation of stable mineral compounds containing heavy metals in pyrolysis biochar.Keywords: co-pyrolysis, heavy metals, immobilization mechanism, sewage sludge
Procedia PDF Downloads 70