Search results for: teaching and learning practice
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11716

Search results for: teaching and learning practice

8836 Causal-Explanatory Model of Academic Performance in Social Anxious Adolescents

Authors: Beatriz Delgado

Abstract:

Although social anxiety is one of the most prevalent disorders in adolescents and causes considerable difficulties and social distress in those with the disorder, to date very few studies have explored the impact of social anxiety on academic adjustment in student populations. The aim of this study was analyze the effect of social anxiety on school functioning in Secondary Education. Specifically, we examined the relationship between social anxiety and self-concept, academic goals, causal attributions, intellectual aptitudes, and learning strategies, personality traits, and academic performance, with the purpose of creating a causal-explanatory model of academic performance. The sample consisted of 2,022 students in the seven to ten grades of Compulsory Secondary Education in Spain (M = 13.18; SD = 1.35; 51.1% boys). We found that: (a) social anxiety has a direct positive effect on internal attributional style, and a direct negative effect on self-concept. Social anxiety also has an indirect negative effect on internal causal attributions; (b) prior performance (first academic trimester) exerts a direct positive effect on intelligence, achievement goals, academic self-concept, and final academic performance (third academic trimester), and a direct negative effect on internal causal attributions. It also has an indirect positive effect on causal attributions (internal and external), learning goals, achievement goals, and study strategies; (c) intelligence has a direct positive effect on learning goals and academic performance (third academic trimester); (d) academic self-concept has a direct positive effect on internal and external attributional style. Also, has an indirect effect on learning goals, achievement goals, and learning strategies; (e) internal attributional style has a direct positive effect on learning strategies and learning goals. Has a positive but indirect effect on achievement goals and learning strategies; (f) external attributional style has a direct negative effect on learning strategies and learning goals and a direct positive effect on internal causal attributions; (g) learning goals have direct positive effect on learning strategies and achievement goals. The structural equation model fit the data well (CFI = .91; RMSEA = .04), explaining 93.8% of the variance in academic performance. Finally, we emphasize that the new causal-explanatory model proposed in the present study represents a significant contribution in that it includes social anxiety as an explanatory variable of cognitive-motivational constructs.

Keywords: academic performance, adolescence, cognitive-motivational variables, social anxiety

Procedia PDF Downloads 332
8835 Interior Design: Changing Values

Authors: Kika Ioannou Kazamia

Abstract:

This paper examines the action research cycle of the second phase of longitudinal research on sustainable interior design practices, between two groups of stakeholders, designers and clients. During this phase of the action research, the second step - the change stage - of Lewin’s change management model has been utilized to change values, approaches, and attitudes toward sustainable design practices among the participants. Affective domain learning theory is utilized to attach new values. Learning with the use of information technology, collaborative learning, and problem-based learning are the learning methods implemented toward the acquisition of the objectives. Learning methods, and aims, require the design of interventions with participants' involvement in activities that would lead to the acknowledgment of the benefits of sustainable practices. Interventions are steered to measure participants’ decisions for the worth and relevance of ideas, and experiences; accept or commit to a particular stance or action. The data collection methods used in this action research are observers’ reports, participants' questionnaires, and interviews. The data analyses use both quantitative and qualitative methods. The main beneficial aspect of the quantitative method was to provide the means to separate many factors that obscured the main qualitative findings. The qualitative method allowed data to be categorized, to adapt the deductive approach, and then examine for commonalities that could reflect relevant categories or themes. The results from the data indicate that during the second phase, designers and clients' participants altered their behaviours.

Keywords: design, change, sustainability, learning, practices

Procedia PDF Downloads 77
8834 Impact of Tablet Based Learning on Continuous Assessment (ESPRIT Smart School Framework)

Authors: Mehdi Attia, Sana Ben Fadhel, Lamjed Bettaieb

Abstract:

Mobile technology has become a part of our daily lives and assist learners (despite their level and age) in their leaning process using various apparatus and mobile devices (laptop, tablets, etc.). This paper presents a new learning framework based on tablets. This solution has been developed and tested in ESPRIT “Ecole Supérieure Privée d’Igénieurie et de Technologies”, a Tunisian school of engineering. This application is named ESSF: Esprit Smart School Framework. In this work, the main features of the proposed solution are listed, particularly its impact on the learners’ evaluation process. Learner’s assessment has always been a critical component of the learning process as it measures students’ knowledge. However, traditional evaluation methods in which the learner is evaluated once or twice each year cannot reflect his real level. This is why a continuous assessment (CA) process becomes necessary. In this context we have proved that ESSF offers many important features that enhance and facilitate the implementation of the CA process.

Keywords: continuous assessment, mobile learning, tablet based learning, smart school, ESSF

Procedia PDF Downloads 334
8833 An Analysis of L1 Effects on the Learning of EFL: A Case Study of Undergraduate EFL Learners at Universities in Pakistan

Authors: Nadir Ali Mugheri, Shaukat Ali Lohar

Abstract:

In a multilingual society like Pakistan, code switching is commonly observed in different contexts. Mostly people use L1 (Native Languages) and L2 for common communications and L3 (i.e. English, Urdu, Sindhi) in formal contexts and for academic writings. Such a frequent code switching does affect EFL learners' acquisition of grammar and lexis of the target language which in the long run result in different types of errors in their writings. The current study is to investigate and identify common elements of L1 and L2 (spoken by students of the Universities in Pakistan) which create hindrances for EFL learners. Case study method was used for this research. Formal writings of 400 EFL learners (as participants from various Universities of the country) were observed. Among 400 participants, 200 were female and 200 were male EFL learners having different academic backgrounds. Errors found were categorized into different types according to grammatical items, the difference in meanings, structure of sentences and identifiers of tenses of L1 or L2 in comparison with those of the target language. The findings showed that EFL learners in Pakistani varsities have serious problems in their writings and they committed serious errors related to the grammar and meanings of the target language. After analysis of the committed errors, the results were found in the affirmation of the hypothesis that L1 or L2 does affect EFL learners. The research suggests in the end to adopt natural ways in pedagogy like task-based learning or communicative methods using contextualized material so as to avoid impediments of L1 or L2 in acquisition the target language.

Keywords: multilingualism, L2 acquisition, code switching, language acquisition, communicative language teaching

Procedia PDF Downloads 290
8832 The Application of Active Learning to Develop Creativity in General Education

Authors: Chalermwut Wijit

Abstract:

This research is conducted in order to 1) study the result of applying “Active Learning” in general education subject to develop creativity 2) explore problems and obstacles in applying Active Learning in general education subject to improve the creativity in 1780 undergraduate students who registered this subject in the first semester 2013. The research is implemented by allocating the students into several groups of 10 -15 students and assigning them to design the activities for society under the four main conditions including 1) require no financial resources 2) practical 3) can be attended by every student 4) must be accomplished within 2 weeks. The researcher evaluated the creativity prior and after the study. Ultimately, the problems and obstacles from creating activity are evaluated from the open-ended questions in the questionnaires. The study result states that overall average scores on students’ ability increased significantly in terms of creativity, analytical ability and the synthesis, the complexity of working plan and team working. It can be inferred from the outcome that active learning is one of the most efficient methods in developing creativity in general education.

Keywords: creative thinking, active learning, general education, social sustainability

Procedia PDF Downloads 184
8831 Breastfeeding Knowledge, Attitudes and Practice: A Cross-Sectional Study among a Sample of Tunisian Mothers

Authors: Arfaoui Emna, Nouira Mariem

Abstract:

Background and aims: Breastfeeding is the reference feeding for a child, especially during the first months of life. It is not widespread in many countries due to many factors. There has been a decline in exclusive breastfeeding (EB) practice, particularly in the middle- and low-income countries, i.e., Tunisia. The aim of our study was to describe the knowledge, attitudes, and practice of a sample of Tunisian mothers toward breastfeeding. Methods: It was a descriptive cross-sectional study conducted during the year 2022 over a period of two months in three health structures in the north of Tunisia among mothers of infants aged 2 to 18 months. Levels of mothers’ knowledge (low/moderate/high) were determined using a score ranging from 0 to 11 points. EB was defined as the proportion of infants who were exclusively breastfed during the first six months of life. Results: A total of 180 women with a mean age of 33±4.9 years were included. The average knowledge score was equal to 6.4 ±1.5 points, with extremes ranging from 3 to 11 points. Most of the respondents had a moderate knowledge level (44.4%). More than half of surveyed mothers (66.1%) thought that breastfeeding deforms breasts, and 16.7% thought that breastfeeding is specific to women who do not work. Breastfeeding experience during the first week of life was considered difficult in 70% of cases. The prevalence of EB up to 6 months of age was equal to 16.4% [10.8-23.2]. The main reported obstacles during breastfeeding practice were having an insufficient quantity of breast milk (18.3%) and child difficulties with sucking (12.8%), and having pain in the breast while breastfeeding (12.80%). Conclusion: Our results highlighted the insufficient level of knowledge and a low prevalence of EB in our study population. Improving mothers’ knowledge and promoting EB practice is needed. Implementing health education strategies involving healthcare workers, who represent a main actor in education and breastfeeding promotion, is very important to reach a satisfactory frequency for EB.

Keywords: breastfeeding, practices, knowledge, Tunisia

Procedia PDF Downloads 79
8830 Combating Contraflow to Creativity Amongst Preservice Teachers in Teacher Arts Education

Authors: Michael Flannery, Annie ó Breacháin

Abstract:

Teaching the creative arts in preservice teacher education can be challenging. Some students find artistic self-expression and its related creative processes overwhelming. Low creative self-efficacy levels and creative habits of mind can impede their levels of motivation, engagement and persistence. For some, creative arts engagement can induce a state of anxiety and distress as opposed to flow. Flow theory posits that learners are happiest when they are learning in a state of flow. During the flow state, students feel, think and perform their best. They become so involved in the learning experience that nothing else seems to matter. The creative flow state is a crucial conduit of artistic processes to enable learners to explore and produce their best work. Despite the research conducted on flow state across several contexts, the phenomenon of personal flow state remains quite elusive. While some research has examined flow in relation to characteristics, conditions and personality traits, no research has investigated individuals' personal experiences of flow in a visual and tangible manner nor explored a relationship between flow state and teachers’ artistic development. This explorative case study explores preservice teachers’ impressions of flow using an arts-based approach. It identifies, categorizes and discusses patterns of commonality and difference. Grounded by theory concerning flow, self-efficacy and creative habits, this study ponders how emerging findings regarding flow impressions might aid teacher arts educators in helping preservice teachers who struggle with creative self-expression.

Keywords: creative arts, flow theory, presence, self-efficacy, teacher education

Procedia PDF Downloads 27
8829 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 114
8828 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 105
8827 Association between Caries Status of First Permanent Molar with Oral Health Care Practice in Children Aged 9-12 Years in Lubuk Kilangan, Padang City

Authors: Cytha Nilam Chairani, Ditha Noviantika, Hidayati Amir, Nurul Khairiyah, Siti Rahmadita, Fadila Khairani

Abstract:

Background: Dental caries is one of the most common diseases with high prevalence in children. The first permanent molar (FPM) has an essential role in establishing the occlusion. Nevertheless, FPM is very prone to caries because of various factors, such as their anatomical structure and early emergence in oral cavity. It is due to the little knowledge from parents and children regarding the timing of emergence of FPM in oral cavity which is still considered as primary teeth. Furthermore, the lack of knowledge from parents and children may affect their oral hygiene practice resulting to carious process. Objective: The aim of this study was to assess the status of FPM caries and its association with children’s oral hygiene practice in 9-12-year-old school children in Lubuk Kilangan Community Health Centre, Padang City. Methods: A cross-sectional study was performed in 50 school children (9-12 years old) using random sampling technique from two randomly selected schools in Lubuk Kilangan Community Health Centre, Padang City. A questionnaire was developed from other studies consisting of four closed ended questions regarding oral health practice. The data obtained were analyzed statistically using Mann-Whitney Test to assess the status of FPM caries and its association with children’s oral hygiene practice. Results: The results showed that 32% of children had FPMs sound and the remaining 68% had FPMs carious which were grouped into 1-2 FPMs carious (60%) and 3-4 FPMs carious (8%). The caries status of mandibular FPM (64%) was higher compared to maxillary FPM (10%). Conclusion: There was significant association in subject who did not visit dentist in the last 6 months which had more carious FPMs compared to subject who visited dentist (p < 0.05). There was no significant association between the status of FPM caries and knowledge of the timing eruption of FPM, oral hygiene instruction from parents and tooth brushing (p > 0.05).

Keywords: dental caries, children, first permanent molar, oral hygiene practice

Procedia PDF Downloads 275
8826 Use of Fractal Geometry in Machine Learning

Authors: Fuad M. Alkoot

Abstract:

The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy.

Keywords: fractal geometry, machine learning, classifier, fractal dimension

Procedia PDF Downloads 217
8825 Educators’ Perceived Capacity to Create Inclusive Learning Environments: Exploring Individual Competencies and District Policy

Authors: Thuy Phan, Stephanie Luallin

Abstract:

Inclusive education policies have demonstrated benefits for students with and without disabilities in the US. There are several laws that relate to inclusive education, such as 'No Child Left Behind', 'The Individuals with Disabilities Education Act'. However, the application of these inclusive education laws and policies vary per state and school district. Classroom teachers in an inclusive classroom often experience confusion as to how to apply these policies in order to create appropriate inclusive learning environments that meet the abilities and needs of their diverse student population. The study aims to investigate teachers’ perspective of their capacities to create an appropriate learning environment for their diverse student population including students with disabilities. Qualitative method is implemented in this study, using open-end interview questions to investigate teachers’ perspective of their capacities to create an appropriate inclusive learning environment for all students based on current inclusive education laws and district policies in the state of Colorado, USA. These findings may indicate a lack of confidence in teachers’ capacity to create appropriate inclusive learning environments based on laws and district policies; including challenges that classroom teachers may experience in creating inclusive learning environments. The purpose of this study is to examine the adequate preparation of classroom teachers in creating inclusive classrooms with the intent of determining implications for developing policies in inclusive education.

Keywords: educator’s capacity, inclusive education, inclusive learning environment, policy

Procedia PDF Downloads 170
8824 Using Mobile Phones for M-Learning in Higher Education: A Comparative Study

Authors: Islam Elsayed Hussein Ali, Stefan M. Wagner

Abstract:

Smartphone and tablet computers, as well as other ultra portable devices, have already gained enough critical mass to be considered mainstream devices, being present in the daily lives of millions of higher education students. Many universities throughout the world have already adopted or are planning to adopt mobile technologies in many of their courses as a better way to connect students with the subjects they are studying. These new mobile platforms allow students to access content anywhere/anytime to immerse himself/herself into that content (alone or interacting with teachers or colleagues via web communication forms) and to interact with that content in ways that were not previously possible. This paper plans to provide a thorough overview of the possibilities and consequences of m-learning in higher education environments as a gateway to ubiquitous learning – perhaps the ultimate form of learner engagement, since it allows the student to learn, access and interact with important content in any way or at any time or place he might want so the objective of the study is to examine how the usage of mobile phones for m-learning differs between heavy and light mobile phone users at TU Braunschweig. Heavy mobile phone users are hypothesized to have access to/subscribe to one type of mobile content than light mobile phone users, to have less frequent access to, subscribe to or purchase mobile content within the last year than light mobile phone users, and to pay less money for mobile learning, its content and mobile games than light mobile phone users.

Keywords: mobile learning, technologies, applications, higher education

Procedia PDF Downloads 415
8823 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning

Procedia PDF Downloads 446
8822 Analysis of Suitability of Online Assessment by Maintaining Critical Thinking

Authors: Mohamed Chabi

Abstract:

The purpose of this study is to determine Whether paper assessment especially in the subject mathematics will ever be completely replaced by online assessment using Learning Management System and Content Management System such as blackboard. In the subject mathematics, the assessment is the exercise of judgment on the quality of students’ work, as a way of supporting student learning and appraising its outcomes. Testing students has moved from the traditional scribbling and sketching on paper towards working online on a screen and keyboard.

Keywords: paper assessment, online assessment, learning management system, content management system, mathematics

Procedia PDF Downloads 468
8821 The Design and Development of Online Infertility Prevention Education in the Frame of Mayer's Multimedia Learning Theory

Authors: B. Baran, S. N. Kaptanoglu, M. Ocal, Y. Kagnici, E. Esen, E. Siyez, D. M. Siyez

Abstract:

Infertility is the fact that couples cannot have children despite 1 year of unprotected sexual life. Infertility can be considered as an important problem affecting not only sexual life but also social and psychological conditions of couples. Learning about information about preventable factors related to infertility during university years plays an important role in preventing a possible infertility case in older ages. The possibility to facilitate access to information with the internet has provided the opportunity to reach a broad audience in the diverse learning environments and educational environment. Moreover, the internet has become a basic resource for the 21st-century learners. Providing information about infertility over the internet will enable more people to reach in a short time. When studies conducted abroad about infertility are examined, interactive websites and online education programs come to the fore. In Turkey, while there is no comprehensive online education program for university students, it seems that existing studies are aimed to make more advertisements for doctors or hospitals. In this study, it was aimed to design and develop online infertility prevention education for university students. Mayer’s Multimedia Learning Theory made up the framework for the online learning environment in this study. The results of the needs analysis collected from the university students in Turkey who were selected with sampling to represent the audience for online learning contributed to the design phase. In this study, an infertility prevention online education environment designed as a 4-week education was developed by explaining the theoretical basis and needs analysis results. As a result; in the development of the online environment, different kind of visual aids that will increase teaching were used in the environment of online education according to Mayer’s principles of extraneous processing (coherence, signaling, spatial contiguity, temporal contiguity, redundancy, expectation principles), essential processing (segmenting, pre-training, modality principles) and generative processing (multimedia, personalization, voice principles). For example, the important points in reproductive systems’ expression were emphasized by visuals in order to draw learners’ attention, and the presentation of the information was also supported by the human voice. In addition, because of the limited knowledge of university students in the subject, the issue of female reproductive and male reproductive systems was taught before preventable factors related to infertility. Furthermore, 3D video and augmented reality application were developed in order to embody female and male reproductive systems. In conclusion, this study aims to develop an interactive Online Infertility Prevention Education in which university students can easily access reliable information and evaluate their own level of knowledge about the subject. It is believed that the study will also guide the researchers who want to develop online education in this area as it contains design-stage decisions of interactive online infertility prevention education for university students.

Keywords: infertility, multimedia learning theory, online education, reproductive health

Procedia PDF Downloads 170
8820 Online-Scaffolding-Learning Tools to Improve First-Year Undergraduate Engineering Students’ Self-Regulated Learning Abilities

Authors: Chen Wang, Gerard Rowe

Abstract:

The number of undergraduate engineering students enrolled in university has been increasing rapidly recently, leading to challenges associated with increased student-instructor ratios and increased diversity in academic preparedness of the entrants. An increased student-instructor ratio makes the interaction between teachers and students more difficult, with the resulting student ‘anonymity’ known to be a risk to academic success. With increasing student numbers, there is also an increasing diversity in the academic preparedness of the students at entry to university. Conceptual understanding of the entrants has been quantified via diagnostic testing, with the results for the first-year course in electrical engineering showing significant conceptual misunderstandings amongst the entry cohort. The solution is clearly multi-faceted, but part of the solution likely involves greater demands being placed on students to be masters of their own learning. In consequence, it is highly desirable that instructors help students to develop better self-regulated learning skills. A self-regulated learner is one who is capable of setting up their own learning goals, monitoring their study processes, adopting and adjusting learning strategies, and reflecting on their own study achievements. The methods by which instructors might cultivate students’ self-regulated learning abilities is receiving increasing attention from instructors and researchers. The aim of this study was to help students understand fully their self-regulated learning skill levels and provide targeted instructions to help them improve particular learning abilities in order to meet the curriculum requirements. As a survey tool, this research applied the questionnaire ‘Motivated Strategies for Learning Questionnaire’ (MSLQ) to collect first year engineering student’s self-reported data of their cognitive abilities, motivational orientations and learning strategies. MSLQ is a widely-used questionnaire for assessment of university student’s self-regulated learning skills. The questionnaire was offered online as a part of the online-scaffolding-learning tools to develop student understanding of self-regulated learning theories and learning strategies. The online tools, which have been under development since 2015, are designed to help first-year students understand their self-regulated learning skill levels by providing prompt feedback after they complete the questionnaire. In addition, the online tool also supplies corresponding learning strategies to students if they want to improve specific learning skills. A total of 866 first year engineering students who enrolled in the first-year electrical engineering course were invited to participate in this research project. By the end of the course 857 students responded and 738 of their questionnaires were considered as valid questionnaires. Analysis of these surveys showed that 66% of the students thought the online-scaffolding-learning tools helped significantly to improve their self-regulated learning abilities. It was particularly pleasing that 16.4% of the respondents thought the online-scaffolding-learning tools were extremely effective. A current thrust of our research is to investigate the relationships between students’ self-regulated learning abilities and their academic performance. Our results are being used by the course instructors as they revise the curriculum and pedagogy for this fundamental first-year engineering course, but the general principles we have identified are applicable to most first-year STEM courses.

Keywords: academic preparedness, online-scaffolding-learning tool, self-regulated learning, STEM education

Procedia PDF Downloads 110
8819 The Surgical Trainee Perception of the Operating Room Educational Environment

Authors: Neal Rupani

Abstract:

Background: A surgical trainee has limited learning opportunities in the operating room in order to gain an ever-increasing standard of surgical skill, competency, and proficiency. These opportunities continue to decline due to numerous factors such as the European Working Time Directive and increasing requirement for service provision. It is therefore imperative to obtain the highest educational value from each educational opportunity. A measure that has yet to be validated in England on surgical trainees called the Operating Room Educational Environment Measure (OREEM) has been developed to identify and evaluate each component of the educational environment with a view to steer future change in optimising educational events in theatre. Aims: The aims of the study are to assess the reliability of the OREEM within England and to evaluate the surgical trainee’s objective perspective of the current operating room educational environment within one region within England. Methods: Using a quantitative study approach, data was collected over one month from surgical trainees within Health Education Thames Valley (Oxford) using an online questionnaire consisting of demographic data, the OREEM, a global satisfaction score. Results: 140 surgical trainees were invited to the study, with an online response of 54 participants (response rate = 38.6%). The OREEM was shown to have good internal consistency (α = 0.906, variables = 40) and unidimensionality, along with all four of its subgroups. The mean OREEM score was 79.16%. The areas highlighted for improvement predominantly focused on improving learning opportunities (average subscale score = 72.9%) and conducting pre- and post-operative teaching (average score = 70.4%). The trainee perception is most satisfactory for the level of supervision and workload (average subscale score = 82.87%). There was no differences found between gender (U = 191.5, p = 0.535) or type of hospital (U = 258.0, p = 0.099), but the learning environment was favoured towards senior trainees (U = 223.5, p = 0.017). There was strong correlation between OREEM and the global satisfaction score (r = 0.755, p<0.001). Conclusions: The OREEM was shown to be reliable in measuring the educational environment in the operating room. This can be used to identify potentially modifiable components for improvement and as an audit tool to ensure high standards are being met. The current perception of the education environment in Health Education Thames Valley is satisfactory, and modifiable internal and external factors such as reducing service provision requirements, empowering trainees to plan lists, creating a team-working ethic between all personnel, and using tools that maximise learning from each operation have been identified to improve learning in the future. There is a favourable attitude to use of such improvement tools, especially for those currently dissatisfied.

Keywords: education environment, surgery, post-graduate education, OREEM

Procedia PDF Downloads 184
8818 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 58
8817 Improving Young Learners' Vocabulary Acquisition: A Pilot Program in a Game-Based Environment

Authors: Vasiliki Stratidou

Abstract:

Modern simulation mobile games have the potential to enhance students’ interest, motivation and creativity. Research conducted on the effectiveness of digital games for educational purposes has shown that such games are also ideal at providing an appropriate environment for language learning. The paper examines the issue of simulation mobile games in regard to the potential positive impacts on L2 vocabulary learning. Sixteen intermediate level students, aged 10-14, participated in the experimental study for four weeks. The participants were divided into experimental (8 participants) and control group (8 participants). The experimental group was planned to learn some new vocabulary words via digital games while the control group used a reading passage to learn the same vocabulary words. The study investigated the effect of mobile games as well as the traditional learning methods on Greek EFL learners’ vocabulary learning in a pre-test, an immediate post-test, and a two-week delayed retention test. A teacher’s diary and learners’ interviews were also used as tools to estimate the effectiveness of the implementation. The findings indicated that the experimental group outperformed the control group in acquiring new words through mobile games. Therefore, digital games proved to be an effective tool in learning English vocabulary.

Keywords: control group, digital games, experimental group, second language vocabulary learning, simulation games

Procedia PDF Downloads 239
8816 A Primer to the Learning Readiness Assessment to Raise the Sharing of E-Health Knowledge amongst Libyan Nurses

Authors: Mohamed Elhadi M. Sharif, Mona Masood

Abstract:

The usage of e-health facilities is seen to be the first priority by the Libyan government. As such, this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using e-health services in nursing education.

Keywords: Libyan nurses, e-learning readiness, e-health, nursing education

Procedia PDF Downloads 493
8815 Language Learning Strategies of Chinese Students at Suan Sunandha Rajabhat University in Thailand

Authors: Gunniga Anugkakul, Suwaree Yordchim

Abstract:

The objectives were to study language learning strategies (LLSs) employed by Chinese students, and the frequency of LLSs they used, and examine the relationship between the use of LLSs and gender. The Strategy Inventory for Language Learning (SILL) by Oxford was administered to thirty-six Chinese students at Suan Sunandha Rajabhat University in Thailand. The data obtained was analyzed using descriptive statistics and chi-square tests. Three useful findings were found on the use of LLSs reported by Chinese students. First, Chinese students used overall LLSs at a high level. Second, among the six strategy groups, Chinese students employed compensation strategy most frequently and memory strategy least frequently. Third, the research results also revealed that gender had significant effect on Chinese Student’s use of overall LLSs.

Keywords: English language, language learning strategy, Chinese students, compensation strategy

Procedia PDF Downloads 679
8814 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 28
8813 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 350
8812 The Effective Method for Postering Thinking Dispositions of Learners

Authors: H. Jalahi, A. Yazdanpanah Nozari

Abstract:

Background and Purpose: Assessment of learners’ performance is an important factors in teaching-learning process. When a factor is sensitive and has high influence on life, their assessment should be done precisely. Thinking dispositions are very important factors in medical education because of its specific condition. In this study a model is designed for fostering thinking dispositions of learners in which authentic assessment is an important element. Materials and Methods: Objective based research is developmental, and such a model was not designed for curricula. Data collection and comparing approaches about assessment and analyzing current assessments offered applied proposals. Results: Based on research findings, the current assessments are response-based, that is students instead of product of response, only offers the specific response which the teachers expects; but authentic assessment is a form of assessment in which students are asked to perform real-word tasks that demonstrate meaningful application of essential knowledge and skills. Conclusion: Because of the difficulties and unexpected problems in life and individuals needs to lifelong learning and conditions in medical course that require decision making in specific times, we must pay attention to reach thinking dispositions and it should be included in curriculum. Authentic assessment as an important aspect of curriculum can help fostering thinking dispositions of learners. Using this kind of assessments which focus on application of information and skills to solve real-word tasks have more important role in medical courses.

Keywords: assessment, authentic, medical courses, developmental

Procedia PDF Downloads 365
8811 The Development of Ability in Reading Comprehension Based on Metacognitive Strategies for Mattayom 3 Students

Authors: Kanlaya Ratanasuphakarn, Suttipong Boonphadung

Abstract:

The research on the development of ability in reading comprehension based on metacognitive strategies aimed to (1) improve the students’development of ability in reading comprehension based on metacognitive strategies, (2) evaluate the students’ satisfaction on using metacognitive strategies in learning as a tool developing the ability in reading comprehension. Forty-eight of Mattayom 3 students who have enrolled in the subject of research for learning development of semester 2 in 2013 were purposively selected as the research cohort. The research tools were lesson plans for reading comprehension, pre-posttest and satisfaction questionnaire that were approved as content validity and reliability (IOC=.66-1.00,0.967). The research found that the development of ability in reading comprehension of the research samples before using metacognitive strategies in learning activities was in the normal high level. Additionally, the research discovered that the students’ satisfaction of the research cohort after applying model in learning activities appeared to be high level of satisfaction on using metacognitive strategies in learning as a tool for the development of ability in reading comprehension.

Keywords: development of ability, metacognitive strategies, satisfaction, reading comprehension

Procedia PDF Downloads 309
8810 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 161
8809 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning

Authors: R. Abdulrahman, A. Eardley, A. Soliman

Abstract:

The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.

Keywords: mobile learning, nursing institute students’ acceptance of m-learning activity in Saudi Arabia, unified theory of acceptance and use of technology model (UTAUT), structural equation modelling (SEM)

Procedia PDF Downloads 188
8808 Maximum Initial Input Allowed to Iterative Learning Control Set-up Using Singular Values

Authors: Naser Alajmi, Ali Alobaidly, Mubarak Alhajri, Salem Salamah, Muhammad Alsubaie

Abstract:

Iterative Learning Control (ILC) known to be a controlling tool to overcome periodic disturbances for repetitive systems. This technique is required to let the error signal tends to zero as the number of operation increases. The learning process that lies within this context is strongly dependent on the initial input which if selected properly tends to let the learning process be more effective compared to the case where a system starts from blind. ILC uses previous recorded execution data to update the following execution/trial input such that a reference trajectory is followed to a high accuracy. Error convergence in ILC is generally highly dependent on the input applied to a plant for trial $1$, thus a good choice of initial starting input signal would make learning faster and as a consequence the error tends to zero faster as well. In the work presented within, an upper limit based on the Singular Values Principle (SV) is derived for the initial input signal applied at trial $1$ such that the system follow the reference in less number of trials without responding aggressively or exceeding the working envelope where a system is required to move within in a robot arm, for example. Simulation results presented illustrate the theory introduced within this paper.

Keywords: initial input, iterative learning control, maximum input, singular values

Procedia PDF Downloads 241
8807 Relationship between the Level of Perceived Self-Efficacy of Children with Learning Disability and Their Mother’s Perception about the Efficacy of Their Child, and Children’s Academic Achievement

Authors: Payal Maheshwari, Maheaswari Brindavan

Abstract:

The present study aimed at studying the level of perceived self-efficacy of children with learning disability and their mother’s perception about the efficacy of the child and the relationship between the two. The study further aimed at finding out the relationship between the level of perceived self-efficacy of children with learning disability and their academic achievement and their mother’s perception about the Efficacy of the child and child’s Academic Achievement. The sample comprised of 80 respondents (40 children with learning disability and their mothers). Children with learning disability as their primary condition, belonging to middle or upper middle class, living with both the parents, residing in Mumbai and their mothers were selected. Purposive or judgmental and snowball sampling technique was used to select the sample for the present study. Proformas in the form of questionnaires were used to obtain the background information of the children with learning disability and their mother’s. A self-constructed Mother’s Perceived Efficacy of their Child Assessment Scale was used to measure mothers perceived level of efficacy of their child with learning disability. Self-constructed Child’s Perceived Self-Efficacy Assessment Scale was used to measure the level of child’s perceived self-efficacy. Academic scores of the child were collected from the child’s parents or teachers and were converted into percentage. The data were analyzed quantitatively using frequencies, mean and standard deviation. Correlations were computed to ascertain the relationships between the different variables. The findings revealed that majority of the mother’s perceived efficacy about their child with learning disability was above average as well as majority of the children with learning disability also perceived themselves as having above average level of self-efficacy. Further in the domains of self-regulated learning and emotional self-efficacy majority of the mothers perceived their child as having average or below average efficacy, 50% of the children also perceived their self-efficacy in the two domains at average or below average level. A significant (r=.322, p < .05) weak correlation (Spearman’s rho) was found between mother’s perceived efficacy about their child, and child’s perceived self-efficacy and a significant (r=.377, p < .01) weak correlation (Pearson Correlation) was also found between mother’s perceived efficacy about their child and child’s academic achievement. Significant weak positive correlation was found between child’s perceived self-efficacy and academic achievement (r=.332, p < .05). Based on the findings, the study discussed the need for intervention program for children in non-academic skills like self-regulation and emotional competence.

Keywords: learning disability, perceived self efficacy, academic achievement, mothers, children

Procedia PDF Downloads 321