Search results for: healthcare building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5585

Search results for: healthcare building

2705 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
2704 Islam in Nation Building: Case Studies of Kazakhstan and Kyrgyzstan

Authors: Etibar Guliyev, Durdana Jafarli

Abstract:

The breakdown of the Soviet Union in the early 1990s and the 9/11 attacks resulted in the global changes created a totally new geopolitical situation for the Muslim populated republics of the former Soviet Union. Located between great powers such as China and Russia, as well as theocratic states like Iran and Afghanistan, the newly independent Central Asian states were facing a dilemma to choose a new politico-ideological course for development. Policies dubbed Perestroyka and Glasnost leading to the collapse of the world’s once superpower brought about a considerable rise in the national and religious self-consciousness of the Muslim population of the USSR where the religion was prohibited under the strict communist rule. Moreover, the religious movements prohibited during the Soviet era acted as a part of national straggle to gain their freedom from Moscow. The policies adopted by the Central Asian countries to manage the religious revival and extremism in their countries vary dramatically from each other. As Kazakhstan and Kyrgyzstan are located between Russia and China and hosting a considerable number of the Russian population, these countries treated Islamic revival more tolerantly trying benefit from it in the nation-building process. The importance of the topic could be explained with the fact that it investigates an alternative way of management of religious activities and movements. The recent developments in the Middle East, Syria and Iraq in particular, and the fact that hundreds of fighters from the Central Asian republics joined the ISIL terrorist organization once again highlights the implications of the proper regulation of religious activities not only for domestic, but also for regional and global politics. The paper is based on multiple research methods. The process trace method was exploited to better understand the Russification and anti-religious policies to which the Central Asian countries were subject during the Soviet era. The comparative analyse method was also used to better understand the common and distinct features of the politics of religion of Kazakhstan and Kyrgyzstan and the rest of the Central Asian countries. Various legislation acts, as well as secondary sources were investigated to this end. Mostly constructivist approach and a theory suggesting that religion supports national identity when there is a third cohesion that threatens both and when elements of national identity are weak. Preliminary findings suggest that in line with policies aimed at gradual reduction of Russian influence, as well as in the face of ever-increasing migration from China, the mentioned countries incorporated some Islamic elements into domestic policies as a part and parcel of national culture. Kazakhstan and Kyrgyzstan did not suppress religious activities, which was case in neighboring states, but allowed in a controlled way Islamic movements to have a relatively freedom of action which in turn led to the less violent religious extremism further boosting national identity.

Keywords: identity, Islam, nationalism, terrorism

Procedia PDF Downloads 288
2703 Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy

Authors: Shivankar Agrawal, Indira Sarangthem

Abstract:

Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell.

Keywords: antibacterial activity, antioxidant, fungi, Staphylococcus aureus, MRSA, thermophiles

Procedia PDF Downloads 134
2702 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents

Authors: Prasanna Haddela

Abstract:

Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.

Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm

Procedia PDF Downloads 114
2701 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures

Procedia PDF Downloads 225
2700 Examining the Predictors of Non-Urgent Emergency Department Visits: A Population Based Study

Authors: Maher El-Masri, Jamie Crawley, Judy Bornais, Abeer Omar

Abstract:

Background: Misuse of Emergency Department (ED) for non-urgent healthcare results in unnecessary crowdedness that can result in long ED waits and delays in treatment, diversion of ambulances to other hospitals, poor health outcomes for patients, and increased risk of death Objectives: The main purpose of this study was to explore the independent predictors of non-urgent ED visits in Erie St. Clair LHIN. Secondary purposes of the study include comparison of the rates of non-urgent ED visits between urban and rural hospitals Design: A secondary analysis of archived population-based data on 597,373 ED visits in southwestern Ontario Results The results suggest that older (OR = .992; 95% CI .992 – .993) and female patients (OR = .940; 95% CI .929 - .950) were less likely to visit ED for non-urgent causes. Non-urgent ED visits during the winter, spring, and fall were 13%, 5.8%, and 7.5%, respectively, lesser than they were during the summer time. The data further suggest that non-urgent visits were 19.6% and 21.3% less likely to occur in evening and overnight shifts compared to the day shift. Non-urgent visits were 2.76 times more likely to present to small community hospitals than large community hospitals. Health care providers were 1.92 times more likely to refer patients with non-urgent health problem to the ED than the decision taken by patients, family member or caretakers. Conclusion: In conclusion, our study highlights a number of important factors that are associated with inappropriate use of ED visits for non-urgent health problems. Knowledge of these factors could be used to address the issue of unnecessary ED crowdedness.

Keywords: emergency department, non-urgent visits, predictors, logistic regression

Procedia PDF Downloads 247
2699 The Concerns and Recommendations of Informal and Professional Caregivers for COVID-19 Policy for Homecare and Long-Term Care For People with Dementia: A Qualitative Study

Authors: Hanneke J. A. Smaling, Mandy Visser

Abstract:

One way to reduce the risk of COVID-19 infection is by preventing close interpersonal contact with distancing measures. These social distancing measures presented challenges to the health and wellbeing of people with dementia and their informal and professional caregivers. This study describes the concerns and recommendations of informal and professional caregivers for COVID-19 policy for home care and long-term care for people with dementia during the first and second COVID-19 wave in the Netherlands. In this qualitative interview study, 20 informal caregivers and 20 professional caregivers from home care services and long-term care participated. Interviews were analyzed using an inductive thematic analysis approach. Both informal and professional caregivers worried about getting infected or infecting others with COVID-19, the consequences of the distancing measures, and quality of care. There was a general agreement that policy in the second wave was better informed compared to the first wave. At an organizational level, the policy was remarkably flexible. Recommendations were given for dementia care (need to offer meaningful activities, improve the organization of care, more support for informal caregivers), policy (national vs. locally organization, social isolation measures, visitor policy), and communication. Our study contributes to the foundation of future care decisions by (inter)national policymakers, politicians, and healthcare organizations during the course of the COVID-19 pandemic, underlining the need for balance between safety and autonomy for people with dementia.

Keywords: covid-19, dementia, home care, long-term care, policy

Procedia PDF Downloads 136
2698 Through 7S Model to Promote the Service Innovation Management

Authors: Cheng Fang Hsu

Abstract:

Call center is the core of building customer relationship management system. Under the strong competitive stress, it becomes a new profiting challenge for a successful enterprise. Call center is a department not only to provide customer service but also to bring business profit. This is the qualitative case study in Taiwan bank service industry which goes on deeper exploration, and analysis by business interviews and industrial analysis. This study starts from the establishment, development, and management after the reforming of the case call center. Through SWOT analysis, and industrial analysis, this study adopted 7S model to explain how the call center reforms from service oriented to profit oriented and from cost management to profit management. The results indicated how service innovation management promotes call center to be operated as a market profit competition center. The recommendations are indicated to support the call center on marketing profit by service innovation management.

Keywords: call center, 7S model, service innovation management, bioinformatics

Procedia PDF Downloads 487
2697 Investigation of the Progressive Collapse Potential in Steel Buildings with Composite Floor System

Authors: Pouya Kaafi, Gholamreza Ghodrati Amiri

Abstract:

Abnormal loads due to natural events, implementation errors and some other issues can lead to occurrence of progressive collapse in structures. Most of the past researches consist of 2- Dimensional (2D) models of steel frames without consideration of the floor system effects, which reduces the accuracy of the modeling. While employing a 3-Dimensional (3D) model and modeling the concrete slab system for the floors have a crucial role in the progressive collapse evaluation. In this research, a 3D finite element model of a 5-story steel building is modeled by the ABAQUS software once with modeling the slabs, and the next time without considering them. Then, the progressive collapse potential is evaluated. The results of the analyses indicate that the lack of the consideration of the slabs during the analyses, can lead to inaccuracy in assessing the progressive failure potential of the structure.

Keywords: abnormal loads, composite floor system, intermediate steel moment resisting frame system, progressive collapse

Procedia PDF Downloads 456
2696 Denoising Convolutional Neural Network Assisted Electrocardiogram Signal Watermarking for Secure Transmission in E-Healthcare Applications

Authors: Jyoti Rani, Ashima Anand, Shivendra Shivani

Abstract:

In recent years, physiological signals obtained in telemedicine have been stored independently from patient information. In addition, people have increasingly turned to mobile devices for information on health-related topics. Major authentication and security issues may arise from this storing, degrading the reliability of diagnostics. This study introduces an approach to reversible watermarking, which ensures security by utilizing the electrocardiogram (ECG) signal as a carrier for embedding patient information. In the proposed work, Pan-Tompkins++ is employed to convert the 1D ECG signal into a 2D signal. The frequency subbands of a signal are extracted using RDWT(Redundant discrete wavelet transform), and then one of the subbands is subjected to MSVD (Multiresolution singular valued decomposition for masking. Finally, the encrypted watermark is embedded within the signal. The experimental results show that the watermarked signal obtained is indistinguishable from the original signals, ensuring the preservation of all diagnostic information. In addition, the DnCNN (Denoising convolutional neural network) concept is used to denoise the retrieved watermark for improved accuracy. The proposed ECG signal-based watermarking method is supported by experimental results and evaluations of its effectiveness. The results of the robustness tests demonstrate that the watermark is susceptible to the most prevalent watermarking attacks.

Keywords: ECG, VMD, watermarking, PanTompkins++, RDWT, DnCNN, MSVD, chaotic encryption, attacks

Procedia PDF Downloads 101
2695 The OverStitch and OverStitch SX Endoscopic Suturing System in Bariatric Surgery, Closing Perforations and Fistulas and Revision Procedures

Authors: Mohammad Tayefeh Norooz, Amirhossein Kargarzadeh

Abstract:

Overweight and obesity as an abnormality are health threatening factors. Body mass index (BMI) above 25 is referred to as overweight and above 30 as obese. Apollo Endosurgery, Inc., a pioneering company in endoscopy surgeries, is poised to revolutionize patient care with its minimally invasive treatment options. Some product solutions are designed to improve patient outcomes and redefine the future of healthcare. Weight gain post-weight-loss surgery may stem from an enlarged stomach opening, reducing fullness and increasing food intake. Apollo Endosurgery's OverStitch system, a minimally invasive approach, addresses this by using sutures to reduce stomach opening size. This reflects Apollo's commitment to transformative improvements in healing endoscopy, emphasizing a shift towards minimally invasive options. The system's versatility and precision in full-thickness suturing offer treatment alternatives, exemplified in applications like Endoscopic Sleeve Gastroplasty for reshaping obesity management. Apollo’s dedication to pioneering advancements suggests ongoing breakthroughs in minimally invasive surgery, positioning the OverStitch systems as a testament to innovation in patient care.

Keywords: apollo endosurgery, endoscopic sleeve gastroplasty, weight loss system, overstitch endoscopic suturing system, therapeutic, perforations, fistula

Procedia PDF Downloads 63
2694 Expanding the Evaluation Criteria for a Wind Turbine Performance

Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin

Abstract:

The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.

Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses

Procedia PDF Downloads 390
2693 Hand Hygiene Habits of Ghanaian Youths in Accra

Authors: Cecilia Amponsem-Boateng, Timothy B. Oppong, Haiyan Yang, Guangcai Duan

Abstract:

The human palm has been identified as one of the richest habitats for human microbial accommodation making hand hygiene essential to primary prevention of infection. Since the hand is in constant contact with fomites which have been proven to be mostly contaminated, building hand hygiene habits is essential for the prevention of infection. This research was conducted to assess the hand hygiene habits of Ghanaian youths in Accra. This study used a survey as a quantitative method of research. The findings of the study revealed that out of the 254 participants who fully answered the questionnaire, 22% had the habit of washing their hands after outings while only 51.6% had the habit of washing their hands after using the bathroom. However, about 60% of the participants said they sometimes ate with their hands while 28.9% had the habit of eating with the hand very often, a situation that put them at risk of infection from their hands since some participants had poor handwashing habits; prompting the need for continuous education on hand hygiene.

Keywords: hand hygiene, hand hygiene habit, hand washing, hand sanitizer use

Procedia PDF Downloads 108
2692 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 158
2691 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 322
2690 Advancements in Truss Design for High-Performance Facades and Roof System: A Structural Analysis

Authors: Milind Anurag

Abstract:

This study investigates cutting-edge truss design improvements, which are specifically adapted to satisfy the structural demands and difficulties associated with high-performance facades and roofs in modern architectural environments. With a growing emphasis on sustainability, energy efficiency, and eye-catching architectural aesthetics, the structural components that support these characteristics play an important part in attaining the right balance of form and function. The paper seeks to contribute to the evolution of truss design methods by combining data from these investigations, giving significant insights for architects, engineers, and researchers interested in the creation of high-performance building envelopes. The findings of this study are meant to inform future design standards and practices, promoting the development of structures that seamlessly integrate architectural innovation with structural robustness and environmental responsibility.

Keywords: truss design, high-performance, facades, finite element analysis, structural efficiency

Procedia PDF Downloads 55
2689 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 47
2688 Evaluation of Clinical Decision Support System in Electronic Medical Record System: A Case of Malawi National Art Electronic Medical Record System

Authors: Pachawo Bisani, Goodall Nyirenda

Abstract:

The Malawi National Antiretroviral Therapy (NART) Electronic Medical Record (EMR) system was designed and developed with guidance from the Ministry of Health through the Department of HIV and AIDS (DHA) with the aim of supporting the management of HIV patient data and reporting in high prevalence ART clinics. As of 2021, the system has been scaled up to over 206 facilities across the country. The system is integrated with the clinical decision support system (CDSS) to assist healthcare providers in making a decision about an individual patient at a particular point in time. Despite NART EMR undergoing several evaluations and assessments, little has been done to evaluate the clinical decision support system in the NART EMR system. Hence, the study aimed to evaluate the use of CDSS in the NART EMR system in Malawi. The study adopted a mixed-method approach, and data was collected through interviews, observations, and questionnaires. The study has revealed that the CDSS tools were integrated into the ART clinic workflow, making it easy for the user to use it. The study has also revealed challenges in system reliability and information accuracy. Despite the challenges, the study further revealed that the system is effective and efficient, and overall, users are satisfied with the system. The study recommends that the implementers focus more on the logic behind the clinical decision-support intervention in order to address some of the concerns and enhance the accuracy of the information supplied. The study further suggests consulting the system's actual users throughout implementation.

Keywords: clinical decision support system, electronic medical record system, usability, antiretroviral therapy

Procedia PDF Downloads 99
2687 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: cutting condition, surface roughness, decision tree, CART algorithm

Procedia PDF Downloads 375
2686 Insight on Passive Design for Energy Efficiency in Commercial Building for Hot and Humid Climate

Authors: Aravind J.

Abstract:

Passive design can be referred to a way of designing buildings that takes advantage of the prevailing climate and natural energy resources. Which will be a key to reduce the increasing energy usage in commercial buildings. Most of the small scale commercial buildings made are merely a thermal mass inbuilt with active systems to bring lively conditions. By bringing the passive design strategies for energy efficiency in commercial buildings will reduce the usage of active systems. Thus the energy usage can be controlled through analysis of daylighting and improved living conditions in the indoor spaces by using passive techniques. And comparative study on different passive design systems and conventional methods will be approached for commercial buildings in hot and humid region. Possible effects of existing risks implied with solution for those problems is also a part of the paper. The result will be carried on with the design programme to prove the workability of the strategies.

Keywords: passive design, energy efficiency, commercial buildings, hot and humid climate

Procedia PDF Downloads 368
2685 Spectrofluorometric Studies on the Interactions of Bovine Serum Albumin with Dimeric Cationic Surfactants

Authors: Srishti Sinha, Deepti Tikariha, Kallol K. Ghosh

Abstract:

Over the past few decades protein-surfactant interactions have been a subject of extensive studies as they are of great importance in wide variety of industries, biological, pharmaceutical and cosmetic systems. Protein-surfactant interactions have been explored the effect of surfactants on structure of protein in the form of solubilization and denaturing or renaturing of protein. Globular proteins are frequently used as functional ingredients in healthcare and pharmaceutical products, due to their ability to catalyze biochemical reactions, to be adsorbed on the surface of some substance and to bind other moieties and form molecular aggregates. One of the most widely used globular protein is bovine serum albumin (BSA), since it has a well-known primary structure and been associated with the binding of many different categories of molecules, such as dyes, drugs and toxic chemicals. Protein−surfactant interactions are usually dependent on the surfactant features. Most of the research has been focused on single-chain surfactants. More recently, the binding between proteins and dimeric surfactants has been discussed. In present study interactions of one dimeric surfactant Butanediyl-1,4-bis (dimethylhexadecylammonium bromide) (16-4-16, 2Br-) and the corresponding single-chain surfactant cetyl trimethylammonium bromide (CTAB) with bovine serum albumin (BSA) have been investigated by surface tension and spectrofluoremetric methods. It has been found that the bindings of all gemini surfactant to BSA were cooperatively driven by electrostatic and hydrophobic interactions. The gemini surfactant carrying more charges and hydrophobic tails, showed stronger interactions with BSA than the single-chain surfactant.

Keywords: bovine serum albumin, gemini surfactants, hydrophobic interactions, protein surfactant interaction

Procedia PDF Downloads 509
2684 Manufacturing Commercial Bricks with Construction and Demolition Wastes

Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal

Abstract:

This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.

Keywords: commercial brick, construction and demolition waste, manufacturing, recycling

Procedia PDF Downloads 357
2683 Determination of Weathering at Kilistra Ancient City by Using Non-Destructive Techniques, Central Anatolia, Turkey

Authors: İsmail İnce, Osman Günaydin, Fatma Özer

Abstract:

Stones used in the construction of historical structures are exposed to various direct or indirect atmospheric effects depending on climatic conditions. Building stones deteriorate partially or fully as a result of this exposure. The historic structures are important symbols of any cultural heritage. Therefore, it is important to protect and restore these historical structures. The aim of this study is to determine the weathering conditions at the Kilistra ancient city. It is located in the southwest of the Konya city, Central Anatolia, and was built by carving into pyroclastic rocks during the Byzantine Era. For this purpose, the petrographic and mechanical properties of the pyroclastic rocks were determined. In the assessment of weathering of structures in the ancient city, in-situ non-destructive testing (i.e., Schmidt hardness rebound value, relative humidity measurement) methods were applied.

Keywords: cultural heritage, Kilistra ancient city, non-destructive techniques, weathering

Procedia PDF Downloads 360
2682 Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

Keywords: CO₂, energy intensity map, geographic information system (GIS), Hungary, Jewish quarter, rehabilitation

Procedia PDF Downloads 296
2681 Improving Physical, Social, and Mental Health Outcomes for People Living with an Intellectual Disability through Cycling

Authors: Sarah Faulkner, Patrick Faulkner, Caroline Ellison

Abstract:

Improved mental and physical health, community connection, and increased life satisfaction has been strongly associated with bike riding for those with and without a disability. However, much evidence suggests that people living with a disability face increased barriers to engaging in cycling compared to members of the general population. People with an intellectual disability often live more sedentary and socially isolated lives that negatively impact their mental and physical health, as well as life satisfaction. This paper is based on preliminary findings from a three-year intervention cycling project funded by the South Australian Government. The cycling project was developed in partnership with community stakeholders that provided weekly instruction, training, and support to individuals living with intellectual disabilities to increase their capacity in cycling. This project aimed to support people living with intellectual disabilities to foster and facilitate improved physical and mental health, confidence, and independence and enhance social networking through their engagement in community cycling. The program applied principles of social role valorisation (SRV) theory as its guiding framework. Preliminary data collected is based on qualitative interviews with over 50 program participants, results from two participant wellness questionnaires, as well as a perceptually regulated exercise test administered throughout the project implementation. Preliminary findings are further supplemented with ethnographic analyses by the researchers who took a phenology of life experience approach. Preliminary findings of the program suggest a variety of social motivations behind participants' desire to learn cycling that acknowledges previous barriers to engagement and cycling’s role to address feelings of loneliness and social isolation. Meaningful health benefits can be achieved as demonstrated by increases in predicted V02 max measures, suggesting that physical intervention can not only improve physical health outcomes but also provide a variety of other social benefits. Initial engagement in the project has demonstrated an increase in participants' sense of confidence, well-being, and physical fitness. Implementation of the project in partnership with a variety of community stakeholders has identified a number of critical factors and processes necessary for future service replication, sustainability, and success. Findings from this intervention study contribute to the development of a knowledge base on how best to support individuals living with an intellectual disability to partake in bike riding and increase positive outcomes associated with their capacity building, social interaction, increased physical activity, physical health, and mental well-being. The initial findings of this study provide critical academic insights into the social and physical benefits of cycling for people living with a disability, as well as practical advice for future human service applications.

Keywords: cycling, disability, social inclusion, capacity building

Procedia PDF Downloads 66
2680 Investigation on Morphologies, Forming Mechanism, Photocatalytic and Electronic Properties of Co-Zn Ferrite Nanostructure Grown on the Reduced Graphene Oxide Support

Authors: Qinglei Liu, Ali Charkhesht, Tiva Sharifi, Ashkan Bahadoran

Abstract:

Graphene sheets are promising nanoscale building blocks as a support material for the dispersion of nanoparticles. In this work, a solvothermal method employed to directly grow Co1-xZnxFe2O4 ferrite nanospheres on graphene oxide support that is subsequently reduced to graphene. The samples morphology, structure and crystallography were investigated using field-emission scanning electron microscopy (FE-SEM) and powder X-ray diffraction (XRD). The influences of the Zn2+ content on photocatalytic activity, electrical conductivity and magnetic property of the samples are also investigated. The results showed that Co1-x Znx Fe2 O4 nanoparticles are dispersed on graphene sheets and obtained nanocomposites are soft magnetic materials. In addition the samples showed excellent photocatalytic activity under visible light irradiation.

Keywords: reduced graphene oxide, ferrite, magnetic nanocomposite, photocatalytic activity, solvothermal method

Procedia PDF Downloads 249
2679 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks

Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li

Abstract:

Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.

Keywords: bidirectional encoder representations from transformers, BERT, chatbot, cryptocurrency, deep learning

Procedia PDF Downloads 147
2678 A Clear Language Is Essential: A Qualitative Exploration of Doctor-Patient Health Interaction in Jordan

Authors: Etaf Khlaed Haroun Alkhlaifat

Abstract:

When doctors and patients do not share the same first language, language barriers may exist, which may have negative effects on the quality of communication and care provided. Doctors’ use of medical jargon and patients’ inability to fully express their illness, to a potential loss of relevant information can often create misunderstanding. This study sought to examine the extent to which a lack of “common” language represents one of the linguistic obstacles that may adversely influence the quality of healthcare services in Jordan. Communication Accommodation Theory (CAT) was used to interpret the phenomena under study. Doctors (n=9) and patients (n=18) were observed and interviewed in natural Jordanian medical settings. A thematic qualitative approach was employed to analyse the data. The preliminary findings of the study revealed that most doctors appeared to have a good sense of appropriate ways to break through communication barriers by changing medical terminologies or jargons into lay terms. However, for some, there were two main challenges: 1) the use of medical jargon in explaining medication and side effects and 2) the lack of patients’ knowledge in providing a full explanation about their illnesses. The study revealed that language barriers adversely affect health outcomes for patients with limited fluency in the English language. It argues that it is doctors’ responsibility to guarantee mutual understanding, educate patients on their condition and improve their health outcomes.

Keywords: communication accommodation theory, doctor-patient interaction, language barrier, medical jargon, misunderstanding

Procedia PDF Downloads 84
2677 Gamification to Enhance Learning Using Gagne's Learning Model

Authors: M. L. McLain, R. Sreelakshmi, Abhishek, Rajeshwaran, Bhavani Rao, Kamal Bijlani, R. Jayakrishnan

Abstract:

Technology enhanced learning has brought drastic changes in the field of education in the modern world. In this study we explore a novel way to improve how high school students learn by building a serious game that uses a pedagogical model developed by Robert Gagne. By integrating serious game with principles of Gagne’s learning model can provide engaging and meaningful instructions to students. The game developed in this study is a waste sorting game that can easily and succinctly demonstrate the principles of this learning model. All the tasks in the game that the player has to accomplish correspond to Gagne’s “Nine Events of Learning”. A quiz is incorporated in order to get data on the progress made by the player in understanding the concept and as well as to assess them. Additionally, an experimental study was conducted which demonstrates that game based learning using Gagne’s event is more effective than a traditional classroom setup.

Keywords: game based learning, sorting and recycling of waste, Gagne’s learning model, e-Learning, technology enhanced learning

Procedia PDF Downloads 631
2676 Eco-Infrastructures: A Multidimensional System Approach for Urban Ecology

Authors: T. A. Mona M. Salem, Ali F. Bakr

Abstract:

Given the potential devastation associated with future climate change related disasters, it is vital to change the way we build and manage our cities, through new strategies to reconfigure them and their infrastructures in ways that help secure their reproduction. This leads to a kaleidoscopic view of the city that recognizes the interrelationships of energy, water, transportation, and solid waste. These interrelationships apply across sectors and with respect to the built form of the city. The paper aims at a long-term climate resilience of cities and their critical infrastructures, and sets out an argument for including an eco-infrastructure-based approach in strategies to address climate change. As these ecosystems have a critical role to play in building resilience and reducing vulnerabilities in cities, communities and economies at risk, the enhanced protection and management of ecosystems, biological resources and habitats can mitigate impacts and contribute to solutions as nations and cities strive to adapt to climate change.

Keywords: ecology, ecosystem, infrastructure, climate change, urban

Procedia PDF Downloads 308