Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3974

Search results for: regression determination

3974 Behind Fuzzy Regression Approach: An Exploration Study

Authors: Lavinia B. Dulla


The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.

Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval

Procedia PDF Downloads 123
3973 A Study on Reliability of Gender and Stature Determination by Odontometric and Craniofacial Anthropometric Parameters

Authors: Churamani Pokhrel, C. B. Jha, S. R. Niraula, P. R. Pokharel


Human identification is one of the most challenging subjects that man has confronted. The determination of adult sex and stature are two of the four key factors (sex, stature, age, and race) in identification of an individual. Craniofacial and odontometric parameters are important tools for forensic anthropologists when it is not possible to apply advanced techniques for identification purposes. The present study provides anthropometric correlation of the parameters with stature and gender and also devises regression formulae for reconstruction of stature. A total of 312 Nepalese students with equal distribution of sex i.e., 156 male and 156 female students of age 18-35 years were taken for the study. Total of 10 parameters were measured (age, sex, stature, head circumference, head length, head breadth, facial height, bi-zygomatic width, mesio-distal canine width and inter-canine distance of both maxilla and mandible). Co-relation and regression analysis was done to find the association between the parameters. All parameters were found to be greater in males than females and each was found to be statistically significant. Out of total 312 samples, the best regressor for the determination of stature was head circumference and mandibular inter-canine width and that for gender was head circumference and right mandibular teeth. The accuracy of prediction was 83%. Regression equations and analysis generated from craniofacial and odontometric parameters can be a supplementary approach for the estimation of stature and gender when extremities are not available.

Keywords: craniofacial, gender, odontometric, stature

Procedia PDF Downloads 107
3972 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method

Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary


Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.

Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method

Procedia PDF Downloads 347
3971 Regret-Regression for Multi-Armed Bandit Problem

Authors: Deyadeen Ali Alshibani


In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.

Keywords: optimal, bandit problem, optimization, dynamic programming

Procedia PDF Downloads 358
3970 Nonparametric Truncated Spline Regression Model on the Data of Human Development Index in Indonesia

Authors: Kornelius Ronald Demu, Dewi Retno Sari Saputro, Purnami Widyaningsih


Human Development Index (HDI) is a standard measurement for a country's human development. Several factors may have influenced it, such as life expectancy, gross domestic product (GDP) based on the province's annual expenditure, the number of poor people, and the percentage of an illiterate people. The scatter plot between HDI and the influenced factors show that the plot does not follow a specific pattern or form. Therefore, the HDI's data in Indonesia can be applied with a nonparametric regression model. The estimation of the regression curve in the nonparametric regression model is flexible because it follows the shape of the data pattern. One of the nonparametric regression's method is a truncated spline. Truncated spline regression is one of the nonparametric approach, which is a modification of the segmented polynomial functions. The estimator of a truncated spline regression model was affected by the selection of the optimal knots point. Knot points is a focus point of spline truncated functions. The optimal knots point was determined by the minimum value of generalized cross validation (GCV). In this article were applied the data of Human Development Index with a truncated spline nonparametric regression model. The results of this research were obtained the best-truncated spline regression model to the HDI's data in Indonesia with the combination of optimal knots point 5-5-5-4. Life expectancy and the percentage of an illiterate people were the significant factors depend to the HDI in Indonesia. The coefficient of determination is 94.54%. This means the regression model is good enough to applied on the data of HDI in Indonesia.

Keywords: generalized cross validation (GCV), Human Development Index (HDI), knots point, nonparametric regression, truncated spline

Procedia PDF Downloads 205
3969 Optimization of Machine Learning Regression Results: An Application on Health Expenditures

Authors: Songul Cinaroglu


Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.

Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure

Procedia PDF Downloads 96
3968 A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model

Authors: Autcha Araveeporn


This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method.

Keywords: nonparametric regression model, penalized spline regression method, smoothing spline method, Stock Exchange of Thailand (SET)

Procedia PDF Downloads 300
3967 Age Estimation from Upper Anterior Teeth by Pulp/Tooth Ratio Using Peri-Apical X-Rays among Egyptians

Authors: Fatma Mohamed Magdy Badr El Dine, Amr Mohamed Abd Allah


Introduction: Age estimation of individuals is one of the crucial steps in forensic practice. Different traditional methods rely on the length of the diaphysis of long bones of limbs, epiphyseal-diaphyseal union, fusion of the primary ossification centers as well as dental eruption. However, there is a growing need for the development of precise and reliable methods to estimate age, especially in cases where dismembered corpses, burnt bodies, purified or fragmented parts are recovered. Teeth are the hardest and indestructible structure in the human body. In recent years, assessment of pulp/tooth area ratio, as an indirect quantification of secondary dentine deposition has received a considerable attention. However, scanty work has been done in Egypt in terms of applicability of pulp/tooth ratio for age estimation. Aim of the Work: The present work was designed to assess the Cameriere’s method for age estimation from pulp/tooth ratio of maxillary canines, central and lateral incisors among a sample from Egyptian population. In addition, to formulate regression equations to be used as population-based standards for age determination. Material and Methods: The present study was conducted on 270 peri-apical X-rays of maxillary canines, central and lateral incisors (collected from 131 males and 139 females aged between 19 and 52 years). The pulp and tooth areas were measured using the Adobe Photoshop software program and the pulp/tooth area ratio was computed. Linear regression equations were determined separately for canines, central and lateral incisors. Results: A significant correlation was recorded between the pulp/tooth area ratio and the chronological age. The linear regression analysis revealed a coefficient of determination (R² = 0.824 for canine, 0.588 for central incisor and 0.737 for lateral incisor teeth). Three regression equations were derived. Conclusion: As a conclusion, the pulp/tooth ratio is a useful technique for estimating age among Egyptians. Additionally, the regression equation derived from canines gave better result than the incisors.

Keywords: age determination, canines, central incisors, Egypt, lateral incisors, pulp/tooth ratio

Procedia PDF Downloads 107
3966 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro


This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 325
3965 Rd-PLS Regression: From the Analysis of Two Blocks of Variables to Path Modeling

Authors: E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glele Kakai, E. M. Qannari


A new definition of a latent variable associated with a dataset makes it possible to propose variants of the PLS2 regression and the multi-block PLS (MB-PLS). We shall refer to these variants as Rd-PLS regression and Rd-MB-PLS respectively because they are inspired by both Redundancy analysis and PLS regression. Usually, a latent variable t associated with a dataset Z is defined as a linear combination of the variables of Z with the constraint that the length of the loading weights vector equals 1. Formally, t=Zw with ‖w‖=1. Denoting by Z' the transpose of Z, we define herein, a latent variable by t=ZZ’q with the constraint that the auxiliary variable q has a norm equal to 1. This new definition of a latent variable entails that, as previously, t is a linear combination of the variables in Z and, in addition, the loading vector w=Z’q is constrained to be a linear combination of the rows of Z. More importantly, t could be interpreted as a kind of projection of the auxiliary variable q onto the space generated by the variables in Z, since it is collinear to the first PLS1 component of q onto Z. Consider the situation in which we aim to predict a dataset Y from another dataset X. These two datasets relate to the same individuals and are assumed to be centered. Let us consider a latent variable u=YY’q to which we associate the variable t= XX’YY’q. Rd-PLS consists in seeking q (and therefore u and t) so that the covariance between t and u is maximum. The solution to this problem is straightforward and consists in setting q to the eigenvector of YY’XX’YY’ associated with the largest eigenvalue. For the determination of higher order components, we deflate X and Y with respect to the latent variable t. Extending Rd-PLS to the context of multi-block data is relatively easy. Starting from a latent variable u=YY’q, we consider its ‘projection’ on the space generated by the variables of each block Xk (k=1, ..., K) namely, tk= XkXk'YY’q. Thereafter, Rd-MB-PLS seeks q in order to maximize the average of the covariances of u with tk (k=1, ..., K). The solution to this problem is given by q, eigenvector of YY’XX’YY’, where X is the dataset obtained by horizontally merging datasets Xk (k=1, ..., K). For the determination of latent variables of order higher than 1, we use a deflation of Y and Xk with respect to the variable t= XX’YY’q. In the same vein, extending Rd-MB-PLS to the path modeling setting is straightforward. Methods are illustrated on the basis of case studies and performance of Rd-PLS and Rd-MB-PLS in terms of prediction is compared to that of PLS2 and MB-PLS.

Keywords: multiblock data analysis, partial least squares regression, path modeling, redundancy analysis

Procedia PDF Downloads 44
3964 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

Authors: S. Deswal, M. Pal


The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.

Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences

Procedia PDF Downloads 367
3963 Use of Regression Analysis in Determining the Length of Plastic Hinge in Reinforced Concrete Columns

Authors: Mehmet Alpaslan Köroğlu, Musa Hakan Arslan, Muslu Kazım Körez


Basic objective of this study is to create a regression analysis method that can estimate the length of a plastic hinge which is an important design parameter, by making use of the outcomes of (lateral load-lateral displacement hysteretic curves) the experimental studies conducted for the reinforced square concrete columns. For this aim, 170 different square reinforced concrete column tests results have been collected from the existing literature. The parameters which are thought affecting the plastic hinge length such as cross-section properties, features of material used, axial loading level, confinement of the column, longitudinal reinforcement bars in the columns etc. have been obtained from these 170 different square reinforced concrete column tests. In the study, when determining the length of plastic hinge, using the experimental test results, a regression analysis have been separately tested and compared with each other. In addition, the outcome of mentioned methods on determination of plastic hinge length of the reinforced concrete columns has been compared to other methods available in the literature.

Keywords: columns, plastic hinge length, regression analysis, reinforced concrete

Procedia PDF Downloads 374
3962 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models

Authors: Anastasiia Yu. Timofeeva


Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression

Procedia PDF Downloads 317
3961 QSRR Analysis of 17-Picolyl and 17-Picolinylidene Androstane Derivatives Based on Partial Least Squares and Principal Component Regression

Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković


There are several methods for determination of the lipophilicity of biologically active compounds, however chromatography has been shown as a very suitable method for this purpose. Chromatographic (C18-RP-HPLC) analysis of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives was carried out. The obtained retention indices (logk, methanol (90%) / water (10%)) were correlated with calculated physicochemical and lipophilicity descriptors. The QSRR analysis was carried out applying principal component regression (PCR) and partial least squares regression (PLS). The PCR and PLS model were selected on the basis of the highest variance and the lowest root mean square error of cross-validation. The obtained PCR and PLS model successfully correlate the calculated molecular descriptors with logk parameter indicating the significance of the lipophilicity of compounds in chromatographic process. On the basis of the obtained results it can be concluded that the obtained logk parameters of the analyzed androstane derivatives can be considered as their chromatographic lipophilicity. These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1105.

Keywords: androstane derivatives, chromatography, molecular structure, principal component regression, partial least squares regression

Procedia PDF Downloads 175
3960 Taiwanese Families' Perspectives: Promoting Foundations of Self-Determination Skills for Young Children with Special Needs

Authors: Szu-Yin Chu


Self-determination has been particularly influential in obtaining a better quality of life through successful transition processes for students with disabilities. The development of self-determination through learning has raised attention at an early age. This study used a survey questionnaire to construct the understanding of the self-determination in Taiwan, learn the perspectives about the environmental and situational contexts where the respondents expect children to display self-determination skills in different cultures. Specifically, the research questions are: (a) What are Taiwanese families’ general perspectives about the development of foundations of self-determination for young children with special needs? and (b) how does families’ demographic background (i.e., income level, educational background) and child characteristics (i.e., age, emotional or behavior problems) impact Taiwanese families’ perspectives on the foundations of self-determination across three critical components (i.e., choice-making and problem-solving, self-regulation, and engagement) for young children with special needs? Data from 125 participants were gathered and analyzed. The findings suggested that Taiwanese families showed very positive attitudes toward promoting a foundation of self-determination for young children with special needs. Families’ income level and child’s severity of emotional/behavioral problems were two variables that were found to impact families’ views on their child’s foundational self-determination skills. Implications for future research and practice in supporting families to promote foundations of self-determination for young children with special needs will be provided.

Keywords: disabilities, self-determination, Taiwan, young children

Procedia PDF Downloads 219
3959 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang


The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 407
3958 Translation, Cultural Adaptation and Validation of the Hungarian Version of Self- Determination Scale

Authors: E. E. Marschalko, K. Kalcza-Janosi, I. Kotta, B. Bibok


Cultural moderation aspects have been highlighted in the literature on self-determination behavior in some cultures, including in the Hungarian population. There is a lack of validated instruments in Hungarian for the assessment of self-determination related behaviors. In order to fill in this gap, the aim of this study was the translation, cultural adaptation and validation of Self Determination Scale (Sheldon, 1995) for the Hungarian population. A total of 4335 adults participated in the study. The mean age of the participants was 27.97 (SD=9.60). The sample consisted mostly from females, less than 20% were males. Exploratory and confirmatory factor analyses were performed for adequacy checking. Cronbach’s alpha was used to examine the reliability of the factors. Our results revealed that the Hungarian version of SDS has good psychometric properties and it is a reliable tool for psychologist who would like to study or assess self-determination in their clients. The final, adapted and validated SDS items are presented in this paper.

Keywords: self-determination scale, Hungarian, adaptation, validation, reliability

Procedia PDF Downloads 141
3957 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling

Authors: Kisan Sarda, Bhavika Shingote


This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.

Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation

Procedia PDF Downloads 267
3956 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm

Authors: Suparman


Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.

Keywords: regression, piecewise, Bayesian, reversible Jump MCMC

Procedia PDF Downloads 415
3955 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka


The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 292
3954 Age Estimation and Sex Determination by CT-Scan Analysis of the Hyoid Bone: Application on a Tunisian Population

Authors: N. Haj Salem, M. Belhadj, S. Ben Jomâa, R. Dhouieb, S. Saadi, M. A. Mesrati, A. Chadly


Introduction: The hyoid bone is considered as one of many bones used to identify a missed person. There is a specificity of each population group in human identifications. Objective: To analyze the relationship between age, sex and metric parameters of hyoid bone in Tunisian population sample, using CT-scan. Materials and Methods: A prospective study was conducted in the Department of Forensic Medicine of FattoumaBourguiba Hospital of Monastir-Tunisia during 4 years. A total of 240 samples of hyoid bone were studied. The age of cases ranged from 18 days to 81 years. The specimens were collected only from the deceased of known age. Once dried, each hyoid bone was scanned using CT scan. For each specimen, 10 measurements were taken using a computer program. The measurements consisted of 6 lengths and 4 widths. A regression analysis was used to estimate the relationship between age, sex, and different measurements. For age estimation, a multiple logistic regression was carried out for samples ≤ 35 years. For sex determination, ROC curve was performed. Discriminant value finally retained was based on the best specificity with the best sensitivity. Results: The correlation between real age and estimated age was good (r²=0.72) for samples aged 35 years or less. The unstandardised canonical function equation was estimated using three variables: maximum length of the right greater cornua, length from the middle of the left joint space to the middle of the right joint space and perpendicular length from the centre point of a line between the distal ends of the right and left greater cornua to the centre point of the anterior view of the body of the hyoid bone. For sex determination, the ROC curve analysis reveals that the area under curve was at 81.8%. Discriminant value was 0.451 with a specificity of 73% and sensibility of 79%. The equation function was estimated based on two variables: maximum length of the greater cornua and maximum length of the hyoid bone. Conclusion: The findings of the current study suggest that metric analysis of the hyoid bone may predict the age ≤ 35 years. Sex estimation seems to be more reliable. Further studies dealing with the fusion of the hyoid bone and the current study could help to achieve more accurate age estimation rates.

Keywords: anthropology, age estimation, CT scan, sex determination, Tunisia

Procedia PDF Downloads 91
3953 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome


This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: stock market prediction, social moods, regression model, DJIA

Procedia PDF Downloads 434
3952 Principal Component Regression in Amylose Content on the Malaysian Market Rice Grains Using Near Infrared Reflectance Spectroscopy

Authors: Syahira Ibrahim, Herlina Abdul Rahim


The amylose content is an essential element in determining the texture and taste of rice grains. This paper evaluates the use of VIS-SWNIRS in estimating the amylose content for seven varieties of rice grains available in the Malaysian market. Each type consists of 30 samples and all the samples are scanned using the spectroscopy to obtain a range of values between 680-1000nm. The Savitzky-Golay (SG) smoothing filter is applied to each sample’s data before the Principal Component Regression (PCR) technique is used to examine the data and produce a single value for each sample. This value is then compared with reference values obtained from the standard iodine colorimetric test in terms of its coefficient of determination, R2. Results show that this technique produced low R2 values of less than 0.50. In order to improve the result, the range should include a wavelength range of 1100-2500nm and the number of samples processed should also be increased.

Keywords: amylose content, diffuse reflectance, Malaysia rice grain, principal component regression (PCR), Visible and Shortwave near-infrared spectroscopy (VIS-SWNIRS)

Procedia PDF Downloads 311
3951 Model-Based Software Regression Test Suite Reduction

Authors: Shiwei Deng, Yang Bao


In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.

Keywords: dependence analysis, EFSM model, greedy algorithm, regression test

Procedia PDF Downloads 337
3950 About Some Results of the Determination of Alcohol in Moroccan Gasoline-Alcohol Mixtures

Authors: Mahacine Amrani


A simple and rapid method for the determination of alcohol in gasoline-alcohol mixtures using density measurements is described. The method can determine a minimum of 1% of alcohol by volume. The precision of the method is ± 3%.The method is more useful for field test in the quality assessment of alcohol blended fuels.

Keywords: gasoline-alcohol, mixture, alcohol determination, density, measurement, Morocco

Procedia PDF Downloads 194
3949 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman


Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

Keywords: piecewise regression, bayesian, reversible jump MCMC, segmentation

Procedia PDF Downloads 290
3948 A Fuzzy Linear Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You


Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.

Keywords: dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming

Procedia PDF Downloads 338
3947 Orbit Determination Modeling with Graphical Demonstration

Authors: Assem M. F. Sallam, Ah. El-S. Makled


In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.

Keywords: orbit determination, STK, Matlab-GUI, satellite tracking

Procedia PDF Downloads 195
3946 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný


One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default

Procedia PDF Downloads 369
3945 The Theory behind Logistic Regression

Authors: Jan Henrik Wosnitza


The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application.

Keywords: correlation, credit risk estimation, default correlation, homoscedasticity, logistic regression, nonlinear logistic regression

Procedia PDF Downloads 321