Search results for: energy diagnosis
7547 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System
Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold
Abstract:
In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber
Procedia PDF Downloads 1507546 Bowen Ratio in Western São Paulo State, Brazil
Authors: Elaine Cristina Barboza, Antonio Jaschke Machado
Abstract:
This paper discusses micrometeorological aspects of the urban climate in three cities in Western São Paulo State: Presidente Prudente, Assis, and Iepê. Particular attention is paid to the method used to estimate the components of the energy balance at the surface. Estimates of convective fluxes showed that the Bowen ratio was an indicator of the local climate and that its magnitude varied between 0.3 and 0.7. Maximum values for the Bowen ratio occurred earlier in Iepê (11:00 am) than in Presidente Prudente (4:00 pm). The results indicate that the Bowen ratio is modulated by the radiation balance at the surface and by different clusters of vegetation.Keywords: Bowen ratio, medium-sized cities, surface energy balance, urban climate
Procedia PDF Downloads 6077545 Modelisation of a Full-Scale Closed Cement Grinding
Abstract:
An industrial model of cement grinding circuit is proposed on the basis of sampling surveys undertaken in the Meftah cement plant in Algiers, Algeria. The ball mill is described by a series of equal fully mixed stages that incorporates the effect of air sweeping. The kinetic parameters of this material in the energy normalized form obtained using the data of batch dry ball milling are taken into account in developing the present scale-up procedure. The dynamic separator is represented by the air classifier selectivity equation corrected by empirical factors. The model is incorporated in computer program that predict full size distributions and mass flow rates for all streams in a circuit under a particular set of operating conditions.Keywords: grinding circuit, clinker, cement, modeling, population balance, energy
Procedia PDF Downloads 5297544 Riesz Mixture Model for Brain Tumor Detection
Authors: Mouna Zitouni, Mariem Tounsi
Abstract:
This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution
Procedia PDF Downloads 277543 Evaluation of the Sustainability of Greek Vernacular Architecture in Different Climate Zones: Architectural Typology and Building Physics
Authors: Christina Kalogirou
Abstract:
Investigating the integration of bioclimatic design into vernacular architecture could lead to interesting results regarding the preservation of cultural heritage while enhancing the energy efficiency of historic buildings. Furthermore, these recognized principles and systems of bioclimatic design in vernacular settlements could be applied to modern architecture and thus to new buildings in such areas. This study introduces an approach to categorizing distinct technologies and design principles of bioclimatic design based on a thoughtful approach to various climatic zones and environment in Greece (mountainous areas, islands and lowlands). For this purpose, various types of dwellings are evaluated for their response to climate, regarding the layout of the buildings (orientation, floor plans’ shape, semi-open spaces), the site planning, the openings (size, position, protection), the building envelope (walls: construction materials-thickness, roof construction detailing) and the migratory living pattern according to seasonal needs. As a result, various passive design principles (that could be adapted to current architectural practice in such areas, in order to optimize the relationship between site, building, climate and energy efficiency) are proposed.Keywords: bioclimatic design, buildings physics, climatic zones, energy efficiency, vernacular architecture
Procedia PDF Downloads 3917542 Rare DCDC2 Mutation Causing Renal-Hepatic Ciliopathy
Authors: Atitallah Sofien, Bouyahia Olfa, Attar Souleima, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir
Abstract:
Introduction: Ciliopathies are a spectrum of diseases that have in common a defect in the synthesis of ciliary proteins. It is a rare cause of neonatal cholestasis. Clinical presentation varies extremely, and the main affected organs are the kidneys, liver, and pancreas. Methodology: This is a descriptive case report of a newborn who was admitted for exploration of neonatal cholestasis in the Paediatric Department C at the Children’s Hospital of Tunis, where the investigations concluded with a rare genetic mutation. Results: This is the case of a newborn male with no family history of hepatic and renal diseases, born to consanguineous parents, and from a well-monitored uneventful pregnancy. He developed jaundice on the second day of life, for which he received conventional phototherapy in the neonatal intensive care unit. He was admitted at 15 days for mild bronchiolitis. On clinical examination, intense jaundice was noted with normal stool and urine colour. Initial blood work showed an elevation in conjugated bilirubin and a high gamma-glutamyl transferase level. Transaminases and prothrombin time were normal. Abdominal sonography revealed hepatomegaly, splenomegaly, and undifferentiated renal cortex with bilateral medullar micro-cysts. Kidney function tests were normal. The infant received ursodeoxycholic acid and vitamin therapy. Genetic testing showed a homozygous mutation in the DCDC2 gene that hadn’t been documented before confirming the diagnosis of renal-hepatic ciliopathy. The patient has regular follow-ups, and his conjugated bilirubin and gamma-glutamyl transferase levels have been decreasing. Conclusion: Genetic testing has revolutionized the approach to etiological diagnosis in pediatric cholestasis. It enables personalised treatment strategies to better enhance the quality of life of patients and prevent potential complications following adequate long-term monitoring.Keywords: cholestasis, newborn, ciliopathy, DCDC2, genetic
Procedia PDF Downloads 677541 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics
Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah
Abstract:
Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier
Procedia PDF Downloads 3027540 Effect of Mechanical Loading on the Delamination of Stratified Composite in Mode I
Authors: H. Achache, Y. Madani, A. Benzerdjeb
Abstract:
The present study is based on the three-dimensional digital analysis by the finite elements method of the mechanical loading effect on the delamination of unidirectional and multidirectional stratified composites. The aim of this work is the determination of the release energy rate G in mode I and the Von Mises equivalent constraint distribution along the damaged area under the influence of several parameters such as the applied load and the delamination size. The results obtained in this study show that the unidirectional composite laminates have better mechanical resistance one the loading line than the multidirectional composite laminates.Keywords: delamination, release energy rate, stratified composite, finite element method, ply
Procedia PDF Downloads 4287539 Grisotti Flap as Treatment for Central Tumors of the Breast
Authors: R. Pardo, P. Menendez, MA Gil-Olarte, S. Sanchez, E. García, R. Quintana, J. Martín
Abstract:
Introduction : Within oncoplastic breast techniques there is increased interest in immediate partial breast reconstruction. The volume resected is greater than that of conventional conservative techniques. Central tumours of the breast have classically been treated with a mastectomy with regard to oncological safety and cosmetic secondary effects after wide central resection of the nipple and breast tissue beneath. Oncological results for central quadrantectomy have a recurrence level, disease- free period and survival identical to mastectomy. Grissoti flap is an oncoplastic surgical technique that allows the surgeon to perform a safe central quadrantectomy with excellent cosmetic results. Material and methods: The Grissoti flap is a glandular cutaneous advancement rotation flap that can fill the defect in the central portion of the excised breast. If the inferior border is affected by tumour and further surgery is decided upon at the Multidisciplinary Team Meeting, it will be necessary to perform a mastectomy. All patients with a Grisotti flap undergoing surgery since 2009 were reviewed obtaining the following data: age, hystopathological diagnosis, size, operating time, volume of tissue resected, postoperative admission time, re-excisions due to positive margins affected by tumour, wound dehiscence, complications and recurrence. Analysis and results of sentinel node biopsy were also obtained. Results: 12 patients underwent surgery between 2009-2015. The mean age was 54 years (34-67) . All had a preoperative diagnosis of ductal infiltrative carcinoma of less than 2 cm,. Diagnosis was made with Ultrasound, Mamography or both . Magnetic resonance was used in 5 cases. No patients had preoperative positive axilla after ultrasound exploration. Mean operating time was 104 minutes (84-130). Postoperative stay was 24 hours. Mean volume resected was 159 cc (70-286). In one patient the surgical border was affected by tumour and a further procedure with resection of the affected border was performed as ambulatory surgery. The sentinel node biopsy was positive for micrometastasis in only two cases. In one case lymphadenectomy was performed in 2009. In the other, treated in 2015, no lymphadenectomy was performed as the patient had a favourable histopathological prognosis and the multidisciplinary team meeting agreed that lymphadenectomy was not required. No recurrence has been diagnosed in any of the patients who underwent surgery and they are all disease free at present. Conclusions: Conservative surgery for retroareolar central tumours of the breast results in good local control of the disease with free surgical borders, including resection of the nipple areola complex and pectoral major muscle fascia. Reconstructive surgery with the inferior Grissoti flap adequately fills the defect after central quadrantectomy with creation of a new cutaneous disc where a new nipple areola complex is reconstructed with a local flap or micropigmentation. This avoids the need for contralateral symmetrization. Sentinel Node biopsy can be performed without added morbidity. When feasible, the Grissoti flap will avoid skin-sparing mastectomy for central breast tumours that will require the use of an expander, prosthesis or myocutaneous flap, with all the complications of a more complex operation.Keywords: Grisotti flap, oncoplastic surgery, central tumours, breast
Procedia PDF Downloads 3487538 Changes in the Lives of Families Having a Child with Cancer
Authors: Ilknur Kahriman, Hacer Kobya Bulut, Birsel C. Demirbag
Abstract:
Introduction and Aim: One of the most challenging aspects of being parents of a child diagnosed with cancer is to balance their normal family life with the child's health needs and treatment requirements. Cancer covers an important part of family life and gets ahead of other matters. Families mostly feel that everything has changed in their lives with the cancer diagnosis and are obliged to make a number of adjustments in their lives. Their normal family life suddenly begins to include treatments, hospital appointments and hospitalizations. This study is a descriptive research conducted to determine the changes in the lives of families who had a child with cancer. Methods: This study was carried out with 65 families having children diagnosed with cancer in 0-17 age group at outpatient pediatric oncology clinic and polyclinic of a university hospital in Trabzon. Data were collected through survey method from August to November, 2015. In the analysis of the data, numbers, percentage and chi-square test were used. Findings: It was found out that the average age of mothers was 35.33 years, most of them were primary school graduates (44.6%) and housewives (89.2%) and the average age of fathers was 39.30 years, most of them were high school graduates (29.2%) and self-employed (43.8% ). The majority of their children were boys and their average age was 7.74 years and 77% had Acute lymphocytic leukemia (ALL) diagnosis. 87.5% of the mothers who had a child with cancer had increased fears in their lives, 84.4% had increased workload at home, 82.8% had more stressful life and 82.8% felt themselves physically tired. The mothers indicated that their healthy children could not do the social activities they had used to do before (56.5%), they no longer fed their healthy children with the food they loved eating so that the sick child did not aspire (52.3%) and their healthy children were more furious than before (53.2%). As for the fathers, the fundamental change they had was increased workload at home (82.3%), had more stressful life (80.6%) and could no longer allocate time to the activities they had been interested in and done before (77.8%). There was not a significant difference between the sick children gender and the changes in their parents lives. The communication between the mothers and their healthy children were determined to be positively affected in the families in which the sick child's disease duration was under 12 months (X2 = 6.452, p = 0.011). Conclusion: This study showed that parents having a child with cancer had more workload at home, had more stressful lives, could not allocate time to social activities, had increased fears, felt themselves tired and their healthy children became more furious and their social activities reduced.Keywords: child, cancer, changes in lives, family
Procedia PDF Downloads 2277537 Urbanization Effects on the Food-Water-Energy Nexus within Ecosystem Services: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration in China
Authors: Ke Yang, QiHan, Bauke de Veirs
Abstract:
This study addresses the need for coordinated management of natural resources in urban agglomeration. Using ecosystem services theory, The study explore the relationship between land use in the Beijing-Tianjin-Hebei (B-T-H) region and the Food-Water-Energy (F-W-E) nexus from 2000 to 2030. We assess ecosystem services using the InVEST: Habitat Quality (HQ), Water Yield (WY), Carbon Sequestration (CS), Soil Retention (SDR), and Food Production (FP). The study find an annual expansion of construction land alongside a significant decline in cultivated land. Additionally, HQ, CS, and per capita FP decline annually until 2020 and are expected to persist through 2030. In contrast, WY and SDR grow annually but may decline by 2030. Spearman coefficient analysis reveals synergies between HQ and CS, SDR and CS, and SDR and HQ, with trade-offs between CS and WY and HQ and WY. Utilizing the K-means clustering analysis method, we introduce county-based spatial planning for the F-W-E system, offering valuable insights and recommendations for sustainable resource management.Keywords: food-water-energy (F-W-E), ecosystem services, trade-offs and synergies, ecosystem service bundle, county-based
Procedia PDF Downloads 687536 Electrocatalysts for Lithium-Sulfur Energy Storage Systems
Authors: Mirko Ante, Şeniz Sörgel, Andreas Bund
Abstract:
Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve.Keywords: electrocatalyst, energy storage, lithium sulfur battery, sulfur electrode materials
Procedia PDF Downloads 3727535 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System
Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k
Abstract:
Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving
Procedia PDF Downloads 2607534 Venezuela in the US Oil Geopolitics: An Analysis in the Light of the New Oil Landscape
Authors: William Clavijo, Edmar Almeida
Abstract:
The article analyzes the importance of Venezuela in the US geopolitics of oil considering the new oil landscape. To this end, the importance of oil in the geopolitics of the United States is discussed from the perspective of energy security as well as considering a broader view of national security. Based on this discussion, the relevance of Venezuelan oil reserves on US geopolitical agenda is analyzed. Among the results, the article shows that the transformations in the supply structure of the international oil market during the last decade have allowed the United States to achieve greater levels of independence from oil imports from other producing countries. This new reality has profoundly changed the US interest in Venezuelan oil to a broader subject that involves sensitive issues of its national security agenda.Keywords: oil geopolitics, Venezuela, United States, energy security, national security
Procedia PDF Downloads 1697533 Wood as a Climate Buffer in a Supermarket
Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø
Abstract:
Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast
Procedia PDF Downloads 2217532 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source
Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won
Abstract:
This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)
Procedia PDF Downloads 2517531 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems
Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas
Abstract:
Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting
Procedia PDF Downloads 1227530 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System
Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel
Abstract:
Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics
Procedia PDF Downloads 2627529 O-LEACH: The Problem of Orphan Nodes in the LEACH of Routing Protocol for Wireless Sensor Networks
Authors: Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi
Abstract:
The optimum use of coverage in wireless sensor networks (WSNs) is very important. LEACH protocol called Low Energy Adaptive Clustering Hierarchy, presents a hierarchical clustering algorithm for wireless sensor networks. LEACH is a protocol that allows the formation of distributed cluster. In each cluster, LEACH randomly selects some sensor nodes called cluster heads (CHs). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node joins a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus, several sensor nodes cannot reach any CH. to solve this problem. We created an O-LEACH Orphan nodes protocol, its role is to reduce the sensor nodes which do not belong the cluster. The cluster member called Gateway receives messages from neighboring orphan nodes. The gateway informs CH having the neighboring nodes that not belong to any group. However, Gateway called (CH') attaches the orphaned nodes to the cluster and then collected the data. O-Leach enables the formation of a new method of cluster, leads to a long life and minimal energy consumption. Orphan nodes possess enough energy and seeks to be covered by the network. The principal novel contribution of the proposed work is O-LEACH protocol which provides coverage of the whole network with a minimum number of orphaned nodes and has a very high connectivity rates.As a result, the WSN application receives data from the entire network including orphan nodes. The proper functioning of the Application requires, therefore, management of intelligent resources present within each the network sensor. The simulation results show that O-LEACH performs better than LEACH in terms of coverage, connectivity rate, energy and scalability.Keywords: WSNs; routing; LEACH; O-LEACH; Orphan nodes; sub-cluster; gateway; CH’
Procedia PDF Downloads 3737528 Non-Invasive Assessment of Peripheral Arterial Disease: Automated Ankle Brachial Index Measurement and Pulse Volume Analysis Compared to Ultrasound Duplex Scan
Authors: Jane E. A. Lewis, Paul Williams, Jane H. Davies
Abstract:
Introduction: There is, at present, a clear and recognized need to optimize the diagnosis of peripheral arterial disease (PAD), particularly in non-specialist settings such as primary care, and this arises from several key facts. Firstly, PAD is a highly prevalent condition. In 2010, it was estimated that globally, PAD affected more than 202 million people and furthermore, this prevalence is predicted to further escalate. The disease itself, although frequently asymptomatic, can cause considerable patient suffering with symptoms such as lower limb pain, ulceration, and gangrene which, in worse case scenarios, can necessitate limb amputation. A further and perhaps the most eminent consequence of PAD arises from the fact that it is a manifestation of systemic atherosclerosis and therefore is a powerful predictor of coronary heart disease and cerebrovascular disease. Objective: This cross sectional study aimed to individually and cumulatively compare sensitivity and specificity of the (i) ankle brachial index (ABI) and (ii) pulse volume waveform (PVW) recorded by the same automated device, with the presence or absence of peripheral arterial disease (PAD) being verified by an Ultrasound Duplex Scan (UDS). Methods: Patients (n = 205) referred for lower limb arterial assessment underwent an ABI and PVW measurement using volume plethysmography followed by a UDS. Presence of PAD was recorded for ABI if < 0.9 (noted if > 1.30) if PVW was graded as 2, 3 or 4 or a hemodynamically significant stenosis > 50% with UDS. Outcome measure was agreement between measured ABI and interpretation of the PVW for PAD diagnosis, using UDS as the reference standard. Results: Sensitivity of ABI was 80%, specificity 91%, and overall accuracy 88%. Cohen’s kappa revealed good agreement between ABI and UDS (k = 0.7, p < .001). PVW sensitivity 97%, specificity 81%, overall accuracy 84%, with a good level of agreement between PVW and UDS (k = 0.67, p < .001). The combined sensitivity of ABI and PVW was 100%, specificity 76%, and overall accuracy 85% (k = 0.67, p < .001). Conclusions: Combing these two diagnostic modalities within one device provided a highly accurate method of ruling out PAD. Such a device could be utilized within the primary care environment to reduce the number of unnecessary referrals to secondary care with concomitant cost savings, reduced patient inconvenience, and prioritization of urgent PAD cases.Keywords: ankle brachial index, peripheral arterial disease, pulse volume waveform, ultrasound duplex scan
Procedia PDF Downloads 1677527 Powering Circular Agriculture: Economic Analysis of Renewable Energy Integration for Sustainable Poultry Farming
Authors: Parisa Moghaddam
Abstract:
The significance of this study lies in its comprehensive exploration of renewable energy integration in poultry farming, a highly energy-intensive sector, to address pressing global food and energy crisis. As population growth amplifies these issues, innovative solutions are crucial for sustainable food production and energy security. This research investigated the potential of renewable energy sources, particularly anaerobic digestion and solar photovoltaics, to reduce energy consumption, mitigate greenhouse gas emissions, promote circular economy principles in agriculture, and reduce reliance on fossil fuels. By examining case studies from various countries and analyzing the economic and environmental benefits of these technologies, the study aimed to provide practical insights for farmers, stakeholders, and policymakers. Ultimately, this research developed a conceptual tool and framework to facilitate the transition towards more sustainable and circular agricultural practices, addressing critical gaps in renewable energy integration within agricultural systems, and aiming to attract potential investors and gain traction for sustainable practices. The study employed a mixed-methods approach, combining quantitative and qualitative analyses to provide a comprehensive evaluation framework for renewable energy integration in agriculture. Key components included a case study analysis utilizing data from a poultry operation in Armenia, an anaerobic digestion plant in Pakistan, and a solar photovoltaic project in Lebanon. A comprehensive literature review was conducted to understand the current state of renewable energy adoption, challenges, and opportunities in poultry farming. For quantitative analysis, the study used Cost-Benefit Analysis (CBA) to assign monetary values to costs and benefits of renewable energy investment projects, including economic valuation, financial budgeting, and cash flow considerations to compare two modes of renewable energy sources. The qualitative approach utilized Multi-Criteria Decision-Making (MCDM) to evaluate and prioritize alternatives based on multiple criteria, incorporating both objective and subjective factors beyond economic viability. Additionally, sensitivity analysis was conducted for more accurate modeling. Key findings revealed that on-farm anaerobic digester plants focusing on biogas and digestate production, rather than electricity generation, demonstrated economic viability with a Net Present Value of $621,386.3 and an Internal Rate of Return of 149%. Solar PV implementation showed moderate economic potential. The Multi-Criteria Decision-Making analysis, incorporating economic, technical, environmental, and social criteria, ranked anaerobic digesters (0.91) higher than solar PV (0.64) for agricultural applications. The findings suggest that small-scale anaerobic digesters offer the most promising pathway for agricultural waste valorization and renewable energy generation. However, successful implementation requires addressing limitations such as financial uncertainties, lack of accurate data, industry collaboration, and policy support. This research contributes to the growing body of knowledge on circular economy implementation in agriculture, offering practical insights for sustainable development in similar economic contexts.Keywords: circular economy, renewable energy integration, sustainable poultry farming, anaerobic digestion, solar photovoltaics, sustainability, cost-benefit analysis, multi-criteria decision making, economic modeling
Procedia PDF Downloads 137526 Significant Aspects and Drivers of Germany and Australia's Energy Policy from a Political Economy Perspective
Authors: Sarah Niklas, Lynne Chester, Mark Diesendorf
Abstract:
Geopolitical tensions, climate change and recent movements favouring a transformative shift in institutional power structures have influenced the economics of conventional energy supply for decades. This study takes a multi-dimensional approach to illustrate the potential of renewable energy (RE) technology to provide a pathway to a low-carbon economy driven by ecologically sustainable, independent and socially just energy. This comparative analysis identifies economic, political and social drivers that shaped the adoption of RE policy in two significantly different economies, Germany and Australia, with strong and weak commitments to RE respectively. Two complementary political-economy theories frame the document-based analysis. Régulation Theory, inspired by Marxist ideas and strongly influenced by contemporary economic problems, provides the background to explore the social relationships contributing the adoption of RE within the macro-economy. Varieties of Capitalism theory, a more recently developed micro-economic approach, examines the nature of state-firm relationships. Together these approaches provide a comprehensive lens of analysis. Germany’s energy policy transformed substantially over the second half of the last century. The development is characterised by the coordination of societal, environmental and industrial demands throughout the advancement of capitalist regimes. In the Fordist regime, mass production based on coal drove Germany’s astounding economic recovery during the post-war period. Economic depression and the instability of institutional arrangements necessitated the impulsive seeking of national security and energy independence. During the postwar Flexi-Fordist period, quality-based production, innovation and technology-based competition schemes, particularly with regard to political power structures in and across Europe, favoured the adoption of RE. Innovation, knowledge and education were institutionalized, leading to the legislation of environmental concerns. Lastly the establishment of government-industry-based coordinative programs supported the phase out of nuclear power and the increased adoption of RE during the last decade. Australia’s energy policy is shaped by the country’s richness in mineral resources. Energy policy largely served coal mining, historically and currently one of the most capital-intense industry. Assisted by the macro-economic dimensions of institutional arrangements, social and financial capital is orientated towards the export-led and strongly demand-oriented economy. Here energy policy serves the maintenance of capital accumulation in the mining sector and the emerging Asian economies. The adoption of supportive renewable energy policy would challenge the distinct role of the mining industry within the (neo)-liberal market economy. The state’s protective role of the mining sector has resulted in weak commitment to RE policy and investment uncertainty in the energy sector. Recent developments, driven by strong public support for RE, emphasize the sense of community in urban and rural areas and the emergence of a bottom-up approach to adopt renewables. Thus, political economy frameworks on both the macro-economic (Regulation Theory) and micro-economic (Varieties of Capitalism theory) scales can together explain the strong commitment to RE in Germany vis-à-vis the weak commitment in Australia.Keywords: political economy, regulation theory, renewable energy, social relationships, energy transitions
Procedia PDF Downloads 3867525 Hybrid Seismic Energy Dissipation Devices Made of Viscoelastic Pad and Steel Plate
Authors: Jinkoo Kim, Minsung Kim
Abstract:
This study develops a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A cyclic loading test is conducted on a test specimen to validate the seismic performance of the hybrid damper. Then a moment-framed model structure is designed without seismic load so that it is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis and the life cycle cost evaluation of the structure with and without the dampers. The analysis results show that the model structure has reduced probability of reaching damage states, especially the complete damage state, after seismic retrofit. The expected damage cost and consequently the life cycle cost of the retrofitted structure turn out to be significantly small compared with those of the original structure. Acknowledgement: This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R & D program (N043100016).Keywords: seismic retrofit, slit dampers, friction dampers, hybrid dampers
Procedia PDF Downloads 2867524 A New Type Safety-Door for Earthquake Disaster Prevention: Part I
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
From the past earthquake events, many people get hurt at the exit while they are trying to go out of the buildings because of the exit doors are unable to be opened. The door is not opened because it deviates from its the original position. The aim of this research is to develop and evaluate a new type safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. The proposed door is composed of three components: outer frame joined to the wall, inner frame (door frame) and circular hollow section connected to the inner and outer frame which is used as seismic energy dissipating device.Keywords: safety-door, earthquake disaster, low yield point steel, passive energy dissipating device, FE analysis
Procedia PDF Downloads 5277523 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 257522 Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage
Authors: Mohammed Omar
Abstract:
Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″).Keywords: PVP, SPR, γ-radiations, XRD
Procedia PDF Downloads 1097521 Exploring the Role of Hydrogen to Achieve the Italian Decarbonization Targets using an OpenScience Energy System Optimization Model
Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi
Abstract:
Hydrogen is expected to become an undisputed player in the ecological transition throughout the next decades. The decarbonization potential offered by this energy vector provides various opportunities for the so-called “hard-to-abate” sectors, including industrial production of iron and steel, glass, refineries and the heavy-duty transport. In this regard, Italy, in the framework of decarbonization plans for the whole European Union, has been considering a wider use of hydrogen to provide an alternative to fossil fuels in hard-to-abate sectors. This work aims to assess and compare different options concerning the pathway to be followed in the development of the future Italian energy system in order to meet decarbonization targets as established by the Paris Agreement and by the European Green Deal, and to infer a techno-economic analysis of the required asset alternatives to be used in that perspective. To accomplish this objective, the Energy System Optimization Model TEMOA-Italy is used, based on the open-source platform TEMOA and developed at PoliTo as a tool to be used for technology assessment and energy scenario analysis. The adopted assessment strategy includes two different scenarios to be compared with a business-as-usual one, which considers the application of current policies in a time horizon up to 2050. The studied scenarios are based on the up-to-date hydrogen-related targets and planned investments included in the National Hydrogen Strategy and in the Italian National Recovery and Resilience Plan, with the purpose of providing a critical assessment of what they propose. One scenario imposes decarbonization objectives for the years 2030, 2040 and 2050, without any other specific target. The second one (inspired to the national objectives on the development of the sector) promotes the deployment of the hydrogen value-chain. These scenarios provide feedback about the applications hydrogen could have in the Italian energy system, including transport, industry and synfuels production. Furthermore, the decarbonization scenario where hydrogen production is not imposed, will make use of this energy vector as well, showing the necessity of its exploitation in order to meet pledged targets by 2050. The distance of the planned policies from the optimal conditions for the achievement of Italian objectives is be clarified, revealing possible improvements of various steps of the decarbonization pathway, which seems to have as a fundamental element Carbon Capture and Utilization technologies for its accomplishment. In line with the European Commission open science guidelines, the transparency and the robustness of the presented results is ensured by the adoption of the open-source open-data model such as the TEMOA-Italy.Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA
Procedia PDF Downloads 787520 Factors in a Sustainability Assessment of New Types of Closed Cavity Facades
Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac
Abstract:
With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects.Keywords: assessment, closed cavity façade, life cycle, sustainability
Procedia PDF Downloads 1987519 Effects of Intensive Rehabilitation Therapy on Sleep in Children with Developmental Disorders
Authors: Sung Hyun Kim
Abstract:
Introduction: Sleep disturbance is common in children with developmental disorders (D.D.). Sleep disturbance has a variety of negative effects, such as behavior problems, medical problems, and even developmental problems in children with D.D. However, to our best knowledge, there has been no proper treatment for sleep disorders in children with D.D. Therefore, we conduct this study to know the positive effects of intensive rehabilitation therapy in children with D.D. on the degree of sleep disturbance. Method: We prospectively recruited 22 patients with a diagnosis of D.D. during the period of January 2022 through May 2022. The inclusion criteria were as follows: 1) a patient who would participate in the intensive rehabilitation therapy of our institution; 2) the age participant under 18 years at the time of assessment; 3) a child who has consented to participate in the study by signing the consent form by the legal guardian. We investigated the clinical characteristics of participants by the medical record, including sex, age, underlying diagnosis of D.D., and Gross Motor Function Measures (GMFM). Before starting the intensive rehabilitation therapy, we conducted a Sleep disturbance scale for children (SDSC). It contains 26 questions about children’s sleep, and those questions are grouped into six subscales, such as Disorders of initiating and maintaining sleep (DIMS), Sleep Breathing Disorders(SBD), Disorders of arousal(DOA), Sleep-Wake Transition Disorders(SWTD), Disorders of excessive somnolence(DOES) and Sleep Hyperhydrosis(SHY). We used the t-score, which was calculated by comparing the scores of normal children. Twenty two patients received 8 weeks of intensive rehabilitation, including daily physical and occupational therapy. After that, we did follow up with SDSC. The comparison between SDSC before and after intensive rehabilitation was calculated using the paired t-test, and P< 0.05 was considered statistically significant. Results: Demographic data and clinical characteristics of 22 patients are enrolled. Patients were 4.03 ± 2.91 years old, and of the total 22 patients, 14 (64%) were male, and 8 (36%) were female. Twelve patients(45%) were diagnosed with Cerebral palsy(C.P.), and the mean value of participants’ GMFM was 47.82 ± 20.60. Each mean value of SDSC’s subscales was also calculated. DIMS was 62.36 ± 13.72, SBD was 54.18 ± 8.39, DOA was 49.59 ± 7.01, SWTD was 58.95 ± 9.20, DOES was 53.09 ± 15.15, SHY was 52.14 ± 8.82, and the total was 59.86 ± 13.18. These values suggest that children with D.D. have sleep disorders. After 8 weeks of intensive rehabilitation treatment, the score of DIMS showed improvement(p=0.016), but not the other subscale and total score of SDSC. Conclusion: This result showed that intensive rehabilitation could be helpful to patients of D.D. with sleep disorders. Especially intensive rehabilitation therapy itself can be a meaningful treatment in inducing and maintaining sleep.Keywords: sleep disorder, developmental delay, intensive rehabilitation therapy, cerebral palsy
Procedia PDF Downloads 907518 Operating Model of Obstructive Sleep Apnea Patients in North Karelia Central Hospital
Authors: L. Korpinen, T. Kava, I. Salmi
Abstract:
This study aimed to describe the operating model of obstructive sleep apnea. Due to the large number of patients, the role of nurses in the diagnosis and treatment of sleep apnea was important. Pulmonary physicians met only a minority of the patients. The sleep apnea study in 2018 included about 800 patients, of which about 28% were normal and 180 patients were classified as severe (apnea-hypopnea index [AHI] over 30). The operating model has proven to be workable and appropriate. The patients understand well that they may not be referred to a pulmonary doctor. However, specialized medical follow-up on professional drivers continues every year.Keywords: sleep, apnea patient, operating model, hospital
Procedia PDF Downloads 134