Search results for: NN (neural network)
2432 SEC-MALLS Study of Hyaluronic Acid and BSA Thermal Degradation in Powder and in Solution
Authors: Vasile Simulescu, Jakub Mondek, Miloslav Pekař
Abstract:
Hyaluronic acid (HA) is an anionic glycosaminoglycan distributed throughout connective, epithelial and neural tissues. The importance of hyaluronic acid increased in the last decades. It has many applications in medicine and cosmetics. Hyaluronic acid has been used in attempts to treat osteoarthritis of the knee via injecting it into the joint. Bovine serum albumin (also known as BSA) is a protein derived from cows, which has many biochemical applications. The aim of our research work was to compare the thermal degradation of hyaluronic acid and BSA in powder and in solution, by determining changes in molar mass and conformation, by using SEC-MALLS (size exclusion chromatography -multi angle laser light scattering). The aim of our research work was to observe the degradation in powder and in solution of different molar mass hyaluronic acid samples, at different temperatures for certain periods. The degradation of the analyzed samples was mainly observed by modifications in molar mass.Keywords: thermal degradation, hyaluronic acid, BSA, SEC-MALLS
Procedia PDF Downloads 5082431 Guidelines for Sustainable Urban Mobility in Historic Districts from International Experiences
Authors: Tamer ElSerafi
Abstract:
In recent approaches to heritage conservation, the whole context of historic areas becomes as important as the single historic building. This makes the provision of infrastructure and network of mobility an effective element in the urban conservation. Sustainable urban conservation projects consider the high density of activities, the need for a good quality access system to the transit system, and the importance of the configuration of the mobility network by identifying the best way to connect the different districts of the urban area through a complex unique system that helps the synergic development to achieve a sustainable mobility system. A sustainable urban mobility is a key factor in maintaining the integrity between socio-cultural aspects and functional aspects. This paper illustrates the mobility aspects, mobility problems in historic districts, and the needs of the mobility systems in the first part. The second part is a practical analysis for different mobility plans. It is challenging to find innovative and creative conservation solutions fitting modern uses and needs without risking the loss of inherited built resources. Urban mobility management is becoming an essential and challenging issue in the urban conservation projects. Depending on literature review and practical analysis, this paper tries to define and clarify the guidelines for mobility management in historic districts as a key element in sustainability of urban conservation and development projects. Such rules and principles could control the conflict between the socio–cultural and economic activities, and the different needs for mobility in these districts in a sustainable way. The practical analysis includes a comparison between mobility plans which have been implemented in four different cities; Freiburg in Germany, Zurich in Switzerland and Bray Town in Ireland. This paper concludes with a matrix of guidelines that considers both principles of sustainability and livability factors in urban historic districts.Keywords: sustainable mobility, urban mobility, mobility management, historic districts
Procedia PDF Downloads 1632430 Analysis of Non-Conventional Roundabout Performance in Mixed Traffic Conditions
Authors: Guneet Saini, Shahrukh, Sunil Sharma
Abstract:
Traffic congestion is the most critical issue faced by those in the transportation profession today. Over the past few years, roundabouts have been recognized as a measure to promote efficiency at intersections globally. In developing countries like India, this type of intersection still faces a lot of issues, such as bottleneck situations, long queues and increased waiting times, due to increasing traffic which in turn affect the performance of the entire urban network. This research is a case study of a non-conventional roundabout, in terms of geometric design, in a small town in India. These types of roundabouts should be analyzed for their functionality in mixed traffic conditions, prevalent in many developing countries. Microscopic traffic simulation is an effective tool to analyze traffic conditions and estimate various measures of operational performance of intersections such as capacity, vehicle delay, queue length and Level of Service (LOS) of urban roadway network. This study involves analyzation of an unsymmetrical non-circular 6-legged roundabout known as “Kala Aam Chauraha” in a small town Bulandshahr in Uttar Pradesh, India using VISSIM simulation package which is the most widely used software for microscopic traffic simulation. For coding in VISSIM, data are collected from the site during morning and evening peak hours of a weekday and then analyzed for base model building. The model is calibrated on driving behavior and vehicle parameters and an optimal set of calibrated parameters is obtained followed by validation of the model to obtain the base model which can replicate the real field conditions. This calibrated and validated model is then used to analyze the prevailing operational traffic performance of the roundabout which is then compared with a proposed alternative to improve efficiency of roundabout network and to accommodate pedestrians in the geometry. The study results show that the alternative proposed is an advantage over the present roundabout as it considerably reduces congestion, vehicle delay and queue length and hence, successfully improves roundabout performance without compromising on pedestrian safety. The study proposes similar designs for modification of existing non-conventional roundabouts experiencing excessive delays and queues in order to improve their efficiency especially in the case of developing countries. From this study, it can be concluded that there is a need to improve the current geometry of such roundabouts to ensure better traffic performance and safety of drivers and pedestrians negotiating the intersection and hence this proposal may be considered as a best fit.Keywords: operational performance, roundabout, simulation, VISSIM
Procedia PDF Downloads 1412429 Analyzing Spatio-Structural Impediments in the Urban Trafficscape of Kolkata, India
Authors: Teesta Dey
Abstract:
Integrated Transport development with proper traffic management leads to sustainable growth of any urban sphere. Appropriate mass transport planning is essential for the populous cities in third world countries like India. The exponential growth of motor vehicles with unplanned road network is now the common feature of major urban centres in India. Kolkata, the third largest mega city in India, is not an exception of it. The imbalance between demand and supply of unplanned transport services in this city is manifested in the high economic and environmental costs borne by the associated society. With the passage of time, the growth and extent of passenger demand for rapid urban transport has outstripped proper infrastructural planning and causes severe transport problems in the overall urban realm. Hence Kolkata stands out in the world as one of the most crisis-ridden metropolises. The urban transport crisis of this city involves severe traffic congestion, the disparity in mass transport services on changing peripheral land uses, route overlapping, lowering of travel speed and faulty implementation of governmental plans as mostly induced by rapid growth of private vehicles on limited road space with huge carbon footprint. Therefore the paper will critically analyze the extant road network pattern for improving regional connectivity and accessibility, assess the degree of congestion, identify the deviation from demand and supply balance and finally evaluate the emerging alternate transport options as promoted by the government. For this purpose, linear, nodal and spatial transport network have been assessed based on certain selected indices viz. Road Degree, Traffic Volume, Shimbel Index, Direct Bus Connectivity, Average Travel and Waiting Tine Indices, Route Variety, Service Frequency, Bus Intensity, Concentration Analysis, Delay Rate, Quality of Traffic Transmission, Lane Length Duration Index and Modal Mix. Total 20 Traffic Intersection Points (TIPs) have been selected for the measurement of nodal accessibility. Critical Congestion Zones (CCZs) are delineated based on one km buffer zones of each TIP for congestion pattern analysis. A total of 480 bus routes are assessed for identifying the deficiency in network planning. Apart from bus services, the combined effects of other mass and para transit modes, containing metro rail, auto, cab and ferry services, are also analyzed. Based on systematic random sampling method, a total of 1500 daily urban passengers’ perceptions were studied for checking the ground realities. The outcome of this research identifies the spatial disparity among the 15 boroughs of the city with severe route overlapping and congestion problem. North and Central Kolkata-based mass transport services exceed the transport strength of south and peripheral Kolkata. Faulty infrastructural condition, service inadequacy, economic loss and workers’ inefficiency are the most dominant reasons behind the defective mass transport network plan. Hence there is an urgent need to revive the extant road based mass transport system of this city by implementing a holistic management approach by upgrading traffic infrastructure, designing new roads, better cooperation among different mass transport agencies, better coordination of transport and changing land use policies, large increase in funding and finally general passengers’ awareness.Keywords: carbon footprint, critical congestion zones, direct bus connectivity, integrated transport development
Procedia PDF Downloads 2762428 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices
Authors: Amani Abdallah, Isam Shahrour
Abstract:
The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.Keywords: distribution system, drinking water, refraction index, sensor, real-time
Procedia PDF Downloads 3612427 Management of Interdependence in Manufacturing Networks
Authors: Atour Taghipour
Abstract:
In the real world each manufacturing company is an independent business unit. These business units are linked to each other through upstream and downstream linkages. The management of these linkages is called coordination which, could be considered as a difficult engineering task. The degree of difficulty of coordination depends on the type and the nature of information exchanged between partners as well as the structure of relationship from mutual to the network structure. The literature of manufacturing systems comprises a wide range of varieties of methods and approaches of coordination. In fact, two main streams of research can be distinguished: central coordination versus decentralized coordination. In the centralized systems a high degree of information exchanges is required. The high degree of information exchanges sometimes leads to difficulties when independent members do not want to share information. In order to address these difficulties, decentralized approaches of coordination of operations planning decisions based on some minimal information sharing have been proposed in many academic disciplines. This paper first proposes a framework of analysis in order to analyze the proposed approaches in the literature, based on this framework which includes the similarities between approaches we categorize the existing approaches. This classification can be used as a research map for future researches. The result of our paper highlights several opportunities for future research. First, it is proposed to develop more dynamic and stochastic mechanisms of planning coordination of manufacturing units. Second, in order to exploit the complementarities of approaches proposed by diverse science discipline, we propose to integrate the techniques of coordination. Finally, based on our approach we proposed to develop coordination standards to guaranty both the complementarity of these approaches as well as the freedom of companies to adopt any planning tools.Keywords: network coordination, manufacturing, operations planning, supply chain
Procedia PDF Downloads 2872426 Nutriscience Project: A Web-Based Intervention to Improve Nutritional Literacy among Families and Educators of Pre-School Children
Authors: R. Barros, J. Azevedo, P. Padrão, M. Gregório, I. Pádua, C. Almeida, C. Rodrigues, P. Fontes, A. Coelho
Abstract:
Recent evidence shows a positive association between nutritional literacy and healthy eating. Traditional nutrition education strategies for childhood obesity prevention have shown weak effect. The Nutriscience project aims to create and evaluate an innovative and multidisciplinary strategy for promoting effective and accessible nutritional information to children, their families, and educators. Nutriscience is a one-year prospective follow-up evaluation study including pre-school children (3-5 y), who attend national schools’ network (29). The project is structured around a web-based intervention, using an on-line interactive platform, and focus on increasing fruit and vegetable consumption, and reducing sugar and salt intake. The platform acts as a social network where educational materials, games, and nutritional challenges are proposed in a gamification approach that promotes family and community social ties. A nutrition Massive Online Open Course is developed for educators, and a national healthy culinary contest will be promoted on TV channel. A parental self-reported questionnaire assessing sociodemographic and nutritional literacy (knowledge, attitudes, skills) is administered (baseline and end of the intervention). We expect that results on nutritional literacy from the presented strategy intervention will give us important information about the best practices for health intervention with kindergarten families. This intervention program using a digital interactive platform could be an educational tool easily adapted and disseminated for childhood obesity prevention.Keywords: childhood obesity, educational tool, nutritional literacy, web-based intervention
Procedia PDF Downloads 3372425 The Unique Electrical and Magnetic Properties of Thorium Di-Iodide Indicate the Arrival of Its Superconducting State
Authors: Dong Zhao
Abstract:
Even though the recent claim of room temperature superconductivity by LK-99 was confirmed an unsuccessful attempt, this work reawakened people’s century striving to get applicable superconductors with Tc of room temperature or higher and under ambient pressure. One of the efforts was focusing on exploring the thorium salts. This is because certain thorium compounds revealed an unusual property of having both high electrical conductivity and diamagnetism or the so-called “coexistence of high electrical conductivity and diamagnetism.” It is well known that this property of the coexistence of high electrical conductivity and diamagnetism is held by superconductors because of the electron pairings. Consequently, the likelihood for these thorium compounds to have superconducting properties becomes great. However, as a surprise, these thorium salts possess this property at room temperature and atmosphere pressure. This gives rise to solid evidence for these thorium compounds to be room-temperature superconductors without a need for external pressure. Among these thorium compound superconductors claimed in that work, thorium di-iodide (ThI₂) is a unique one and has received comprehensive discussion. ThI₂ was synthesized and structurally analyzed by the single crystal diffraction method in the 1960s. Its special property of coexistence of high electrical conductivity and diamagnetism was revealed. Because of this unique property, a special molecular configuration was sketched. Except for an ordinary oxidation of +2 for the thorium cation, the thorium’s oxidation state in ThI₂ is +4. According to the experimental results, ThI₂‘s actual molecular configuration was determined as an unusual one of [Th4+(e-)2](I-)2. This means that the ThI₂ salt’s cation is composed of a [Th4+(e-)2]2+ cation core. In other words, the cation of ThI₂ is constructed by combining an oxidation state +4 of the thorium atom and a pair of electrons or an electron lone pair located on the thorium atom. This combination of the thorium atom and the electron lone pair leads to an oxidation state +2 for the [Th4+(e-)2]2+ cation core. This special construction of the thorium cation is very distinctive, which is believed to be the factor that grants ThI₂ the room temperature superconductivity. Actually, the key for ThI₂ to become a room-temperature superconductor is this characteristic electron lone pair residing on the thorium atom along with the formation of a network constructed by the thorium atoms. This network specializes in a way that allows the electron lone pairs to hop over it and, thus, to generate the supercurrent. This work will discuss, in detail, the special electrical and magnetic properties of ThI₂ as well as its structural features at ambient conditions. The exploration of how the electron pairing in combination with the structurally specialized network works together to bring ThI₂ into a superconducting state. From the experimental results, strong evidence has definitely pointed out that the ThI₂ should be a superconductor, at least at room temperature and under atmosphere pressure.Keywords: co-existence of high electrical conductivity and diamagnetism, electron lone pair, room temperature superconductor, special molecular configuration of thorium di-iodide ThI₂
Procedia PDF Downloads 652424 Public-Private Partnership for Critical Infrastructure Resilience
Authors: Anjula Negi, D. T. V. Raghu Ramaswamy, Rajneesh Sareen
Abstract:
Road infrastructure is emphatically one of the top most critical infrastructure to the Indian economy. Road network in the country of around 3.3 million km is the second largest in the world. Nationwide statistics released by Ministry of Road, Transport and Highways reveal that every minute an accident happens and one death every 3.7 minutes. This reported scale in terms of safety is a matter of grave concern, and economically represents a national loss of 3% to the GDP. Union Budget 2016-17 has allocated USD 12 billion annually for development and strengthening of roads, an increase of 56% from last year. Thus, highlighting the importance of roads as critical infrastructure. National highway alone represent only 1.7% of the total road linkages, however, carry over 40% of traffic. Further, trends analysed from 2002 -2011 on national highways, indicate that in less than a decade, a 22 % increase in accidents have been reported, but, 68% increase in death fatalities. Paramount inference is that accident severity has increased with time. Over these years many measures to increase road safety, lessening damage to physical assets, reducing vulnerabilities leading to a build-up for resilient road infrastructure have been taken. In the context of national highway development program, policy makers proposed implementation of around 20 % of such road length on PPP mode. These roads were taken up on high-density traffic considerations and for qualitative implementation. In order to understand resilience impacts and safety parameters, enshrined in various PPP concession agreements executed with the private sector partners, such highway specific projects would be appraised. This research paper would attempt to assess such safety measures taken and the possible reasons behind an increase in accident severity through these PPP case study projects. Delving further on safety features to understand policy measures adopted in these cases and an introspection on reasons of severity, whether an outcome of increased speeds, faulty road design and geometrics, driver negligence, or due to lack of discipline in following lane traffic with increased speed. Assessment exercise would study these aspects hitherto to PPP and post PPP project structures, based on literature review and opinion surveys with sectoral experts. On the way forward, it is understood that the Ministry of Road, Transport and Highway’s estimate for strengthening the national highway network is USD 77 billion within next five years. The outcome of this paper would provide an understanding of resilience measures adopted, possible options for accessible and safe road network and its expansion to policy makers for possible policy initiatives and funding allocation in securing critical infrastructure.Keywords: national highways, policy, PPP, safety
Procedia PDF Downloads 2592423 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 812422 Modeling of Drug Distribution in the Human Vitreous
Authors: Judith Stein, Elfriede Friedmann
Abstract:
The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body
Procedia PDF Downloads 1392421 Accessibility Analysis of Urban Green Space in Zadar Settlement, Croatia
Authors: Silvija Šiljeg, Ivan Marić, Ante Šiljeg
Abstract:
The accessibility of urban green spaces (UGS) is an integral element in the quality of life. Due to rapid urbanization, UGS studies have become a key element in urban planning. The potential benefits of space for its inhabitants are frequently analysed. A functional transport network system and the optimal spatial distribution of urban green surfaces are the prerequisites for maintaining the environmental equilibrium of the urban landscape. An accessibility analysis was conducted as part of the Urban Green Belts Project (UGB). The development of a GIS database for Zadar was the first step in generating the UGS accessibility indicator. Data were collected using the supervised classification method of multispectral LANDSAT images and manual vectorization of digital orthophoto images (DOF). An analysis of UGS accessibility according to the ANGst standard was conducted in the first phase of research. The accessibility indicator was generated on the basis of seven objective measurements, which included average UGS surface per capita and accessibility according to six functional levels of green surfaces. The generated indicator was compared with subjective measurements obtained by conducting a survey (718 respondents) within statistical units. The collected data reflected individual assessments and subjective evaluations of UGS accessibility. This study highlighted the importance of using objective and subjective measures in the process of understanding the accessibility of urban green surfaces. It may be concluded that when evaluating UGS accessibility, residents emphasize the immediate residential environment, ignoring higher UGS functional levels. It was also concluded that large areas of UGS within a city do not necessarily generate similar satisfaction with accessibility. The heterogeneity of output results may serve as guidelines for the further development of a functional UGS city network.Keywords: urban green spaces (UGS), accessibility indicator, subjective and objective measurements, Zadar
Procedia PDF Downloads 2672420 Automatic Measurement of Garment Sizes Using Deep Learning
Authors: Maulik Parmar, Sumeet Sandhu
Abstract:
The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints
Procedia PDF Downloads 3172419 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure
Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic
Abstract:
Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth
Procedia PDF Downloads 942418 A Comparative Semantic Network Study between Chinese and Western Festivals
Authors: Jianwei Qian, Rob Law
Abstract:
With the expansion of globalization and the increment of market competition, the festival, especially the traditional one, has demonstrated its vitality under the new context. As a new tourist attraction, festivals play a critically important role in promoting the tourism economy, because the organization of a festival can engage more tourists, generate more revenues and win a wider media concern. However, in the current stage of China, traditional festivals as a way to disseminate national culture are undergoing the challenge of foreign festivals and the related culture. Different from those special events created solely for developing economy, traditional festivals have their own culture and connotation. Therefore, it is necessary to conduct a study on not only protecting the tradition, but promoting its development as well. This study conducts a comparative study of the development of China’s Valentine’s Day and Western Valentine’s Day under the Chinese context and centers on newspaper reports in China from 2000 to 2016. Based on the literature, two main research focuses can be established: one is concerned about the festival’s impact and the other is about tourists’ motivation to engage in a festival. Newspaper reports serve as the research discourse and can help cover the two focal points. With the assistance of content mining techniques, semantic networks for both Days are constructed separately to help depict the status quo of these two festivals in China. Based on the networks, two models are established to show the key component system of traditional festivals in the hope of perfecting the positive role festival tourism plays in the promotion of economy and culture. According to the semantic networks, newspaper reports on both festivals have similarities and differences. The difference is mainly reflected in its cultural connotation, because westerners and Chinese may show their love in different ways. Nevertheless, they share more common points in terms of economy, tourism, and society. They also have a similar living environment and stakeholders. Thus, they can be promoted together to revitalize some traditions in China. Three strategies are proposed to realize the aforementioned aim. Firstly, localize international festivals to suit the Chinese context to make it function better. Secondly, facilitate the internationalization process of traditional Chinese festivals to receive more recognition worldwide. Finally, allow traditional festivals to compete with foreign ones to help them learn from each other and elucidate the development of other festivals. It is believed that if all these can be realized, not only the traditional Chinese festivals can obtain a more promising future, but foreign ones are the same as well. Accordingly, the paper can contribute to the theoretical construction of festival images by the presentation of the semantic network. Meanwhile, the identified features and issues of festivals from two different cultures can enlighten the organization and marketing of festivals as a vital tourism activity. In the long run, the study can enhance the festival as a key attraction to keep the sustainable development of both the economy and the society.Keywords: Chinese context, comparative study, festival tourism, semantic network analysis, valentine’s day
Procedia PDF Downloads 2392417 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms
Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary
Abstract:
Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.Keywords: ADHD, autism, epilepsy, EEG, SVM
Procedia PDF Downloads 1972416 Exploring the Neural Correlates of Different Interaction Types: A Hyperscanning Investigation Using the Pattern Game
Authors: Beata Spilakova, Daniel J. Shaw, Radek Marecek, Milan Brazdil
Abstract:
Hyperscanning affords a unique insight into the brain dynamics underlying human interaction by simultaneously scanning two or more individuals’ brain responses while they engage in dyadic exchange. This provides an opportunity to observe dynamic brain activations in all individuals participating in interaction, and possible interbrain effects among them. The present research aims to provide an experimental paradigm for hyperscanning research capable of delineating among different forms of interaction. Specifically, the goal was to distinguish between two dimensions: (1) interaction structure (concurrent vs. turn-based) and (2) goal structure (competition vs cooperation). Dual-fMRI was used to scan 22 pairs of participants - each pair matched on gender, age, education and handedness - as they played the Pattern Game. In this simple interactive task, one player attempts to recreate a pattern of tokens while the second player must either help (cooperation) or prevent the first achieving the pattern (competition). Each pair played the game iteratively, alternating their roles every round. The game was played in two consecutive sessions: first the players took sequential turns (turn-based), but in the second session they placed their tokens concurrently (concurrent). Conventional general linear model (GLM) analyses revealed activations throughout a diffuse collection of brain regions: The cooperative condition engaged medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC); in the competitive condition, significant activations were observed in frontal and prefrontal areas, insula cortices and the thalamus. Comparisons between the turn-based and concurrent conditions revealed greater precuneus engagement in the former. Interestingly, mPFC, PCC and insulae are linked repeatedly to social cognitive processes. Similarly, the thalamus is often associated with a cognitive empathy, thus its activation may reflect the need to predict the opponent’s upcoming moves. Frontal and prefrontal activation most likely represent the higher attentional and executive demands of the concurrent condition, whereby subjects must simultaneously observe their co-player and place his own tokens accordingly. The activation of precuneus in the turn-based condition may be linked to self-other distinction processes. Finally, by performing intra-pair correlations of brain responses we demonstrate condition-specific patterns of brain-to-brain coupling in mPFC and PCC. Moreover, the degree of synchronicity in these neural signals related to performance on the game. The present results, then, show that different types of interaction recruit different brain systems implicated in social cognition, and the degree of inter-player synchrony within these brain systems is related to nature of the social interaction.Keywords: brain-to-brain coupling, hyperscanning, pattern game, social interaction
Procedia PDF Downloads 3442415 Life Expansion: Visual Autobiography, Identity, Representation and the Degrees of Fictionalization of the Self on Instagram
Authors: Pablo De Macedo Silveira Vallejos
Abstract:
This article aims to observe autobiographical and visual narrative practices among users on Instagram. In this way, the work proposes to reflect on how image resources are used to develop edited representations of the self in that social network. The research aims to explore the uses of editing and the degrees of fictionalization present on Instagram.Keywords: autobiography, visual narratives, representation, fiction, social media
Procedia PDF Downloads 802414 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil
Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis
Abstract:
A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.Keywords: healthcare, settlement strategy, urban health, rural
Procedia PDF Downloads 3712413 Using a Card Game as a Tool for Developing a Design
Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner
Abstract:
Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.Keywords: card game, collective songwriting, community of practice, network, postdigital
Procedia PDF Downloads 672412 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials
Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff
Abstract:
In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.Keywords: redox enzyme, nanomaterials, biosensors, electrical communication
Procedia PDF Downloads 4592411 A Top-down vs a Bottom-up Approach on Lower Extremity Motor Recovery and Balance Following Acute Stroke: A Randomized Clinical Trial
Authors: Vijaya Kumar, Vidayasagar Pagilla, Abraham Joshua, Rakshith Kedambadi, Prasanna Mithra
Abstract:
Background: Post stroke rehabilitation are aimed to accelerate for optimal sensorimotor recovery, functional gain and to reduce long-term dependency. Intensive physical therapy interventions can enhance this recovery as experience-dependent neural plastic changes either directly act at cortical neural networks or at distal peripheral level (muscular components). Neuromuscular Electrical Stimulation (NMES), a traditional bottom-up approach, mirror therapy (MT), a relatively new top down approach have found to be an effective adjuvant treatment methods for lower extremity motor and functional recovery in stroke rehabilitation. However there is a scarcity of evidence to compare their therapeutic gain in stroke recovery.Aim: To compare the efficacy of neuromuscular electrical stimulation (NMES) and mirror therapy (MT) in very early phase of post stroke rehabilitation addressed to lower extremity motor recovery and balance. Design: observer blinded Randomized Clinical Trial. Setting: Neurorehabilitation Unit, Department of Physical Therapy, Tertiary Care Hospitals. Subjects: 32 acute stroke subjects with first episode of unilateral stroke with hemiparesis, referred for rehabilitation (onset < 3 weeks), Brunnstorm lower extremity recovery stages ≥3 and MMSE score more than 24 were randomized into two group [Group A-NMES and Group B-MT]. Interventions: Both the groups received eclectic approach to remediate lower extremity recovery which includes treatment components of Roods, Bobath and Motor learning approaches for 30 minutes a day for 6 days. Following which Group A (N=16) received 30 minutes of surface NMES training for six major paretic muscle groups (gluteus maximus and medius,quadriceps, hamstrings, tibialis anterior and gastrocnemius). Group B (N=16) was administered with 30 minutes of mirror therapy sessions to facilitate lower extremity motor recovery. Outcome measures: Lower extremity motor recovery, balance and activities of daily life (ADLs) were measured by Fugyl Meyer Assessment (FMA-LE), Berg Balance Scale (BBS), Barthel Index (BI) before and after intervention. Results: Pre Post analysis of either group across the time revealed statistically significant improvement (p < 0.001) for all the outcome variables for the either group. All parameters of NMES had greater change scores compared to MT group as follows: FMA-LE (25.12±3.01 vs. 23.31±2.38), BBS (35.12±4.61 vs. 34.68±5.42) and BI (40.00±10.32 vs. 37.18±7.73). Between the groups comparison of pre post values showed no significance with FMA-LE (p=0.09), BBS (p=0.80) and BI (p=0.39) respectively. Conclusion: Though either groups had significant improvement (pre to post intervention), none of them were superior to other in lower extremity motor recovery and balance among acute stroke subjects. We conclude that eclectic approach is an effective treatment irrespective of NMES or MT as an adjunct.Keywords: balance, motor recovery, mirror therapy, neuromuscular electrical stimulation, stroke
Procedia PDF Downloads 2842410 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 3742409 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface
Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff
Abstract:
In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface
Procedia PDF Downloads 3322408 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks
Authors: Afnan Al-Romi, Iman Al-Momani
Abstract:
The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN
Procedia PDF Downloads 3272407 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter
Authors: Van-Thanh Ho, Jaiyoung Ryu
Abstract:
In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model
Procedia PDF Downloads 1032406 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception
Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu
Abstract:
Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish
Procedia PDF Downloads 1512405 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 2422404 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods
Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo
Abstract:
In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe
Procedia PDF Downloads 2622403 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development
Procedia PDF Downloads 426