Search results for: clinical outcome
2442 Evaluation Rabbit Serum of the Immunodominant Proteins of Mycobacterium avium Paratuberculosis Extracts
Authors: Maryam Hashemi, Nematollah Razmi, Rasool Madani
Abstract:
M. paratuberculosis is a slow growing mycobactin dependent mycobacterial species known to be the causative agent of Johne’s disease in all species of domestic ruminants worldwide. JD is characterized by gradual weight loss; decreased milk production. Excretion of the organism may occur for prolonged periods (1 to 2.5 years) before the onset of clinical disease. In recent years, researchers focus on identification a specific antigen of MAP to use in diagnosis test and preparation of effective vaccine. In this paper, for production of polyclonal antibody against proteins of Mycobacterium avium paratuberculosis cell wall a rabbit immunization at a certain time period with antigen. After immunization of the animal, blood samples were collected from the rabbit for producing enriched serum. Antibodies were purified with ion exchange chromatography. For exact measurement of interaction, western blotting test was used and as it is demonstrated in the study, sharp bands appear in nitrocellulose paper and specific bands were 50 and 150 KD molecular weight. These were indicating immunodominant proteins.Keywords: immunodominant, paratuberculosis, Western blotting, cell wall proteins, protein purification
Procedia PDF Downloads 2542441 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning
Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher
Abstract:
Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping
Procedia PDF Downloads 1372440 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection
Procedia PDF Downloads 1452439 The Prevalence of Herbal Medicine Practice and Associated Factors among Cancer Patients Receiving Palliative Care at Mobile Hospice Mbarara
Authors: Harriet Nalubega, Eddie Mwebesa
Abstract:
In Uganda, over 90% of people use herbal remedies. Herbal medicine use has been associated with delayed clinical appointments, presentation with advanced cancers, financial constraints, and misdiagnosis. This study aimed to evaluate the prevalence of herbal medicine use and practices amongst cancer patients receiving Palliative Care at Mobile Hospice Mbarara (MHM) and the associated challenges. This was a mixed-methods prospective study conducted in 2022 at MHM, where patients were interviewed, and a questionnaire was completed. 87% of the patients had used herbal medicine. Of these, 83% were female, and 59% had not received formal education. 27% of patients had used herbal remedies for a year or more. 51% of patients who were consuming herbs stopped using them after starting palliative care treatment. Motivations for herbal medicine use were in the hope for a cure in 59%, for pain relief in 30%, and peer influence in 10%. There is a high prevalence of herbal medicine use in Palliative Care. Female gender and lack of formal education were disproportionately associated with herbal remedy use. Most patients consume herbal remedies in search of a cure or to relieve severe pain. Education of cancer patients about herbal remedy use may improve treatment outcomes in Palliative Care.Keywords: prevalence, herbal medicine, cancer patients, palliative care
Procedia PDF Downloads 1352438 Experiences during the First Year of Practice among New Nurses
Authors: Chanya Thanomlikhit, Pataraporn Kheawwan
Abstract:
Transition from student to staff nurse can be difficult for nurses beginning their nursing profession. Objective: The purpose of this study was to explore the transition experiences during the first year of practice among new nurses in Thailand. Methods: A descriptive design using a survey questionnaire was used. One hundred seventy-eight new graduate nurses from one tertiary hospital in Thailand participated in this study. Data were collected using paper-and-pencil format of the Revised Casey-Fink Graduate Nurse Experience Survey. Results: Participants reported three types of difficulties they were experiencing during the first year of practice including role expectation, lack of confidence, and workload. New nurses reported uncomfortable to perform high risk skills such as code/emergency, ventilator care, EKG, and chest tube care. Organizing, prioritizing and communication were rated as difficult tasks during 12-month transition period. New nurses satisfied the benefit package they received from the institution, however, salary was lowest satisfied. Conclusion: Results inform transition program development for new nurses. Initiative of systems that support for the graduate nurse during the first year of practice is suggested.Keywords: new graduate nurse, transition, nurse residency program, clinical education
Procedia PDF Downloads 2382437 Exploring Simple Sequence Repeats within Conserved microRNA Precursors Identified from Tea Expressed Sequence Tag (EST) Database
Authors: Anjan Hazra, Nirjhar Dasgupta, Chandan Sengupta, Sauren Das
Abstract:
Tea (Camellia sinensis) has received substantial attention from the scientific world time to time, not only for its commercial importance, but also for its demand to the health-conscious people across the world for its extensive use as potential sources of antioxidant supplement. These health-benefit traits primarily rely on some regulatory networks of different metabolic pathways. Development of microsatellite markers from the conserved genomic regions is being worthwhile for studying the genetic diversity of closely related species or self-pollinated species. Although several SSR markers have been reported, in tea the trait-specific Simple Sequence Repeats (SSRs) are yet to be identified, which can be used for marker assisted breeding technique. MicroRNAs are endogenous, noncoding, short RNAs directly involved in regulating gene expressions at the post-transcriptional level. It has been found that diversity in miRNA gene interferes the formation of its characteristic hair pin structure and the subsequent function. In the present study, the precursors of small regulatory RNAs (microRNAs) has been fished out from tea Expressed Sequence Tag (EST) database. Furthermore, the simple sequence repeat motifs within the putative miRNA precursor genes are also identified in order to experimentally validate their existence and function. It is already known that genic-SSR markers are very adept and breeder-friendly source for genetic diversity analysis. So, the potential outcome of this in-silico study would provide some novel clues in understanding the miRNA-triggered polymorphic genic expression controlling specific metabolic pathways, accountable for tea quality.Keywords: micro RNA, simple sequence repeats, tea quality, trait specific marker
Procedia PDF Downloads 3122436 The Use of Hydrocolloid Dressing in the Management of Open Wounds in Big Cats
Authors: Catherine Portelli
Abstract:
Felines, such as Panthera tigris, Panthera leo and Puma concolor, have become common residents in animal parks and zoos. They often sustain injuries from other felines within the same, or adjacent enclosures and from playing with items of enrichment and structures of the enclosure itself. These open wounds, and their treatments, are often challenging in the veterinary practice, where feline-specific studies are lacking. This study is based on the author’s clinical experience gained while working at local animal parks in the past five years, and current evidence of hydrocolloid dressing applied to other species. Hydrocolloid dressing is used for secondary healing of chronic and acute wounds, where there is a considerable amount of tissue loss. The patients included in this study were sedated using medetomidine and ketamine every three to four days, for wound treatment and bandage change. Comparative studies of different techniques of open wound management will improve the healing process of exotic felines in the future by decreasing the time of recovery and incidence of other complications. Such studies will also aid with treatment of injuries sustained in wild felines, such as trap and bite wounds, found in natural conservation areas and wild animal sanctuaries.Keywords: felines, hydrocolloid dressing, open wound, secondary healing
Procedia PDF Downloads 1012435 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning
Procedia PDF Downloads 1112434 Authentication and Legal Admissibility of 'Computer Evidence from Electronic Voting Machines' in Electoral Litigation: A Qualitative Legal Analysis of Judicial Opinions of Appellate Courts in the USA
Authors: Felix O. Omosele
Abstract:
Several studies have established that electronic voting machines are prone to multi-faceted challenges. One of which is their capacity to lose votes after the ballots might have been cast. Therefore, the international consensus appears to favour the use of electronic voting machines that are accompanied with verifiable audit paper audit trail (VVPAT). At present, there is no known study that has evaluated the impacts (or otherwise) of this verification and auditing on the authentication, admissibility and evidential weight of electronically-obtained electoral data. This legal inquiry is important as elections are sometimes won or lost in courts and on the basis of such data. This gap will be filled by the present research work. Using the United States of America as a case study, this paper employed a qualitative legal analysis of several of its appellate courts’ judicial opinions. This analysis equally unearths the necessary statutory rules and regulations that are important to the research problem. The objective of the research is to highlight the roles played by VVPAT on electoral evidence- as seen from the eyes of the court. The preliminary outcome of this qualitative analysis shows that the admissibility and weight attached to ‘Computer Evidence from e-voting machines (CEEM)’ are often treated with general standards applied to other computer-stored evidence. These standards sometimes fail to embrace the peculiar challenges faced by CEEM, particularly with respect to their tabulation and transmission. This paper, therefore, argues that CEEM should be accorded unique consideration by courts. It proposes the development of a legal standard which recognises verification and auditing as ‘weight enhancers’ for electronically-obtained electoral data.Keywords: admissibility of computer evidence, electronic voting, qualitative legal analysis, voting machines in the USA
Procedia PDF Downloads 1962433 Factors Influencing the Use of Psychoactive Substance among Senior Secondary Students in Ibadan South-West Local Government, Oyo State, Nigeria
Authors: Olajumoke Temilola Fatimat, Fasasi Fausat Kikelomo, Ishola Ganiyat Folasayo, Omayeka Mary
Abstract:
Psychoactive substances are chemical substances that affect the normal functioning of the brain and cause changes in behavior, mood, and consciousness. Psychoactive substance abuse constitutes one of the most important risk–taking behavior among adolescents and young adults in secondary schools. The study, therefore, assessed the factors influencing the use of psychoactive substances among senior secondary students in Ibadan South–West Local Government Area, Oyo State. A descriptive non-experimental design was adopted; purposive and simple random sampling techniques were used to select 330 respondents, while questionnaires were used for data collection. The descriptive statistics of frequency count, percentages, inferential statistics of chi-square, and analysis of variance were used for the analysis. The results revealed that the majority of the respondents had heard of the term substance abuse before 226 (75.3%); it was also revealed that the majority of the respondents had good knowledge of psychoactive substances, 67.8%. There was no significant relationship between age and knowledge of psychoactive substances among senior secondary students, with a p-value of 0.199. The outcome of this study indicates that drug abuse is increasing day by day among secondary school students and may have greatly contributed to poor performance in examinations as well as undermining academic ability and performance among students. It was recommended that efforts should be made by the school authorities of the secondary schools in Ibadan South–West Local Government Area, Oyo State, and in Oyo State generally in collaboration with health personnel to educate adolescents on psychoactive substance abuse. This is to ensure that adolescents are adequately educated and updated on knowledge of psychoactive substance abuse.Keywords: factors, influence, psychoactive substance, secondary school
Procedia PDF Downloads 712432 Challenges and Opportunities for Facilitating Telemedicine Services Through Information and Communication Technologies (ICT) in Ethiopia
Authors: Wegene Demeke
Abstract:
Background: The demand for healthcare services is growing in developing and developed countries. Information and communication technology is used to facilitate healthcare services. In the case of developing countries, implementing telemedicine is aimed at providing healthcare for people living in remote areas where health service is not accessible. The implementations of telemedicine in developing countries are unsuccessful. For example, the recent study indicates that 90% of telemedicine projects are abandoned or failed in developing countries. Several researchers reported the technological challenges as the main factor for the non-adoption of telemedicine. However, this research reports the health professionals’ perspectives arising from technical, social and organizational factors that are considered as key elements for the setting and running of telemedicine in Ethiopia. The importance and significance of telemedicine for healthcare is growing. For example, the use of telemedicine in the current pandemic situation becomes an essential strategic element in providing healthcare services in developed countries. Method: Qualitative and quantitative exploratory research methods used to collect data to find factors affecting the adoption of Information and communication technologies for telemedicine use. The survey was distributed using emails and Google forms. The email addresses were collected from personal contact and publicly available websites in Ethiopia. The thematic analysis used to build the barriers and facilitators factors for establishing telemedicine services. A survey questionnaire with open-and-close questions was used to collect data from 175 health professionals. Outcome: The result of this research will contribute to building the key barriers and facilitators factors of telemedicine from the health professional perspectives in developing countries. The thematic analysis provides barriers and facilitators factors arising from technical, organizational, and social sources.Keywords: telemedicine, ICT, developing country, Ethiopia, health service
Procedia PDF Downloads 1072431 Monitoring the Change of Padma River Bank at Faridpur, Bangladesh Using Remote Sensing Approach
Authors: Ilme Faridatul, Bo Wu
Abstract:
Bangladesh is often called as a motherland of rivers. It contains about 700 rivers among all these the Padma River is one of the largest rivers of Bangladesh. The change of river bank and erosion has become a common environmental natural hazard in Bangladesh. The river banks are under intense pressure from natural processes such as erosion and accretion as well as anthropogenic processes such as urban growth and pollution. The Padma River is flowing along ten districts of Bangladesh among all these Faridpur district is most vulnerable to river bank erosion. The severity of the river erosion is so high that each year a thousand of populations become homeless and lose their agricultural lands. Though the Faridpur district is most vulnerable to river bank erosion no specific research has been conducted to identify the changing pattern of river bank along this district. The outcome of the research may serve as guidance to prepare river bank monitoring program and management. This research has utilized integrated techniques of remote sensing and geographic information system to monitor the changes from 1995 to 2015 at Faridpur district. To discriminate the land water interface Modified Normalized Difference Water Index (MNDWI) algorithm is applied and on screen digitization approach is used over MNDWI images of 1995, 2002 and 2015 for river bank line extraction. The extent of changes in the river bank along Faridpur district is estimated through overlaying the digitized maps of all three years. The river bank lines are highlighted to infer the erosion and accretion and the changes are calculated. The result shows that the middle of the river is gaining land through sedimentation and the both side river bank is shifting causing severe erosion that consequently resulting the loss of farmland and homestead. Over the study period from 1995 to 2015 it witnessed huge erosion and accretion that played an active role in the changes of the river bank.Keywords: river bank, erosion and accretion, change monitoring, remote sensing
Procedia PDF Downloads 3252430 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine
Authors: Chen Wang, Chun Liang
Abstract:
Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine
Procedia PDF Downloads 1732429 Cotton Treated with Spent Coffee Extract for Realizing Functional Textiles
Authors: Kyung Hwa Hong
Abstract:
The objective of this study was to evaluate the ability of spent coffee extract to enhance the antioxidant and antimicrobial properties of cotton fabrics. The emergence and spread of infectious diseases has raised a global interest in the antimicrobial substances. The safety of chemical agents, such as antimicrobials and dyes, which may irritate the skin, cause cellular and organ damage, and have adverse environmental impacts during their manufacturing, in relation to the human body has not been established. Nevertheless, there is a growing interest in natural antimicrobials that kill microorganisms or stop their growth without dangerous effects on human health. Spent coffee is the by-product of coffee brewing and amounted to 96,000 tons worldwide in 2015. Coffee components such as caffeine, melanoidins, and chlorogenic acid have been reported to possess multifunctional properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Therefore, the current study examined the possibility of applying spent coffee in functional textile finishing. Spent coffee was extracted with 60% methanol solution, and the major components of the extract were quantified. In addition, cotton fabrics treated with spent coffee extract through a pad-dry-cure process were investigated for antioxidant and antimicrobial activities. The cotton fabrics finished with the spent coffee extract showed an increase in yellowness, which is an unfavorable outcome from the fabric finishing process. However, the cotton fabrics finished with the spent coffee extract exhibited considerable antioxidant activity. In particular, the antioxidant ability significantly increased with increasing concentrations of the spent coffee extract. The finished cotton fabrics showed antimicrobial ability against S. aureus but relatively low antimicrobial ability against K. pneumoniae. Therefore, further investigations are needed to determine the appropriate concentration of spent coffee extract to inhibit the growth of various pathogenic bacteria.Keywords: spent coffee grounds, cotton, natural finishing agent, antioxidant activity, antimicrobial activity
Procedia PDF Downloads 1662428 A Framework on Data and Remote Sensing for Humanitarian Logistics
Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini
Abstract:
Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making
Procedia PDF Downloads 3792427 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network
Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane
Abstract:
Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.Keywords: ASD, artificial neural network, kinect, stereotypical motor movements
Procedia PDF Downloads 3062426 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine
Procedia PDF Downloads 1762425 Symmetry of Performance across Lower Limb Tests between the Dominant and Non-Dominant Legs
Authors: Ghulam Hussain, Herrington Lee, Comfort Paul, Jones Richard
Abstract:
Background: To determine the functional limitations of the lower limbs or readiness to return to sport, most rehabilitation programs use some form of testing; however, it is still unknown what the pass criteria is. This study aims to investigate the differences between the dominant and non-dominant leg performances across several lower limb tasks, which are hop tests, two-dimensional (2D) frontal plane projection angle (FPPA) tests, and isokinetic muscle tests. This study also provides the reference values for the limb symmetry index (LSI) for the hop and isokinetic muscle strength tests. Twenty recreationally active participants were recruited, 11 males and 9 females (age 23.65±2.79 years; height 169.9±3.74 cm; and body mass 74.72±5.81 kg. All tests were undertaken on the dominant and non-dominant legs. These tests are (1) Hop tests, which include horizontal hop for distance and crossover hop tests, (2) Frontal plane projection angle (FPPA): 2D capturing from two different tasks, which are forward hop landing and squatting, and (3) Isokinetic muscle strength tests: four different muscles were tested: quadriceps, hamstring, ankle plantar flexor, and hip extensor muscles. The main outcome measurements were, for the (1) hop tests: maximum distance was taken when undertaking single/crossover hop for distance using a standard tape measure, (2) for the FPPA: the knee valgus angle was measured from the maximum knee flexion position using a single 2D camera, and (3) for the isokinetic muscle strength tests: three different variables were measured: peak torque, peak torque to body weight, and the total work to body weight. All the muscle strength tests have been applied in both concentric and eccentric muscle actions at a speed of 60°/sec. This study revealed no differences between the dominant and non-dominant leg performance, and 85% of LSI was achieved by the majority of the subjects in both hop and isokinetic muscle tests, and; therefore, one leg’s hop performance can define the other.Keywords: 2D FPPA, hop tests, isokinetic testing, LSI
Procedia PDF Downloads 662424 Investigation of Suspected Viral Hepatitis Outbreaks in North India
Authors: Mini P. Singh, Manasi Majumdar, Kapil Goyal, Pvm Lakshmi, Deepak Bhatia, Radha Kanta Ratho
Abstract:
India is endemic for Hepatitis E virus and frequent water borne outbreaks are reported. The conventional diagnosis rests on the detection of serum anti-HEV IgM antibodies which may take 7-10 days to develop. Early diagnosis in such a situation is desirable for the initiation of prompt control measures. The present study compared three diagnostic methods in 60 samples collected during two suspected HEV outbreaks in the vicinity of Chandigarh, India. The anti-HEV IgM, HEV antigen and HEV-RNA could be detected in serum samples of 52 (86.66%), 16 (26.66%) and 18 (30%) patients respectively. The suitability of saliva samples for antibody detection was also evaluated in 21 paired serum- saliva samples. A total of 15 serum samples showed the presence of anti HEV IgM antibodies, out of which 10 (10/15; 66.6%) were also positive for these antibodies in saliva samples (χ2 = 7.636, p < 0.0057), thus showing a concordance of 76.91%. The positivity of reverse transcriptase PCR and HEV antigen detection was 100% within one week of illness which declined to 5-10% thereafter. The outbreak was attributed to HEV Genotype 1, Subtype 1a and the clinical and environmental strains clustered together. HEV antigen and RNA were found to be an early diagnostic marker with 96.66% concordance. The results indicate that the saliva samples can be used as an alternative to serum samples in an outbreak situation.Keywords: HEV-antigen, outbreak, phylogenetic analysis, saliva
Procedia PDF Downloads 4202423 Internal Auditing and the Performance of State-Owned Enterprises in Emerging Markets
Authors: Jobo Dubihlela, Kofi Boamah
Abstract:
The inimitable role of the internal auditing, challenges and the predicament of state-owned enterprises in emerging markets are acknowledged. Study sought to address the inter-related questions, about how does IAF complement the performance and sustainability of SOEs? How can effective IA control systems be implemented to improve the performance results and culture of SOEs in Namibia? The weaknesses inherent in the SOE sector, unfortunately, impacts on the IAF ability to effectively support the SOEs. Despite these challenges, the study has unearthed IAF potential capabilities to contribute to SOE survival in Namibia by complementing the governance practices of the sector. Using a quantitative research approach, the dataset was collected and analysed from SOEs to confirm the role of the internal auditing function (IAF) as an indispensable concomitant of SOE performance. The study adopted a data approach supported by the literary evidence, which enabled generalisation and connectedness of the issues being addressed. The outcome of the data analysis contributed to achieving the results, which are discussed and eventually support the conclusions reached. Results show that the intractable task of internal auditing depends on the leadership of the board of directors of the SOEs. Study also revealed critical priorities needed to influence policymakers and oversight bodies to overcome the iniquities influencing SOE operations, understand and embrace IAF to salvage a sector that has a lot to offer and yet is severely mismanaged. Results support literature on IA’s contribution to SOE development from a developing country’s point of view and is the first of its kind in Namibia. Findings suggest ways to possibly enhance knowledge development of future researchers and ‘wet their appetite’ for further research in emerging markets and on a global scale.Keywords: internal auditing activity, state-owned enterprises, emerging markets, auditing function
Procedia PDF Downloads 1032422 The Impact of Cognitive Load on Deceit Detection and Memory Recall in Children’s Interviews: A Meta-Analysis
Authors: Sevilay Çankaya
Abstract:
The detection of deception in children’s interviews is essential for statement veracity. The widely used method for deception detection is building cognitive load, which is the logic of the cognitive interview (CI), and its effectiveness for adults is approved. This meta-analysis delves into the effectiveness of inducing cognitive load as a means of enhancing veracity detection during interviews with children. Additionally, the effectiveness of cognitive load on children's total number of events recalled is assessed as a second part of the analysis. The current meta-analysis includes ten effect sizes from search using databases. For the effect size calculation, Hedge’s g was used with a random effect model by using CMA version 2. Heterogeneity analysis was conducted to detect potential moderators. The overall result indicated that cognitive load had no significant effect on veracity outcomes (g =0.052, 95% CI [-.006,1.25]). However, a high level of heterogeneity was found (I² = 92%). Age, participants’ characteristics, interview setting, and characteristics of the interviewer were coded as possible moderators to explain variance. Age was significant moderator (β = .021; p = .03, R2 = 75%) but the analysis did not reveal statistically significant effects for other potential moderators: participants’ characteristics (Q = 0.106, df = 1, p = .744), interview setting (Q = 2.04, df = 1, p = .154), and characteristics of interviewer (Q = 2.96, df = 1, p = .086). For the second outcome, the total number of events recalled, the overall effect was significant (g =4.121, 95% CI [2.256,5.985]). The cognitive load was effective in total recalled events when interviewing with children. All in all, while age plays a crucial role in determining the impact of cognitive load on veracity, the surrounding context, interviewer attributes, and inherent participant traits may not significantly alter the relationship. These findings throw light on the need for more focused, age-specific methods when using cognitive load measures. It may be possible to improve the precision and dependability of deceit detection in children's interviews with the help of more studies in this field.Keywords: deceit detection, cognitive load, memory recall, children interviews, meta-analysis
Procedia PDF Downloads 552421 Childhood Warscape, Experiences from Children of War Offer Key Design Decisions for Safer Built Environments
Authors: Soleen Karim, Meira Yasin, Rezhin Qader
Abstract:
Children’s books present a colorful life for kids around the world, their current environment or what they could potentially have- a home, two loving parents, a playground, and a safe school within a short walk or bus ride. These images are only pages in a donated book for children displaced by war. The environment they live in is significantly different. Displaced children are faced with a temporary life style filled with fear and uncertainty. Children of war associate various structural institutions with a trauma and cannot enter the space, even if it is for their own future development, such as a school. This paper is a collaborative effort with students of the Kennesaw State University architecture department, architectural designers and a mental health professional to address and link the design challenges and the psychological trauma for children of war. The research process consists of a) interviews with former refugees, b) interviews with current refugee children, c) personal understanding of space through one’s own childhood, d) literature review of tested design methods to address various traumas. Conclusion: In addressing the built environment for children of war, it is necessary to address mental health and well being through the creation of space that is sensitive to the needs of children. This is achieved by understanding critical design cues to evoke normalcy and safe space through program organization, color, and symbiosis of synthetic and natural environments. By involving the children suffering from trauma in the design process, aspects of the design are directly enhanced to serve the occupant. Neglecting to involve the participants creates a nonlinear design outcome and does not serve the needs of the occupant to afford them equal opportunity learning and growth experience as other children around the world.Keywords: activist architecture, childhood education, childhood psychology, adverse childhood experiences
Procedia PDF Downloads 1402420 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 1202419 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit
Authors: Khalil Ahmad Kakar
Abstract:
In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model
Procedia PDF Downloads 1832418 Adherence of Hypertensive Patients to Lifestyle Modification Factors: A Cross-Sectional Study
Authors: Fadwa Alhalaiqa, Ahmad Al-Nawafleh, Abdul-Monim Batiha, Rami Masadeh, Aida Abd Alrazek
Abstract:
Healthy lifestyle recommendations (e.g. physical inactivity, unhealthy diet, increased cholesterol levels, obesity, and poor stress management) play an important role in controlling BP. This study aimed to assess lifestyle modification factors among patient diagnosed with hypertension. Methods and materials: A cross section-survey design was used. Data was collected by four questionnaires one was the beliefs about medication (BMQ) and rest were developed to collect data about demographics and clinical characteristics and lifestyle modification factors. Results: Total 312 questionnaires had been completed. The participants had a mean age of 57.6 years (SD =11.8). The results revealed that our participants did not follow healthy lifestyle recommendations; for example the means BS level, BMI, and cholesterol levels were 155 mg/dl (SD= 71.9), 29 kg/2m (SD= 5.4) and 197 mg/dl (SD= 86.6) respectively. A significant correlation was shown between age and BP (P= 0.000). Increase in DBP correlates with a significant increase in cholesterol level (P= .002) and BMI (P= .006). Conclusion: Hypertensive patients did not adhere to healthy lifestyle modification factors. Therefore, an urgent action by addressing behavioral risk factors has a positive impact on preventing and controlling hypertension.Keywords: adherence, healthy lifestyle, hypertension, patients
Procedia PDF Downloads 2792417 Prescribing Pattern of Drugs in Patients with ARDS: An Observational Study
Authors: Rahul Magazine, Shobitha Rao
Abstract:
The aim of this study was to study the prescribing pattern of drugs in patients with ARDS (Acute Respiratory Distress Syndrome) managed at a tertiary care hospital. This observational study was conducted at Kasturba Hospital, Karnataka, India. Data of patients admitted from January 2010 to December 2012 was collected. A total of 150 patients of ARDS were included. Data included patients’ age, gender, clinical disorders precipitating ARDS, and prescribing pattern of drugs. The mean age of the study population was 42.92±13.91 years. 48% of patients were less than 40 years of age. Infection was the cause of ARDS in 81.3% of subjects. Antibiotics were prescribed in all the subjects and beta-lactams were prescribed in 97.3%. 41.3% were prescribed corticosteroids, 39.3% diuretics and 89.3% intravenous fluids. Infection was the commonest etiology for ARDS, and beta-lactams were the commonest antibiotics prescribed. Corticosteroids and diuretics were prescribed in a significant number of patients. Most of the patients received intravenous fluids.Keywords: acute respiratory syndrome, beta lactams, corticosteroids, Acute Respiratory Distress Syndrome (ARDS)
Procedia PDF Downloads 3692416 Prasugrel as First-line Therapy for Stemi Patients Undergoing PPCI
Authors: Diab Z., Hamad A., Dixit A., Al-Rikabi M., Keshaverzi F.
Abstract:
Introduction: According to the NICE guidelines, 2020Prasugrel is the recommended first line treatment in adults with acute coronary syndromes (ACS) in patients with ST-segment-elevation myocardial infarction (STEMI), defined as ST elevation or new left bundle branch block on ECG , that cardiologists intend to treat with primary percutaneous coronary intervention (PCI). The current literature suggests that this is largely due to safety and efficacy, and cost effectiveness. We wanted to do an audit to examine the adherence of the MRI hospital with guidelines in using prasugrel as first-line therapy in patients with STEMI and undergoing PPCI. AIM: To examine the adherence of the MRI hospital with guidelines in using prasugrel as first-line therapy in patients with STEMI and undergoing PPCI Methods: We looked at the patients presented to MRI during1^st of January 2022 to 28th February 2022. We included all the people who were above 18 and were brought to the hospital through the PPCI pathway and diagnosed as ACS and underwent PPCI. We excluded Patients who were brought to the hospital through the PPCI pathway and underwent coronary angiography and their diagnosis was found other than STEMI or if the outcome was death before discharge or they were above age >75 (as per guideline increase bleeding risk of prasugrel in a person aged 75 or older). Results: The total number of patients was 100. There were a total of seventy patients who had STEMI and fit the criteria for inclusion. Out of these, only 72.9% (51) were given Prasugrel as a first line. Seventeen (17) 24.3% STEMI patients were candidates for prasugrel as first-line therapy but were instead offered (clopidogrel/ticagrelor). Two 2 (2.9%) STEMI patients were not given prasugrel as first-line therapy because of C/I (CVA) or the use of anticoagulant Nine 9 (9%) of them died before discharge. Eleven 11 (11%) were above the age of 75. Ten 10 (10%) of patients had a diagnosis other than STEMI. Conclusions and recommendations: Our audit has shown the need to increase awareness amongst staff re: the first line use of Prasugrel as per NICE guidelines. We aim to arrange awareness sessions for staff and increase visibility of the guidelines for the staff to encourage them to adhere to the guideline. Further research is needed to find the optimum treatment in patients above 75.Keywords: pasurgrel, PCI, NICE, STEMI
Procedia PDF Downloads 742415 Evaluating the Understanding of the University Students (Basic Sciences and Engineering) about the Numerical Representation of the Average Rate of Change
Authors: Saeid Haghjoo, Ebrahim Reyhani, Fahimeh Kolahdouz
Abstract:
The present study aimed to evaluate the understanding of the students in Tehran universities (Iran) about the numerical representation of the average rate of change based on the Structure of Observed Learning Outcomes (SOLO). In the present descriptive-survey research, the statistical population included undergraduate students (basic sciences and engineering) in the universities of Tehran. The samples were 604 students selected by random multi-stage clustering. The measurement tool was a task whose face and content validity was confirmed by math and mathematics education professors. Using Cronbach's Alpha criterion, the reliability coefficient of the task was obtained 0.95, which verified its reliability. The collected data were analyzed by descriptive statistics and inferential statistics (chi-squared and independent t-tests) under SPSS-24 software. According to the SOLO model in the prestructural, unistructural, and multistructural levels, basic science students had a higher percentage of understanding than that of engineering students, although the outcome was inverse at the relational level. However, there was no significant difference in the average understanding of both groups. The results indicated that students failed to have a proper understanding of the numerical representation of the average rate of change, in addition to missconceptions when using physics formulas in solving the problem. In addition, multiple solutions were derived along with their dominant methods during the qualitative analysis. The current research proposed to focus on the context problems with approximate calculations and numerical representation, using software and connection common relations between math and physics in the teaching process of teachers and professors.Keywords: average rate of change, context problems, derivative, numerical representation, SOLO taxonomy
Procedia PDF Downloads 922414 Effects of Turmeric Supplementation on Serum Lipid Profile in Patients with Non-Alcoholic Fatty Liver Disease
Authors: Maryam Rafraf, Aida Ghaffari
Abstract:
Objectives: Nonalcoholic fatty liver disease (NAFLD) is considered as an independent risk factor for cardiovascular disease (CVD). Dyslipidemia contributes to the enhanced risk of CVD in persons with NAFLD. This study aimed to investigate the effects of turmeric supplementation on serum lipids levels in patients with NAFLD. Methods: In this double-blind, randomized, controlled clinical trial, 46 NAFLD patients (21 males and 25 females; age range, 20 – 60 years) were randomly assigned in the two groups. The intervention and control groups received 3g of turmeric (n = 23) and placebo (n = 23), daily for 12 weeks. Fasting blood samples were collected at baseline and at the end of the trial. Results: Turmeric supplementation significantly increased serum levels of HDL-C compared with the placebo group at the end of the study (by 12.73%, P < 0.05). Serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol were significantly reduced within turmeric group at the end of the study (P < 0.05). Conclusions: Turmeric consumption had beneficial effects on serum lipids levels of subjects and may be useful in controlling of CVD risk factors in NAFLD patients.Keywords: nonalcoholic fatty liver, serum lipids, supplementation, turmeric
Procedia PDF Downloads 1552413 Cerebrovascular Modeling: A Vessel Network Approach for Fluid Distribution
Authors: Karla E. Sanchez-Cazares, Kim H. Parker, Jennifer H. Tweedy
Abstract:
The purpose of this work is to develop a simple compartmental model of cerebral fluid balance including blood and cerebrospinal-fluid (CSF). At the first level the cerebral arteries and veins are modelled as bifurcating trees with constant scaling factors between generations which are connected through a homogeneous microcirculation. The arteries and veins are assumed to be non-rigid and the cross-sectional area, resistance and mean pressure in each generation are determined as a function of blood volume flow rate. From the mean pressure and further assumptions about the variation of wall permeability, the transmural fluid flux can be calculated. The results suggest the next level of modelling where the cerebral vasculature is divided into three compartments; the large arteries, the small arteries, the capillaries and the veins with effective compliances and permeabilities derived from the detailed vascular model. These vascular compartments are then linked to other compartments describing the different CSF spaces, the cerebral ventricles and the subarachnoid space. This compartmental model is used to calculate the distribution of fluid in the cranium. Known volumes and flows for normal conditions are used to determine reasonable parameters for the model, which can then be used to help understand pathological behaviour and suggest clinical interventions.Keywords: cerebrovascular, compartmental model, CSF model, vascular network
Procedia PDF Downloads 275