Search results for: batch-constrained reinforcement learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7787

Search results for: batch-constrained reinforcement learning

4937 A First Order Shear Deformation Theory Approach for the Buckling Behavior of Nanocomposite Beams

Authors: P. Pramod Kumar, Madhu Salumari, V. V. Subba Rao

Abstract:

Due to their high strength-to-weight ratio, carbon nanotube (CNTs) reinforced polymer composites are being considered as one of the most promising nanocomposites which can improve the performance when used in structural applications. The buckling behavior is one of the most important parameter needs to be considered in the design of structural members like beams and plates. In the present paper, the elastic constants of CNT reinforced polymer composites are evaluated by using Mori-Tanaka micromechanics approach. Knowing the elastic constants, an analytical study is being conducted to investigate the buckling behavior of nanocomposites for different CNT volume fractions at different boundary conditions using first-order shear deformation theory (FSDT). The effect of stacking sequence and CNT radius on the buckling of beam has also been presented. This study is being conducted primarily with an intension to find the stiffening effect of CNTs when used in polymer composites as reinforcement.

Keywords: CNT, buckling, micromechanics, FSDT

Procedia PDF Downloads 279
4936 Embracing Diverse Learners: A Way Towards Effective Learning

Authors: Mona Kamel Hassan

Abstract:

Teaching a class of diverse learners poses a great challenge not only for foreign and second language teachers, but also for teachers in different disciplines as well as for curriculum designers. Thus, to contribute to previous research tackling language diversity, the current paper shares the experience of teaching a reading, writing and vocabulary building course to diverse Arabic as a Foreign Language learners in their advanced language proficiency level. Diversity is represented in students’ motivation, their prior knowledge, their various needs and interests, their level of anxiety, and their different learning styles and skills. While teaching this course the researcher adopted the universal design for learning (UDL) framework, which is a means to meet the various needs of diverse learners. UDL stresses the importance of enabling the entire diverse students to gain skills, knowledge, and enthusiasm to learn through the employment of teaching methods that respond to students' individual differences. Accordingly, the educational curriculum developed for this course and the teaching methods employed is modified. First, the researcher made the language curriculum vivid and attractive to inspire students' learning and to keep them engaged in their learning process. The researcher encouraged the entire students, from the first day, to suggest topics of their interest; political, social, cultural, etc. The authentic Arabic texts chosen are those that best meet students’ needs, interests, lives, and sociolinguistic issues, together with the linguistic and cultural components. In class and under the researcher’s guidance, students dig into these topics to find solutions for the tackled issues while working with their peers. Second, to gain equal opportunities to demonstrate learning, role-playing was encouraged to give students the opportunity to perform different linguistic tasks, to reflect and share their diverse interests and cultural backgrounds with their peers. Third, to bring the UDL into the classroom, students were encouraged to work on interactive, collaborative activities through technology to improve their reading and writing skills and reinforce their mastery of the accumulated vocabulary, idiomatic expressions, and collocations. These interactive, collaborative activities help to facilitate student-student communication and student-teacher communication and to increase comfort in this class of diverse learners. Detailed samples of the educational curriculum and interactive, collaborative activities developed, accompanied by methods of teaching employed to teach these diverse learners, are presented for illustration. Results revealed that students are responsive to the educational materials which are developed for this course. Therefore, they engaged in the learning process and classroom activities and discussions effectively. They also appreciated their instructor’s willingness to differentiate the teaching methods to suit students of diverse background knowledge, learning styles, level of anxiety, etc. Finally, the researcher believes that sharing this experience in teaching diverse learners will help both language teachers and teachers in other disciplines to develop a better understanding to meet their students' diverse needs. Results will also pave the way for curriculum designers to develop educational material that meets the needs of diverse learners.

Keywords: teaching, language, diverse, learners

Procedia PDF Downloads 99
4935 Children Learning Chinese as a Home Language in an English-Dominant Society

Authors: Sinming Law

Abstract:

Many Chinese families face many difficulties in maintaining their heritage language for their children in English-dominant societies. This article first looks at the losses from monolingualism and benefits of bilingualism. Then, it explores the common methods used today in teaching Chinese. We conclude that families and community play an indispensable role in their children’s acquisition. For children to acquire adequate proficiency in the language, educators should inform families about this topic and partner with them. Families can indeed be active in the process. Hence, the article further describes a guide designed and written by the author to accommodate the needs of parents. It can be used as a model for future guides. Further, the article recommends effective media routes by which families can have access to similar guides.

Keywords: children learning Chinese, biliteracy and bilingual acquisition, family and community support, heritage language maintenance

Procedia PDF Downloads 367
4934 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 83
4933 Synthesis and Characterization of Recycled Isotactic Polypropylene Nanocomposites Containing Date Wood Fiber

Authors: Habib Shaban

Abstract:

Nanocomposites of isotactic polypropylene (iPP) and date wood fiber were prepared after modification of the host matrix by reactive extrusion grafting of maleic anhydride. Chemical and mechanical treatment of date wood flour (WF) was conducted to obtain nanocrystalline cellulose. Layered silicates (clay) were partially intercalated with date wood fiber, and the modified layered silicate was used as filler in the PP matrix via a melt-blending process. The tensile strength of composites prepared from wood fiber modified clay was greater than that of the iPP-clay and iPP-WF composites at a 6% filler concentration, whereas deterioration of mechanical properties was observed when clay and WF were used alone for reinforcement. The dispersion of the filler in the matrix significantly decreased after clay modification with cellulose at higher concentrations, as shown by X-ray diffraction (XRD) data.

Keywords: nanocomposites, isotactic polypropylene, date wood flour, intercalated, melt-blending

Procedia PDF Downloads 384
4932 Education For Social Justice: A Comparative Study of University Teachers' Conceptions and Practice

Authors: Digby Warren, Jiri Kropac

Abstract:

This comparative study seeks to develop a deeper understanding of what is meant by “education for social justice” (ESJ) - an aspiration articulated by universities, though often without much definition. The research methodology involved thematic analysis of data from in-depth interviews with academics (voluntary participants) in different disciplines and institutions in the UK, Czech Republic and other EU countries. The interviews explored lecturers’ conceptions of ESJ, their practice of it, and associated challenges and enabling factors. Main findings are that ESJ is construed as provision of equitable and conscientising education opportunities that run across the whole higher education (HE) journey, from widening access to HE to stimulating critical learning and awareness that can empower graduates to transform their lives and societies. Teaching practice featured study of topics related to social justice; collaborative and creative learning activities, and assignments offering choice and connection to students’ realities. Student responses could be mixed, occasionally resistant, but mostly positive in terms of gaining increased confidence and awareness of equality and social responsibility. Influences at the macro, meso and mico level could support or limit scope for ESJ. Overall, the study highlights the strong, values-based commitment of HE teachers to facilitating student learning engagement, wellbeing and development towards building a better world.

Keywords: higher education, social justice, inclusivity, diversity

Procedia PDF Downloads 75
4931 Role of Machine Learning in Internet of Things Enabled Smart Cities

Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav

Abstract:

This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.

Keywords: IoT, smart city, embedded systems, sustainable environment

Procedia PDF Downloads 575
4930 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite

Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali

Abstract:

In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.

Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force

Procedia PDF Downloads 431
4929 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 48
4928 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 141
4927 An Action Research Study of Developing Foreign Language Teachers’ Intercultural Competence

Authors: Wei Hing Rosenkvist

Abstract:

In the past few decades, concerns and demands of promoting student intercultural communicative competence in foreign language education have been increasing along with the rapid growth of information technologies and globalization in the 21st century. In Sweden, related concepts such as internationalization, global citizenship, multiculturalism, and intercultural communication etc., are also keywords that would be found in the written learning objectives of the foreign language education in all levels. Being one of the leading higher institutes in distance education in Europe, Dalarna University clearly states that after completion of the teacher education program, students shall understand the needs for integrating internationalization, intercultural and global perspective in teaching and learning in Swedish schools and implement their own studies to promote education in an international and global context. Despite the fact that many teachers and educators agree with the institutes’ mission and vision about the importance of internationalization and the need of increasing student understanding of intercultural and global perspective, they might find this objective unattainable and restricted due to the nature of the subject and their personal knowledge of intercultural competence. When conducting a comprehensive Chinese language course for the students who are going to become Chinese foreign language teachers, the researcher found that all the learning objectives are linguistic oriented while grammatical components dominate the entire course. Apparently, there is a gap between the learning objectives of the course and the DU’s mission of fostering an international learner with intercultural and globalized perspectives. How to include this macro-learning objective in a foreign language course is a great challenge to the educator. Although scholars from different academic domains have provided different theoretical frameworks and approaches for developing student intercultural competence, research that focuses on the didactic perspectives of developing student intercultural competence in teaching Chinese as a foreign language education (CFL) is limited and practical examples are rare. This has motivated the researcher to conduct an action research study that aims at integrating DU’s macro-learning objective in a current CFL course through different didactic practices with a purpose of developing the teacher student intercultural competence. This research study aims to, firstly, illustrate the cross-cultural knowledge integrated into the present Chinese language course for developing intercultural competence. Secondly, it investigates different didactic means that can be utilized to deliver cross-cultural knowledge to student teachers in the present course without generating dramatic disturbance of the syllabus. Thirdly, it examines the effectiveness of these didactic means in enhancing teacher student intercultural competence regarding the need for integrating and implementing internationalization, intercultural and global perspectives in teaching and learning in Swedish schools. Last but not least, it intends to serve as a practical example for developing the student teachers’ intercultural competence in foreign language education in DU and fill in the research gap of this academic domain worldwide.

Keywords: intercultural competence, foreign language education, action research, teacher education

Procedia PDF Downloads 119
4926 The Impact of a Simulated Teaching Intervention on Preservice Teachers’ Sense of Professional Identity

Authors: Jade V. Rushby, Tony Loughland, Tracy L. Durksen, Hoa Nguyen, Robert M. Klassen

Abstract:

This paper reports a study investigating the development and implementation of an online multi-session ‘scenario-based learning’ (SBL) program administered to preservice teachers in Australia. The transition from initial teacher education to the teaching profession can present numerous cognitive and psychological challenges for early career teachers. Therefore, the identification of additional supports, such as scenario-based learning, that can supplement existing teacher education programs may help preservice teachers to feel more confident and prepared for the realities and complexities of teaching. Scenario-based learning is grounded in situated learning theory which holds that learning is most powerful when it is embedded within its authentic context. SBL exposes participants to complex and realistic workplace situations in a supportive environment and has been used extensively to help prepare students in other professions, such as legal and medical education. However, comparatively limited attention has been paid to investigating the effects of SBL in teacher education. In the present study, the SBL intervention provided participants with the opportunity to virtually engage with school-based scenarios, reflect on how they might respond to a series of plausible response options, and receive real-time feedback from experienced educators. The development process involved several stages, including collaboration with experienced educators to determine the scenario content based on ‘critical incidents’ they had encountered during their teaching careers, the establishment of the scoring key, the development of the expert feedback, and an extensive review process to refine the program content. The 4-part SBL program focused on areas that can be challenging in the beginning stages of a teaching career, including managing student behaviour and workload, differentiating the curriculum, and building relationships with colleagues, parents, and the community. Results from prior studies implemented by the research group using a similar 4-part format have shown a statistically significant increase in preservice teachers’ self-efficacy and classroom readiness from the pre-test to the final post-test. In the current research, professional teaching identity - incorporating self-efficacy, motivation, self-image, satisfaction, and commitment to teaching - was measured over six weeks at multiple time points: before, during, and after the 4-part scenario-based learning program. Analyses included latent growth curve modelling to assess the trajectory of change in the outcome variables throughout the intervention. The paper outlines (1) the theoretical underpinnings of SBL, (2) the development of the SBL program and methodology, and (3) the results from the study, including the impact of the SBL program on aspects of participating preservice teachers’ professional identity. The study shows how SBL interventions can be implemented alongside the initial teacher education curriculum to help prepare preservice teachers for the transition from student to teacher.

Keywords: classroom simulations, e-learning, initial teacher education, preservice teachers, professional learning, professional teaching identity, scenario-based learning, teacher development

Procedia PDF Downloads 71
4925 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.

Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization

Procedia PDF Downloads 261
4924 A Case Study to Observe How Students’ Perception of the Possibility of Success Impacts Their Performance in Summative Exams

Authors: Rochelle Elva

Abstract:

Faculty in Higher Education today are faced with the challenge of convincing their students of the importance of learning and mastery of skills. This is because most students often have a single motivation -to get high grades. If it appears that this goal will not be met, they lose their motivation, and their academic efforts wane. This is true even for students in the competitive fields of STEM, including Computer Science majors. As educators, we have to understand our students and leverage what motivates them to achieve our learning outcomes. This paper presents a case study that utilizes cognitive psychology’s Expectancy Value Theory and Motivation Theory to investigate the effect of sustained expectancy for success on students’ learning outcomes. In our case study, we explore how students’ motivation and persistence in their academic efforts are impacted by providing them with an unexpected possible path to success that continues to the end of the semester. The approach was tested in an undergraduate computer science course with n = 56. The results of the study indicate that when presented with the real possibility of success, despite existing low grades, both low and high-scoring students persisted in their efforts to improve their performance. Their final grades were, on average, one place higher on the +/-letter grade scale, with some students scoring as high as three places above their predicted grade.

Keywords: expectancy for success and persistence, motivation and performance, computer science education, motivation and performance in computer science

Procedia PDF Downloads 81
4923 An Analytical Metric and Process for Critical Infrastructure Architecture System Availability Determination in Distributed Computing Environments under Infrastructure Attack

Authors: Vincent Andrew Cappellano

Abstract:

In the early phases of critical infrastructure system design, translating distributed computing requirements to an architecture has risk given the multitude of approaches (e.g., cloud, edge, fog). In many systems, a single requirement for system uptime / availability is used to encompass the system’s intended operations. However, when architected systems may perform to those availability requirements only during normal operations and not during component failure, or during outages caused by adversary attacks on critical infrastructure (e.g., physical, cyber). System designers lack a structured method to evaluate availability requirements against candidate system architectures through deep degradation scenarios (i.e., normal ops all the way down to significant damage of communications or physical nodes). This increases risk of poor selection of a candidate architecture due to the absence of insight into true performance for systems that must operate as a piece of critical infrastructure. This research effort proposes a process to analyze critical infrastructure system availability requirements and a candidate set of systems architectures, producing a metric assessing these architectures over a spectrum of degradations to aid in selecting appropriate resilient architectures. To accomplish this effort, a set of simulation and evaluation efforts are undertaken that will process, in an automated way, a set of sample requirements into a set of potential architectures where system functions and capabilities are distributed across nodes. Nodes and links will have specific characteristics and based on sampled requirements, contribute to the overall system functionality, such that as they are impacted/degraded, the impacted functional availability of a system can be determined. A machine learning reinforcement-based agent will structurally impact the nodes, links, and characteristics (e.g., bandwidth, latency) of a given architecture to provide an assessment of system functional uptime/availability under these scenarios. By varying the intensity of the attack and related aspects, we can create a structured method of evaluating the performance of candidate architectures against each other to create a metric rating its resilience to these attack types/strategies. Through multiple simulation iterations, sufficient data will exist to compare this availability metric, and an architectural recommendation against the baseline requirements, in comparison to existing multi-factor computing architectural selection processes. It is intended that this additional data will create an improvement in the matching of resilient critical infrastructure system requirements to the correct architectures and implementations that will support improved operation during times of system degradation due to failures and infrastructure attacks.

Keywords: architecture, resiliency, availability, cyber-attack

Procedia PDF Downloads 109
4922 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: analogy-making, categorization, learning of categories, abstraction, hierarchical structure

Procedia PDF Downloads 191
4921 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade

Procedia PDF Downloads 224
4920 The Training Demands of Nursing Assistants on Urinary Incontinence in Nursing Homes: A Mixed Methods Study

Authors: Lulu Liao, Huijing Chen, Yinan Zhao, Hongting Ning, Hui Feng

Abstract:

Urinary tract infection rate is an important index of care quality in nursing homes. The aim of the study is to understand the nursing assistant's current knowledge and attitudes of urinary incontinence and to explore related stakeholders' viewpoint about urinary incontinence training. This explanatory sequential study used Knowledge, Practice, and Attitude Model (KAP) and Adult Learning Theories, as the conceptual framework. The researchers collected data from 509 nursing assistants in sixteen nursing homes in Hunan province in China. The questionnaire survey was to assess the knowledge and attitude of urinary incontinence of nursing assistants. On the basis of quantitative research and combined with focus group, training demands were identified, which nurse managers should adopt to improve nursing assistants’ professional practice ability in urinary incontinence. Most nursing assistants held the poor knowledge (14.0 ± 4.18) but had positive attitudes (35.5 ± 3.19) toward urinary incontinence. There was a significant positive correlation between urinary incontinence knowledge and nursing assistants' year of work and educational level, urinary incontinence attitude, and education level (p < 0.001). Despite a general awareness of the importance of prevention of urinary tract infections, not all nurse managers fully valued the training in urinary incontinence compared with daily care training. And the nursing assistants required simple education resources to equip them with skills to address problem about urinary incontinence. The variety of learning methods also highlighted the need for educational materials, and nursing assistants had shown a strong interest in online learning. Related education material should be developed to meet the learning need of nurse assistants and provide suitable training method for planned quality improvement in urinary incontinence.

Keywords: mixed methods, nursing assistants, nursing homes, urinary incontinence

Procedia PDF Downloads 137
4919 Evaluation of the Efficiency of French Language Educational Software for Learners in Semnan Province, Iran

Authors: Alireza Hashemi

Abstract:

In recent decades, language teaching methodology has undergone significant changes due to the advent of computers and the growth of educational software. French language education has also benefited from these developments, and various software has been produced to facilitate the learning of this language. However, the question arises whether these software programs meet the educational needs of Iranian learners, particularly in Semnan Province. The aim of this study is to evaluate the efficiency and effectiveness of French language educational software for learners in Semnan Province, considering educational, cultural, and technical criteria. In this study, content analysis and performance evaluation methods were used to examine the educational software ‘Français Facile’. This software was evaluated based on criteria such as teaching methods, cultural compatibility, and technical features. To collect data, standardized questionnaires and semi-structured interviews with learners in Semnan Province were used. Additionally, the SPSS statistical software was employed for quantitative data analysis, and the thematic analysis method was used for qualitative data. The results indicated that the ‘Français Facile’ software has strengths such as providing diverse educational content and an interactive learning environment. However, some weaknesses include the lack of alignment of educational content with the learning culture of learners in Semnan Province and technical issues in software execution. Statistical data showed that 65% of learners were satisfied with the educational content, but 55% reported issues related to cultural alignment with their needs. This study indicates that to enhance the efficiency of French language educational software, there is a need to localize educational content and improve technical infrastructure. Producing locally adapted educational software can improve the quality of language learning and increase the motivation of learners in Semnan Province. This research emphasizes the importance of understanding the cultural and educational needs of learners in the development of educational software and recommends that developers of educational software pay special attention to these aspects.

Keywords: educational software, French language, Iran, learners in Semnan province

Procedia PDF Downloads 42
4918 Students' Perspectives about Humor and the Process of Learning Spanish as a Foreign Language

Authors: Samuel Marínez González

Abstract:

In the last decades, the studies about humor have been increasing significantly in all areas. In the field of education and, specially, in the second language teaching, most research has concentrated on the beneficial effects that the introduction of humor in the process of teaching and learning a foreign language, as well as its impact on teachers and students. In the following research, we will try to know the learners’ perspectives about humor and its use in the Spanish as a Foreign Language classes. In order to do this, a different range of students from the Spanish courses at the University of Cape Town will participate in a survey that will reveal their beliefs about the frequency of humor in their daily lives and their Spanish lessons, their reactions to humorous situations, and the main advantages or disadvantages, from their point of view, to the introduction of humor in the teaching of Spanish as a Foreign Language.

Keywords: education, foreign languages, humor, pedagogy, Spanish as a Foreign Language, students’ perceptions

Procedia PDF Downloads 341
4917 Integrating AI in Education: Enhancing Learning Processes and Personalization

Authors: Waleed Afandi

Abstract:

Artificial intelligence (AI) has rapidly transformed various sectors, including education. This paper explores the integration of AI in education, emphasizing its potential to revolutionize learning processes, enhance teaching methodologies, and personalize education. We examine the historical context of AI in education, current applications, and the potential challenges and ethical considerations associated with its implementation. By reviewing a wide range of literature, this study aims to provide a comprehensive understanding of how AI can be leveraged to improve educational outcomes and the future directions of AI-driven educational innovations. Additionally, the paper discusses the impact of AI on student engagement, teacher support, and administrative efficiency. Case studies highlighting successful AI applications in diverse educational settings are presented, showcasing the practical benefits and real-world implications. The analysis also addresses potential disparities in access to AI technologies and suggests strategies to ensure equitable implementation. Through a balanced examination of the promises and pitfalls of AI in education, this study seeks to inform educators, policymakers, and technologists about the optimal pathways for integrating AI to foster an inclusive, effective, and innovative educational environment.

Keywords: artificial intelligence, education, personalized learning, teaching methodologies, educational outcomes, AI applications, student engagement, teacher support, administrative efficiency, equity in education

Procedia PDF Downloads 32
4916 The Development and Evaluation of the Reliability and Validity of the Science Flow Experience Scale

Authors: Wen-Wei Chiang

Abstract:

In this study, the researcher developed a scale for use in measuring the degree to which high school students experience a state of flow. The researcher then verified its reliability and validity in an actual classroom setting. The ultimate objective was to identify feasible methods by which to promote the experience of a flow state among high school students engaged in the study of science. The nine indices identified in this study to assess the engagement of high school students focus primarily on the study of science-related topics; however, the principles on which they are based are applicable to a wide range of learning situations. Teachers must outline the goals of each lesson clearly and provide unambiguous feedback. They must also look for ways to make the lessons more fun and appealing.

Keywords: flow experience, positive psychology, questionnaire, science learning

Procedia PDF Downloads 119
4915 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming

Authors: Rohit Mittal, Bright Keswani, Amit Mithal

Abstract:

This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.

Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming

Procedia PDF Downloads 646
4914 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 130
4913 Learning Language through Story: Development of Storytelling Website Project for Amazighe Language Learning

Authors: Siham Boulaknadel

Abstract:

Every culture has its share of a rich history of storytelling in oral, visual, and textual form. The Amazigh language, as many languages, has its own which has entertained and informed across centuries and cultures, and its instructional potential continues to serve teachers. According to many researchers, listening to stories draws attention to the sounds of language and helps children develop sensitivity to the way language works. Stories including repetitive phrases, unique words, and enticing description encourage students to join in actively to repeat, chant, sing, or even retell the story. This kind of practice is important to language learners’ oral language development, which is believed to correlate completely with student’s academic success. Today, with the advent of multimedia, digital storytelling for instance can be a practical and powerful learning tool. It has the potential in transforming traditional learning into a world of unlimited imaginary environment. This paper reports on a research project on development of multimedia Storytelling Website using traditional Amazigh oral narratives called “tell me a story”. It is a didactic tool created for the learning of good moral values in an interactive multimedia environment combining on-screen text, graphics and audio in an enticing environment and enabling the positive values of stories to be projected. This Website developed in this study is based on various pedagogical approaches and learning theories deemed suitable for children age 8 to 9 year-old. The design and development of Website was based on a well-researched conceptual framework enabling users to: (1) re-play and share the stories in schools or at home, and (2) access the Website anytime and anywhere. Furthermore, the system stores the students work and activities over the system, allowing parents or teachers to monitor students’ works, and provide online feedback. The Website contains following main feature modules: Storytelling incorporates a variety of media such as audio, text and graphics in presenting the stories. It introduces the children to various kinds of traditional Amazigh oral narratives. The focus of this module is to project the positive values and images of stories using digital storytelling technique. Besides development good moral sense in children using projected positive images and moral values, it also allows children to practice their comprehending and listening skills. Reading module is developed based on multimedia material approach which offers the potential for addressing the challenges of reading instruction. This module is able to stimulate children and develop reading practice indirectly due to the tutoring strategies of scaffolding, self-explanation and hyperlinks offered in this module. Word Enhancement assists the children in understanding the story and appreciating the good moral values more efficiently. The difficult words or vocabularies are attached to present the explanation, which makes the children understand the vocabulary better. In conclusion, we believe that the interactive multimedia storytelling reveals an interesting and exciting tool for learning Amazigh. We plan to address some learning issues, in particularly the uses of activities to test and evaluate the children on their overall understanding of story and words presented in the learning modules.

Keywords: Amazigh language, e-learning, storytelling, language teaching

Procedia PDF Downloads 404
4912 Novel Ti/Al-Cr-Fe Metal Matrix Composites Prepared by Spark Plasma Sintering with Excellent Wear Properties

Authors: Ruitao Li, Zhili Dong, Nay Win Khun, Khiam Aik Khor

Abstract:

In this study, microstructure and sintering mechanism as well as wear resistance properties of Ti/Al-Cr-Fe metal matrix composites (MMCs) fabricated by spark plasma sintering (SPS) with Ti as matrix and Al-Cr-Fe as reinforcement were investigated. Phases and microstructure of the sintered samples were analyzed using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Wear resistance properties were tested by ball-on-disk method. An Al3Ti ring forms around each Al-Cr-Fe particle as the bonding layer between Ti and Al-Cr-Fe particles. The Al content in Al-Cr-Fe particles experiences a decrease from 70 at.% to 60 at.% in the sintering process. And these particles consist of quasicrystalline icosahedral AlCrFe and quasicrystal approximants γ-brass Al8(Cr,Fe)5 and Al9(Cr,Fe)4 in the sintered compact. The addition of Al-Cr-Fe particles into the Ti matrix can improve the microhardness by about 40% and the wear resistance is improved by more than 50% due to the increase in the microhardness and the change of wear mechanism.

Keywords: metal matrix composites, spark plasma sintering, phase transformation, wear

Procedia PDF Downloads 421
4911 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 364
4910 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 102
4909 Use of Didactic Bibliographic Resources to Improve the Teaching and Learning Processes of Animal Reproduction in Veterinary Science

Authors: Yasser Y. Lenis, Amy Jo Montgomery, Diego F. Carrillo-Gonzalez

Abstract:

Introduction: The use of didactic instruments in different learning environments plays a pivotal role in enhancing the level of knowledge in veterinary science students. The direct instruction of basic animal reproduction concepts in students enrolled in veterinary medicine programs allows them to elucidate the biological and molecular mechanisms that perpetuate the animal species in an ecosystem. Therefore, universities must implement didactic strategies that facilitate the teaching and learning processes for students and, in turn, enrich learning environments. Objective: to evaluate the effect of the use of a didactic textbook on the level of theoretical knowledge in embryo-maternal recognition for veterinary medicine students. Methods: the participants (n=24) were divided into two experimental groups: control (Ctrl) and treatment (Treat). Both groups received 4 hours of theoretical training regarding the basic concepts in bovine embryo-maternal recognition. However, the Treat group was also exposed to a guided lecture and the activity play-to-learn from a cow reproduction didactic textbook. A pre-test and a post-test were applied to assess the prior and subsequent knowledge in the participants. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, a repeated measures model was applied where the effect of the intervention was considered. Results: no significant difference (p>0,05) was observed in the number of right answers for groups Ctrl (54,2%±12,7) and Treat (40,8%±16,8) in the pre-test. There was no difference (p>0,05) compering the number of right answers in Ctrl pre-test (54,2%±12,7) and post-test (60,8±18,8). However, the Treat group showed a significant (p>0,05) difference in the number of right answers when comparing pre-test (40,8%±16,8) and post-test (71,7%±14,7). Finally, after the theoretical training and the didactic activity in the Treat group, an increase of 10.9% (p<0,05) in the number of right answers was found when compared with the Ctrl group. Conclusion: the use of didactic tools that include guided lectures and activities like play-to-learn from a didactic textbook enhances the level of knowledge in an animal reproduction course for veterinary medicine students.

Keywords: animal reproduction, pedagogic, level of knowledge, learning environment

Procedia PDF Downloads 65
4908 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 26