Search results for: wide bandgap semiconductors
462 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying
Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber
Abstract:
Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor
Procedia PDF Downloads 281461 The Effect of Lead(II) Lone Electron Pair and Non-Covalent Interactions on the Supramolecular Assembly and Fluorescence Properties of Pb(II)-Pyrrole-2-Carboxylato Polymer
Authors: M. Kowalik, J. Masternak, K. Kazimierczuk, O. V. Khavryuchenko, B. Kupcewicz, B. Barszcz
Abstract:
Recently, the growing interest of chemists in metal-organic coordination polymers (MOCPs) is primarily derived from their intriguing structures and potential applications in catalysis, gas storage, molecular sensing, ion exchanges, nonlinear optics, luminescence, etc. Currently, we are devoting considerable effort to finding the proper method of synthesizing new coordination polymers containing S- or N-heteroaromatic carboxylates as linkers and characterizing the obtained Pb(II) compounds according to their structural diversity, luminescence, and thermal properties. The choice of Pb(II) as the central ion of MOCPs was motivated by several reasons mentioned in the literature: i) a large ionic radius allowing for a wide range of coordination numbers, ii) the stereoactivity of the 6s2 lone electron pair leading to a hemidirected or holodirected geometry, iii) a flexible coordination environment, and iv) the possibility to form secondary bonds and unusual non-covalent interactions, such as classic hydrogen bonds and π···π stacking interactions, as well as nonconventional hydrogen bonds and rarely reported tetrel bonds, Pb(lone pair)···π interactions, C–H···Pb agostic-type interactions or hydrogen bonds, and chelate ring stacking interactions. Moreover, the construction of coordination polymers requires the selection of proper ligands acting as linkers, because we are looking for materials exhibiting different network topologies and fluorescence properties, which point to potential applications. The reaction of Pb(NO₃)₂ with 1H-pyrrole-2-carboxylic acid (2prCOOH) leads to the formation of a new four-nuclear Pb(II) polymer, [Pb4(2prCOO)₈(H₂O)]ₙ, which has been characterized by CHN, FT-IR, TG, PL and single-crystal X-ray diffraction methods. In view of the primary Pb–O bonds, Pb1 and Pb2 show hemidirected pentagonal pyramidal geometries, while Pb2 and Pb4 display hemidirected octahedral geometries. The topology of the strongest Pb–O bonds was determined as the (4·8²) fes topology. Taking the secondary Pb–O bonds into account, the coordination number of Pb centres increased, Pb1 exhibited a hemidirected monocapped pentagonal pyramidal geometry, Pb2 and Pb4 exhibited a holodirected tricapped trigonal prismatic geometry, and Pb3 exhibited a holodirected bicapped trigonal prismatic geometry. Moreover, the Pb(II) lone pair stereoactivity was confirmed by DFT calculations. The 2D structure was expanded into 3D by the existence of non-covalent O/C–H···π and Pb···π interactions, which was confirmed by the Hirshfeld surface analysis. The above mentioned interactions improve the rigidity of the structure and facilitate the charge and energy transfer between metal centres, making the polymer a promising luminescent compound.Keywords: coordination polymers, fluorescence properties, lead(II), lone electron pair stereoactivity, non-covalent interactions
Procedia PDF Downloads 145460 Signal Transduction in a Myenteric Ganglion
Authors: I. M. Salama, R. N. Miftahof
Abstract:
A functional element of the myenteric nervous plexus is a morphologically distinct ganglion. Composed of sensory, inter- and motor neurons and arranged via synapses in neuronal circuits, their task is to decipher and integrate spike coded information within the plexus into regulatory output signals. The stability of signal processing in response to a wide range of internal/external perturbations depends on the plasticity of individual neurons. Any aberrations in this inherent property may lead to instability with the development of a dynamics chaos and can be manifested as pathological conditions, such as intestinal dysrhythmia, irritable bowel syndrome. The aim of this study is to investigate patterns of signal transduction within a two-neuronal chain - a ganglion - under normal physiological and structurally altered states. The ganglion contains the primary sensory (AH-type) and motor (S-type) neurons linked through a cholinergic dendro somatic synapse. The neurons have distinguished electrophysiological characteristics including levels of the resting and threshold membrane potentials and spiking activity. These are results of ionic channel dynamics namely: Na+, K+, Ca++- activated K+, Ca++ and Cl-. Mechanical stretches of various intensities and frequencies are applied at the receptive field of the AH-neuron generate a cascade of electrochemical events along the chain. At low frequencies, ν < 0.3 Hz, neurons demonstrate strong connectivity and coherent firing. The AH-neuron shows phasic bursting with spike frequency adaptation while the S-neuron responds with tonic bursts. At high frequency, ν > 0.5 Hz, the pattern of electrical activity changes to rebound and mixed mode bursting, respectively, indicating ganglionic loss of plasticity and adaptability. A simultaneous increase in neuronal conductivity for Na+, K+ and Ca++ ions results in tonic mixed spiking of the sensory neuron and class 2 excitability of the motor neuron. Although the signal transduction along the chain remains stable the synchrony in firing pattern is not maintained and the number of discharges of the S-type neuron is significantly reduced. A concomitant increase in Ca++- activated K+ and a decrease in K+ in conductivities re-establishes weak connectivity between the two neurons and converts their firing pattern to a bistable mode. It is thus demonstrated that neuronal plasticity and adaptability have a stabilizing effect on the dynamics of signal processing in the ganglion. Functional modulations of neuronal ion channel permeability, achieved in vivo and in vitro pharmacologically, can improve connectivity between neurons. These findings are consistent with experimental electrophysiological recordings from myenteric ganglia in intestinal dysrhythmia and suggest possible pathophysiological mechanisms.Keywords: neuronal chain, signal transduction, plasticity, stability
Procedia PDF Downloads 392459 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition
Authors: M. Beusink, E. W. C. Coenen
Abstract:
The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures
Procedia PDF Downloads 233458 Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain
Authors: Felipe M. de Freitas, Icaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende
Abstract:
The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters.Keywords: hybrid circuits, LE-FDTD, lumped element, parametric analysis
Procedia PDF Downloads 153457 The Invaluable Contributions of Radiography and Radiotherapy in Modern Medicine
Authors: Sahar Heidary
Abstract:
Radiography and radiotherapy have emerged as crucial pillars of modern medical practice, revolutionizing diagnostics and treatment for a myriad of health conditions. This abstract highlights the pivotal role of radiography and radiotherapy in favor of healthcare and society. Radiography, a non-invasive imaging technique, has significantly advanced medical diagnostics by enabling the visualization of internal structures and abnormalities within the human body. With the advent of digital radiography, clinicians can obtain high-resolution images promptly, leading to faster diagnoses and informed treatment decisions. Radiography plays a pivotal role in detecting fractures, tumors, infections, and various other conditions, allowing for timely interventions and improved patient outcomes. Moreover, its widespread accessibility and cost-effectiveness make it an indispensable tool in healthcare settings worldwide. On the other hand, radiotherapy, a branch of medical science that utilizes high-energy radiation, has become an integral component of cancer treatment and management. By precisely targeting and damaging cancerous cells, radiotherapy offers a potent strategy to control tumor growth and, in many cases, leads to cancer eradication. Additionally, radiotherapy is often used in combination with surgery and chemotherapy, providing a multifaceted approach to combat cancer comprehensively. The continuous advancements in radiotherapy techniques, such as intensity-modulated radiotherapy and stereotactic radiosurgery, have further improved treatment precision while minimizing damage to surrounding healthy tissues. Furthermore, radiography and radiotherapy have demonstrated their worth beyond oncology. Radiography is instrumental in guiding various medical procedures, including catheter placement, joint injections, and dental evaluations, reducing complications and enhancing procedural accuracy. On the other hand, radiotherapy finds applications in non-cancerous conditions like benign tumors, vascular malformations, and certain neurological disorders, offering therapeutic options for patients who may not benefit from traditional surgical interventions. In conclusion, radiography and radiotherapy stand as indispensable tools in modern medicine, driving transformative improvements in patient care and treatment outcomes. Their ability to diagnose, treat, and manage a wide array of medical conditions underscores their favor in medical practice. As technology continues to advance, radiography and radiotherapy will undoubtedly play an ever more significant role in shaping the future of healthcare, ultimately saving lives and enhancing the quality of life for countless individuals worldwide.Keywords: radiology, radiotherapy, medical imaging, cancer treatment
Procedia PDF Downloads 69456 Learning and Teaching Strategies in Association with EXE Program for Master Course Students of Yerevan Brusov State University of Languages and Social Sciences
Authors: Susanna Asatryan
Abstract:
The author will introduce a single module related to English teaching methodology for master course students getting specialization “A Foreign Language Teacher of High Schools And Professional Educational Institutions” of Yerevan Brusov State University of Languages and Social Sciences. The overall aim of the presentation is to introduce learning and teaching strategies within EXE Computer program for Mastery student-teachers of the University. The author will display the advantages of the use of this program. The learners interact with the teacher in the classroom as well as they are provided an opportunity for virtual domain to carry out their learning procedures in association with assessment and self-assessment. So they get integrated into blended learning. As this strategy is in its piloting stage, the author has elaborated a single module, embracing 3 main sections: -Teaching English vocabulary at high school, -Teaching English grammar at high school, and -Teaching English pronunciation at high school. The author will present the above mentioned topics with corresponding sections and subsections. The strong point is that preparing this module we have planned to display it on the blended learning landscape. So for this account working with EXE program is highly effective. As it allows the users to operate several tools for self-learning and self-testing/assessment. The author elaborated 3 single EXE files for each topic. Each file starts with the section’s subject-specific description: - Objectives and Pre-knowledge, followed by the theoretical part. The author associated and flavored her observations with appropriate samples of charts, drawings, diagrams, recordings, video-clips, photos, pictures, etc. to make learning process more effective and enjoyable. Before or after the article the author has downloaded a video clip, related to the current topic. EXE offers a wide range of tools to work out or prepare different activities and exercises for the learners: 'Interactive/non-interactive' and 'Textual/non-textual'. So with the use of these tools Multi-Select, Multi-Choice, Cloze, Drop-Down, Case Study, Gap-Filling, Matching and different other types of activities have been elaborated and submitted to the appropriate sections. The learners task is to prepare themselves for the coming module or seminar, related to teaching methodology of English vocabulary, grammar, and pronunciation. The point is that the teacher has an opportunity for face to face communication, as well as to connect with the learners through the Moodle, or as a single EXE file offer it to the learners for their self-study and self-assessment. As for the students’ feedback –EXE environment also makes it available.Keywords: blended learning, EXE program, learning/teaching strategies, self-study/assessment, virtual domain,
Procedia PDF Downloads 468455 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints
Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig
Abstract:
Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding
Procedia PDF Downloads 77454 Poly(propylene fumarate) Copolymers with Phosphonic Acid-based Monomers Designed as Bone Tissue Engineering Scaffolds
Authors: Görkem Cemali̇, Avram Aruh, Gamze Torun Köse, Erde Can ŞAfak
Abstract:
In order to heal bone disorders, the conventional methods which involve the use of autologous and allogenous bone grafts or permanent implants have certain disadvantages such as limited supply, disease transmission, or adverse immune response. A biodegradable material that acts as structural support to the damaged bone area and serves as a scaffold that enhances bone regeneration and guides bone formation is one desirable solution. Poly(propylene fumarate) (PPF) which is an unsaturated polyester that can be copolymerized with appropriate vinyl monomers to give biodegradable network structures, is a promising candidate polymer to prepare bone tissue engineering scaffolds. In this study, hydroxyl-terminated PPF was synthesized and thermally cured with vinyl phosphonic acid (VPA) and diethyl vinyl phosphonate (VPES) in the presence of radical initiator benzoyl peroxide (BP), with changing co-monomer weight ratios (10-40wt%). In addition, the synthesized PPF was cured with VPES comonomer at body temperature (37oC) in the presence of BP initiator, N, N-Dimethyl para-toluidine catalyst and varying amounts of Beta-tricalcium phosphate (0-20 wt% ß-TCP) as filler via radical polymerization to prepare composite materials that can be used in injectable forms. Thermomechanical properties, compressive properties, hydrophilicity and biodegradability of the PPF/VPA and PPF/VPES copolymers were determined and analyzed with respect to the copolymer composition. Biocompatibility of the resulting polymers and their composites was determined by the MTS assay and osteoblast activity was explored with von kossa, alkaline phosphatase and osteocalcin activity analysis and the effects of VPA and VPES comonomer composition on these properties were investigated. Thermally cured PPF/VPA and PPF/VPES copolymers with different compositions exhibited compressive modulus and strength values in the wide range of 10–836 MPa and 14–119 MPa, respectively. MTS assay studies showed that the majority of the tested compositions were biocompatible and the overall results indicated that PPF/VPA and PPF/VPES network polymers show significant potential for applications as bone tissue engineering scaffolds where varying PPF and co-monomer ratio provides adjustable and controllable properties of the end product. The body temperature cured PPF/VPES/ß-TCP composites exhibited significantly lower compressive modulus and strength values than the thermal cured PPF/VPES copolymers and were therefore found to be useful as scaffolds for cartilage tissue engineering applications.Keywords: biodegradable, bone tissue, copolymer, poly(propylene fumarate), scaffold
Procedia PDF Downloads 166453 The Epidemiology of Dengue in Taiwan during 2014-15: A Descriptive Analysis of the Severe Outbreaks of Central Surveillance System Data
Authors: Chu-Tzu Chen, Angela S. Huang, Yu-Min Chou, Chin-Hui Yang
Abstract:
Dengue is a major public health concern throughout tropical and sub-tropical regions. Taiwan is located in the Pacific Ocean and overlying the tropical and subtropical zones. The island remains humid throughout the year and receives abundant rainfall, and the temperature is very hot in summer at southern Taiwan. It is ideal for the growth of dengue vectors and would be increasing the risk on dengue outbreaks. During the first half of the 20th century, there were three island-wide dengue outbreaks (1915, 1931, and 1942). After almost forty years of dormancy, a DEN-2 outbreak occurred in Liuchiu Township, Pingtung County in 1981. Thereafter, more dengue outbreaks occurred with different scales in southern Taiwan. However, there were more than ten thousands of dengue cases in 2014 and in 2015. It did not only affect human health, but also caused widespread social disruption and economic losses. The study would like to reveal the epidemiology of dengue on Taiwan, especially the severe outbreak in 2015, and try to find the effective interventions in dengue control including dengue vaccine development for the elderly. Methods: The study applied the Notifiable Diseases Surveillance System database of the Taiwan Centers for Disease Control as data source. All cases were reported with the uniform case definition and confirmed by NS1 rapid diagnosis/laboratory diagnosis. Results: In 2014, Taiwan experienced a serious DEN-1 outbreak with 15,492 locally-acquired cases, including 136 cases of dengue hemorrhagic fever (DHF) which caused 21 deaths. However, a more serious DEN-2 outbreak occurred with 43,419 locally-acquired cases in 2015. The epidemic occurred mainly at Tainan City (22,760 cases) and Kaohsiung City (19,723 cases) in southern Taiwan. The age distribution for the cases were mainly adults. There were 228 deaths due to dengue infection, and the case fatality rate was 5.25 ‰. The average age of them was 73.66 years (range 29-96) and 86.84% of them were older than 60 years. Most of them were comorbidities. To review the clinical manifestations of the 228 death cases, 38.16% (N=87) of them were reported with warning signs, while 51.75% (N=118) were reported without warning signs. Among the 87 death cases reported to dengue with warning signs, 89.53% were diagnosed sever dengue and 84% needed the intensive care. Conclusion: The year 2015 was characterized by large dengue outbreaks worldwide. The risk of serious dengue outbreak may increase significantly in the future, and the elderly is the vulnerable group in Taiwan. However, a dengue vaccine has been licensed for use in people 9-45 years of age living in endemic settings at the end of 2015. In addition to carry out the research to find out new interventions in dengue control, developing the dengue vaccine for the elderly is very important to prevent severe dengue and deaths.Keywords: case fatality rate, dengue, dengue vaccine, the elderly
Procedia PDF Downloads 281452 Use of Curcumin in Radiochemotherapy Induced Oral Mucositis Patients: A Control Trial Study
Authors: Shivayogi Charantimath
Abstract:
Radiotherapy and chemotherapy are effective for treating malignancies but are associated with side effects like oral mucositis. Chlorhexidine gluconate is one of the most commonly used mouthwash in prevention of signs and symptoms of mucositis. Evidence shows that chlorhexidine gluconate has side effects in terms of colonization of bacteria, bad breadth and less healing properties. Thus, it is essential to find a suitable alternative therapy which is more effective with minimal side effects. Curcumin, an extract of turmeric is gradually being studied for its wide-ranging therapeutic properties such as antioxidant, analgesic, anti-inflammatory, antitumor, antimicrobial, antiseptic, chemo sensitizing and radio sensitizing properties. The present study was conducted to evaluate the efficacy and safety of topical curcumin gel on radio-chemotherapy induced oral mucositis in cancer patients. The aim of the study is to evaluate the efficacy and safety of curcumin gel in the management of oral mucositis in cancer patients undergoing radio chemotherapy and compare with chlorhexidine. The study was conducted in K.L.E. Society’s Belgaum cancer hospital. 40 oral cancer patients undergoing the radiochemotheraphy with oral mucositis was selected and randomly divided into two groups of 20 each. The study group A [20 patients] was advised Cure next gel for 2 weeks. The control group B [20 patients] was advised chlorhexidine gel for 2 weeks. The NRS, Oral Mucositis Assessment scale and WHO mucositis scale were used to determine the grading. The results obtained were calculated by using SPSS 20 software. The comparison of grading was done by applying Mann-Whitney U test and intergroup comparison was calculated by Wilcoxon matched pairs test. The NRS scores observed from baseline to 1st and 2nd week follow up in both the group showed significant difference. The percentage of change in erythema in respect to group A was 63.3% for first week and for second week, changes were 100.0% with p = 0.0003. The changes in Group A in respect to erythema was 34.6% for 1st week and 57.7% in second week. The intergroup comparison was significant with p value of 0.0048 and 0.0006 in relation to group A and group B respectively. The size of the ulcer score was measured which showed 35.5% [P=0.0010] of change in Group A for 1st and 2nd week showed totally reduction i.e. 103.4% [P=0.0001]. Group B showed 24.7% change from baseline to 1st week and 53.6% for 2nd week follow up. The intergroup comparison with Wilcoxon matched pair test was significant with p=0.0001 in group A. The result obtained by WHO mucositis score in respect to group A shows 29.6% [p=0.0004] change in first week and 75.0% [p=0.0180] change in second week which is highly significant in comparison to group B. Group B showed minimum changes i.e. 20.1% in 1st week and 33.3% in 2nd week. The p value with Wilcoxon was significant with 0.0025 in Group A for 1st week follow up and 0.000 for 2nd week follow up. Curcumin gel appears to an effective and safer alternative to chlorhexidine gel in treatment of oral mucositis.Keywords: curcumin, chemotheraphy, mucositis, radiotheraphy
Procedia PDF Downloads 351451 Weapon-Being: Weaponized Design and Object-Oriented Ontology in Hypermodern Times
Authors: John Dimopoulos
Abstract:
This proposal attempts a refabrication of Heidegger’s classic thing-being and object-being analysis in order to provide better ontological tools for understanding contemporary culture, technology, and society. In his work, Heidegger sought to understand and comment on the problem of technology in an era of rampant innovation and increased perils for society and the planet. Today we seem to be at another crossroads in this course, coming after postmodernity, during which dreams and dangers of modernity augmented with critical speculations of the post-war era take shape. The new era which we are now living in, referred to as hypermodernity by researchers in various fields such as architecture and cultural theory, is defined by the horizontal implementation of digital technologies, cybernetic networks, and mixed reality. Technology today is rapidly approaching a turning point, namely the point of no return for humanity’s supervision over its creations. The techno-scientific civilization of the 21st century creates a series of problems, progressively more difficult and complex to solve and impossible to ignore, climate change, data safety, cyber depression, and digital stress being some of the most prevalent. Humans often have no other option than to address technology-induced problems with even more technology, as in the case of neuron networks, machine learning, and AI, thus widening the gap between creating technological artifacts and understanding their broad impact and possible future development. As all technical disciplines and particularly design, become enmeshed in a matrix of digital hyper-objects, a conceptual toolbox that allows us to handle the new reality becomes more and more necessary. Weaponized design, prevalent in many fields, such as social and traditional media, urban planning, industrial design, advertising, and the internet in general, hints towards an increase in conflicts. These conflicts between tech companies, stakeholders, and users with implications in politics, work, education, and production as apparent in the cases of Amazon workers’ strikes, Donald Trump’s 2016 campaign, Facebook and Microsoft data scandals, and more are often non-transparent to the wide public’s eye, thus consolidating new elites and technocratic classes and making the public scene less and less democratic. The new category proposed, weapon-being, is outlined in respect to the basic function of reducing complexity, subtracting materials, actants, and parameters, not strictly in favor of a humanistic re-orientation but in a more inclusive ontology of objects and subjects. Utilizing insights of Object-Oriented Ontology (OOO) and its schematization of technological objects, an outline for a radical ontology of technology is approached.Keywords: design, hypermodernity, object-oriented ontology, weapon-being
Procedia PDF Downloads 152450 Nutritional Education in Health Resort Institutions in the Face of Demographic and Epidemiological Changes in Poland
Authors: J. Woźniak-Holecka, T. Holecki, S. Jaruga
Abstract:
Spa treatment is an important area of the health care system in Poland due to the increasing needs of the population and the context of historical conditions for this form of therapy. It extends the range of financing possibilities of the outlets and increases the potential of spa services, which is very important in the context of demographic and epidemiological changes. The main advantages of spa treatment services include its relatively wide availability, low risk of side effects, good patient tolerance, long-lasting curative effect and a relatively low cost. In addition, patients should be provided with a proper diet and enable participation in health education and health promotion classes aimed at health problems consistent with the treatment profile. Challenges for global health care systems include a sharp increase in spending on benefits, dynamic development of health technologies and growing social expectations. This requires extending the competences of health resort facilities for health promotion. Within each type of health resort institutions in Poland, nutritional education services are implemented, aimed at creating and consolidating proper eating habits. Choosing the right diet can speed up recovery or become one of the methods to alleviate the symptoms of chronic diseases. During spa treatment patient learns the principles of rational nutrition and adequate dietotherapy to his diseases. The aim of the project is to assess the frequency and quality of nutritional education provided to patients in health resort facilities in a nationwide perspective. The material for the study will be data obtained as part of an in-depth interview conducted among Heads of Nutrition Departments of selected institutions. The use of nutritional education in a health resort may be an important goal of implementing the state health policy as a useful tool to reduce the risk of diet-related diseases. Recognizing nutritional education in health resort institutions as a type of full-value health service can be effective system support for health policy, including seniors, due to demographic changes currently occurring in the Polish population. Furthermore, it is necessary to increase the interest and motivation of patients to follow the recommendations of nutritional education, because it will bring tangible benefits for the long-term effects of therapy and care should be taken for the form and methodology of nutrition education implemented in health resort institutions. Finally it is necessary to construct an educational offer in terms of selected groups of patients with the highest health needs: the elderly and the disabled. In conclusion, it can be said that the system of nutritional education implemented in polish health resort institutions should be subjected to global changes and strong systemic correction.Keywords: health care system, nutritional education, public health, spa and treatment
Procedia PDF Downloads 114449 Investigation of the Usability of Biochars Obtained from Olive Pomace and Smashed Olive Seeds as Additives for Bituminous Binders
Authors: Muhammed Ertugrul Celoglu, Beyza Furtana, Mehmet Yilmaz, Baha Vural Kok
Abstract:
Biomass, which is considered to be one of the largest renewable energy sources in the world, has a potential to be utilized as a bitumen additive after it is processed by a wide variety of thermochemical methods. Furthermore, biomasses are renewable in short amounts of time, and they possess a hydrocarbon structure. These characteristics of biomass promote their usability as additives. One of the most common ways to create materials with significant economic values from biomasses is the processes of pyrolysis. Pyrolysis is defined as the process of an organic matter’s thermochemical degradation (carbonization) at a high temperature and in an anaerobic environment. The resultant liquid substance at the end of the pyrolysis is defined as bio-oil, whereas the resultant solid substance is defined as biochar. Olive pomace is the resultant mildly oily pulp with seeds after olive is pressed and its oil is extracted. It is a significant source of biomass as the waste of olive oil factories. Because olive pomace is waste material, it could create problems just as other waste unless there are appropriate and acceptable areas of utilization. The waste material, which is generated in large amounts, is generally used as fuel and fertilizer. Generally, additive materials are used in order to improve the properties of bituminous binders, and these are usually expensive materials, which are produced chemically. The aim of this study is to investigate the usability of biochars obtained after subjecting olive pomace and smashed olive seeds, which are considered as waste materials, to pyrolysis as additives in bitumen modification. In this way, various ways of use will be provided for waste material, providing both economic and environmental benefits. In this study, olive pomace and smashed olive seeds were used as sources of biomass. Initially, both materials were ground and processed through a No.50 sieve. Both of the sieved materials were subjected to pyrolysis (carbonization) at 400 ℃. Following the process of pyrolysis, bio-oil and biochar were obtained. The obtained biochars were added to B160/220 grade pure bitumen at 10% and 15% rates and modified bitumens were obtained by mixing them in high shear mixtures at 180 ℃ for 1 hour at 2000 rpm. Pure bitumen and four different types of bitumen obtained as a result of the modifications were tested with penetration, softening point, rotational viscometer, and dynamic shear rheometer, evaluating the effects of additives and the ratios of additives. According to the test results obtained, both biochar modifications at both ratios provided improvements in the performance of pure bitumen. In the comparison of the test results of the binders modified with the biochars of olive pomace and smashed olive seed, it was revealed that there was no notable difference in their performances.Keywords: bituminous binders, biochar, biomass, olive pomace, pomace, pyrolysis
Procedia PDF Downloads 132448 Energy Harvesting and Storage System for Marine Applications
Authors: Sayem Zafar, Mahmood Rahi
Abstract:
Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine
Procedia PDF Downloads 137447 Managed Aquifer Recharge (MAR) for the Management of Stormwater on the Cape Flats, Cape Town
Authors: Benjamin Mauck, Kevin Winter
Abstract:
The city of Cape Town in South Africa, has shown consistent economic and population growth in the last few decades and that growth is expected to continue to increase into the future. These projected economic and population growth rates are set to place additional pressure on the city’s already strained water supply system. Thus, given Cape Town’s water scarcity, increasing water demands and stressed water supply system, coupled with global awareness around the issues of sustainable development, environmental protection and climate change, alternative water management strategies are required to ensure water is sustainably managed. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. WSUD employs a wide range of strategies to improve the sustainable management of urban water such as the water reuse, developing alternative available supply sources, sustainable stormwater management and enhancing the aesthetic and recreational value of urban water. Managed Aquifer Recharge (MAR) is one WSUD strategy which has proven to be a successful reuse strategy in a number of places around the world. MAR is the process where an aquifer is intentionally or artificially recharged, which provides a valuable means of water storage while enhancing the aquifers supply potential. This paper investigates the feasibility of implementing MAR in the sandy, unconfined Cape Flats Aquifer (CFA) in Cape Town. The main objective of the study is to assess if MAR is a viable strategy for stormwater management on the Cape Flats, aiding the prevention or mitigation of the seasonal flooding that occurs on the Cape Flats, while also improving the supply potential of the aquifer. This involves the infiltration of stormwater into the CFA during the wet winter months and in turn, abstracting from the CFA during the dry summer months for fit-for-purpose uses in order to optimise the recharge and storage capacity of the CFA. The fully-integrated MIKE SHE model is used in this study to simulate both surface water and groundwater hydrology. This modelling approach enables the testing of various potential recharge and abstraction scenarios required for implementation of MAR on the Cape Flats. Further MIKE SHE scenario analysis under projected future climate scenarios provides insight into the performance of MAR as a stormwater management strategy under climate change conditions. The scenario analysis using an integrated model such as MIKE SHE is a valuable tool for evaluating the feasibility of the MAR as a stormwater management strategy and its potential to contribute towards improving Cape Town’s water security into the future.Keywords: managed aquifer recharge, stormwater management, cape flats aquifer, MIKE SHE
Procedia PDF Downloads 248446 Architectural Wind Data Maps Using an Array of Wireless Connected Anemometers
Authors: D. Serero, L. Couton, J. D. Parisse, R. Leroy
Abstract:
In urban planning, an increasing number of cities require wind analysis to verify comfort of public spaces and around buildings. These studies are made using computer fluid dynamic simulation (CFD). However, this technique is often based on wind information taken from meteorological stations located at several kilometers of the spot of analysis. The approximated input data on project surroundings produces unprecise results for this type of analysis. They can only be used to get general behavior of wind in a zone but not to evaluate precise wind speed. This paper presents another approach to this problem, based on collecting wind data and generating an urban wind cartography using connected ultrasound anemometers. They are wireless devices that send immediate data on wind to a remote server. Assembled in array, these devices generate geo-localized data on wind such as speed, temperature, pressure and allow us to compare wind behavior on a specific site or building. These Netatmo-type anemometers communicate by wifi with central equipment, which shares data acquired by a wide variety of devices such as wind speed, indoor and outdoor temperature, rainfall, and sunshine. Beside its precision, this method extracts geo-localized data on any type of site that can be feedback looped in the architectural design of a building or a public place. Furthermore, this method allows a precise calibration of a virtual wind tunnel using numerical aeraulic simulations (like STAR CCM + software) and then to develop the complete volumetric model of wind behavior over a roof area or an entire city block. The paper showcases connected ultrasonic anemometers, which were implanted for an 18 months survey on four study sites in the Grand Paris region. This case study focuses on Paris as an urban environment with multiple historical layers whose diversity of typology and buildings allows considering different ways of capturing wind energy. The objective of this approach is to categorize the different types of wind in urban areas. This, particularly the identification of the minimum and maximum wind spectrum, helps define the choice and performance of wind energy capturing devices that could be implanted there. The localization on the roof of a building, the type of wind, the altimetry of the device in relation to the levels of the roofs, the potential nuisances generated. The method allows identifying the characteristics of wind turbines in order to maximize their performance in an urban site with turbulent wind.Keywords: computer fluid dynamic simulation in urban environment, wind energy harvesting devices, net-zero energy building, urban wind behavior simulation, advanced building skin design methodology
Procedia PDF Downloads 101445 Development of Loop Mediated Isothermal Amplification (Lamp) Assay for the Diagnosis of Ovine Theileriosis
Authors: Muhammad Fiaz Qamar, Uzma Mehreen, Muhammad Arfan Zaman, Kazim Ali
Abstract:
Ovine Theileriosis is a world-wide concern, especially in tropical and subtropical areas, due to having tick abundance that has received less awareness in different developed and developing areas due to less worth of sheep, low to the middle level of infection in different small ruminants herd. Across Asia, the prevalence reports have been conducted to provide equivalent calculation of flock and animal level prevalence of Theileriosisin animals. It is a challenge for veterinarians to timely diagnosis & control of Theileriosis and famers because of the nature of the organism and inadequacy of restricted plans to control. All most work is based upon the development of such a technique which should be farmer-friendly, less expensive, and easy to perform into the field. By the timely diagnosis of this disease will decrease the irrational use of the drugs, and other plan was to determine the prevalence of Theileriosis in District Jhang by using the conventional method, PCR and qPCR, and LAMP. We quantify the molecular epidemiology of T.lestoquardiin sheep from Jhang districts, Punjab, Pakistan. In this study, we concluded that the overall prevalence of Theileriosis was (32/350*100= 9.1%) in sheep by using Giemsa staining technique, whereas (48/350*100= 13%) is observed by using PCR technique (56/350*100=16%) in qPCR and the LAMP technique have shown up to this much prevalence percentage (60/350*100= 17.1%). The specificity and sensitivity also calculated in comparison with the PCR and LAMP technique. Means more positive results have been shown when the diagnosis has been done with the help of LAMP. And there is little bit of difference between the positive results of PCR and qPCR, and the least positive animals was by using Giemsa staining technique/conventional method. If we talk about the specificity and sensitivity of the LAMP as compared to PCR, The cross tabulation shows that the results of sensitivity of LAMP counted was 94.4%, and specificity of LAMP counted was 78%. Advances in scientific field must be upon reality based ideas which can lessen the gaps and hurdles in the way of scientific research; the lamp is one of such techniques which have done wonders in adding value and helping human at large. It is such a great biological diagnostic tools and has helped a lot in the proper diagnosis and treatment of certain diseases. Other methods for diagnosis, such as culture techniques and serological techniques, have exposed humans with great danger. However, with the help of molecular diagnostic technique like LAMP, exposure to such pathogens is being avoided in the current era Most prompt and tentative diagnosis can be made using LAMP. Other techniques like PCR has many disadvantages when compared to LAMP as PCR is a relatively expensive, time consuming, and very complicated procedure while LAMP is relatively cheap, easy to perform, less time consuming, and more accurate. LAMP technique has removed hurdles in the way of scientific research and molecular diagnostics, making it approachable to poor and developing countries.Keywords: distribution, thelaria, LAMP, primer sequences, PCR
Procedia PDF Downloads 103444 Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries
Authors: Kumlachew Zelalem Walle, Chun-Chen Yang
Abstract:
Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8 10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs.Keywords: high-voltage cathodes, hybrid solid electrolytes, garnet, graphitic-carbon nitride (g-C3N4), ZIF-8 MOF
Procedia PDF Downloads 67443 Evaluation of Yield and Yield Components of Malaysian Palm Oil Board-Senegal Oil Palm Germplasm Using Multivariate Tools
Authors: Khin Aye Myint, Mohd Rafii Yusop, Mohd Yusoff Abd Samad, Shairul Izan Ramlee, Mohd Din Amiruddin, Zulkifli Yaakub
Abstract:
The narrow base of genetic is the main obstacle of breeding and genetic improvement in oil palm industry. In order to broaden the genetic bases, the Malaysian Palm Oil Board has been extensively collected wild germplasm from its original area of 11 African countries which are Nigeria, Senegal, Gambia, Guinea, Sierra Leone, Ghana, Cameroon, Zaire, Angola, Madagascar, and Tanzania. The germplasm collections were established and maintained as a field gene bank in Malaysian Palm Oil Board (MPOB) Research Station in Kluang, Johor, Malaysia to conserve a wide range of oil palm genetic resources for genetic improvement of Malaysian oil palm industry. Therefore, assessing the performance and genetic diversity of the wild materials is very important for understanding the genetic structure of natural oil palm population and to explore genetic resources. Principal component analysis (PCA) and Cluster analysis are very efficient multivariate tools in the evaluation of genetic variation of germplasm and have been applied in many crops. In this study, eight populations of MPOB-Senegal oil palm germplasm were studied to explore the genetic variation pattern using PCA and cluster analysis. A total of 20 yield and yield component traits were used to analyze PCA and Ward’s clustering using SAS 9.4 version software. The first four principal components which have eigenvalue >1 accounted for 93% of total variation with the value of 44%, 19%, 18% and 12% respectively for each principal component. PC1 showed highest positive correlation with fresh fruit bunch (0.315), bunch number (0.321), oil yield (0.317), kernel yield (0.326), total economic product (0.324), and total oil (0.324) while PC 2 has the largest positive association with oil to wet mesocarp (0.397) and oil to fruit (0.458). The oil palm population were grouped into four distinct clusters based on 20 evaluated traits, this imply that high genetic variation existed in among the germplasm. Cluster 1 contains two populations which are SEN 12 and SEN 10, while cluster 2 has only one population of SEN 3. Cluster 3 consists of three populations which are SEN 4, SEN 6, and SEN 7 while SEN 2 and SEN 5 were grouped in cluster 4. Cluster 4 showed the highest mean value of fresh fruit bunch, bunch number, oil yield, kernel yield, total economic product, and total oil and Cluster 1 was characterized by high oil to wet mesocarp, and oil to fruit. The desired traits that have the largest positive correlation on extracted PCs could be utilized for the improvement of oil palm breeding program. The populations from different clusters with the highest cluster means could be used for hybridization. The information from this study can be utilized for effective conservation and selection of the MPOB-Senegal oil palm germplasm for the future breeding program.Keywords: cluster analysis, genetic variability, germplasm, oil palm, principal component analysis
Procedia PDF Downloads 164442 Capital Accumulation and Unemployment in Namibia, Nigeria and South Africa
Authors: Abubakar Dikko
Abstract:
The research investigates the causes of unemployment in Namibia, Nigeria and South Africa, and the role of Capital Accumulation in reducing the unemployment profile of these economies as proposed by the post-Keynesian economics. This is conducted through extensive review of literature on the NAIRU models and focused on the post-Keynesian view of unemployment within the NAIRU framework. The NAIRU (non-accelerating inflation rate of unemployment) model has become a dominant framework used in macroeconomic analysis of unemployment. The study views the post-Keynesian economics arguments that capital accumulation is a major determinant of unemployment. Unemployment remains the fundamental socio-economic challenge facing African economies. It has been a burden to citizens of those economies. Namibia, Nigeria and South Africa are great African nations battling with high unemployment rates. In 2013, the countries recorded high unemployment rates of 16.9%, 23.9% and 24.9% respectively. Most of the unemployed in these economies comprises of youth. Roughly about 40% working age South Africans has jobs, whereas in Nigeria and Namibia is less than that. Unemployment in Africa has wide implications on households which has led to extensive poverty and inequality, and created a rampant criminality. Recently in South Africa there has been a case of xenophobic attacks which were caused by the citizens of the country as a result of unemployment. The high unemployment rate in the country led the citizens to chase away foreigners in the country claiming that they have taken away their jobs. The study proposes that there is a strong relationship between capital accumulation and unemployment in Namibia, Nigeria and South Africa, and capital accumulation is responsible for high unemployment rates in these countries. For the economies to achieve steady state level of employment and satisfactory level of economic growth and development there is need for capital accumulation to take place. The countries in the study have been selected after a critical research and investigations. They are selected based on the following criteria; African economies with high unemployment rates above 15% and have about 40% of their workforce unemployed. This level of unemployment is the critical level of unemployment in Africa as expressed by International Labour Organization (ILO). The African countries with low level of capital accumulation. Adequate statistical measures have been employed using a time-series analysis in the study and the results revealed that capital accumulation is the main driver of unemployment performance in the chosen African countries. An increase in the accumulation of capital causes unemployment to reduce significantly. The results of the research work will be useful and relevant to federal governments and ministries, departments and agencies (MDAs) of Namibia, Nigeria and South Africa to resolve the issue of high and persistent unemployment rates in their economies which are great burden that slows growth and development of developing economies. Also, the result can be useful to World Bank, African Development Bank and International Labour Organization (ILO) in their further research and studies on how to tackle unemployment in developing and emerging economies.Keywords: capital accumulation, unemployment, NAIRU, Post-Keynesian economics
Procedia PDF Downloads 263441 Option Pricing Theory Applied to the Service Sector
Authors: Luke Miller
Abstract:
This paper develops an options pricing methodology to value strategic pricing strategies in the services sector. More specifically, this study provides a unifying taxonomy of current service sector pricing practices, frames these pricing decisions as strategic real options, demonstrates accepted option valuation techniques to assess service sector pricing decisions, and suggests future research areas where pricing decisions and real options overlap. Enhancing revenue in the service sector requires proactive decision making in a world of uncertainty. In an effort to strategically price service products, revenue enhancement necessitates a careful study of the service costs, customer base, competition, legalities, and shared economies with the market. Pricing decisions involve the quality of inputs, manpower, and best practices to maintain superior service. These decisions further hinge on identifying relevant pricing strategies and understanding how these strategies impact a firm’s value. A relatively new area of research applies option pricing theory to investments in real assets and is commonly known as real options. The real options approach is based on the premise that many corporate decisions to invest or divest in assets are simply an option wherein the firm has the right to make an investment without any obligation to act. The decision maker, therefore, has more flexibility and the value of this operating flexibility should be taken into consideration. The real options framework has already been applied to numerous areas including manufacturing, inventory, natural resources, research and development, strategic decisions, technology, and stock valuation. Additionally, numerous surveys have identified a growing need for the real options decision framework within all areas of corporate decision-making. Despite the wide applicability of real options, no study has been carried out linking service sector pricing decisions and real options. This is surprising given the service sector comprises 80% of the US employment and Gross Domestic Product (GDP). Identifying real options as a practical tool to value different service sector pricing strategies is believed to have a significant impact on firm decisions. This paper identifies and discusses four distinct pricing strategies available to the service sector from an options’ perspective: (1) Cost-based profit margin, (2) Increased customer base, (3) Platform pricing, and (4) Buffet pricing. Within each strategy lie several pricing tactics available to the service firm. These tactics can be viewed as options the decision maker has to best manage a strategic position in the market. To demonstrate the effectiveness of including flexibility in the pricing decision, a series of pricing strategies were developed and valued using a real options binomial lattice structure. The options pricing approach discussed in this study allows service firms to directly incorporate market-driven perspectives into the decision process and thus synchronizing service operations with organizational economic goals.Keywords: option pricing theory, real options, service sector, valuation
Procedia PDF Downloads 355440 Reinventing Smart Tourism via Use of Smart Gamified and Gaming Applications in Greece
Authors: Sofia Maria Poulimenou, Ioannis Deliyannis, Elisavet Filippidou, Stamatella Laboura
Abstract:
Smart technologies are being actively used to improve the experience of travel and promote or demote a destination’s reputation via a wide variety of social media applications and platforms. This paper conceptualises the design and deployment of smart management apps to promote culture, sustainability and accessibility within two destinations in Greece that represent the extremes of visiting scale. One is the densely visited Corfu, which is a UNESCO’s heritage site. The problems caused by the lack of organisation of the visiting experience and infrastructures affect all parties interacting within the site: visitors, citizens, public and private sector. Second is Kilkis, a low tourism destination with high seasonality and mostly inbound tourism. Here the issue faced is that traditional approaches to inform and motivate locals and visitors to explore and taste of the culture have not flourished. The problem is apprehended via the design and development of two systems named “Hologrammatic Corfu” for Corfu old town and “BRENDA” for the area of Kilkis. Although each system is designed independently, featuring different solutions to the problems, both approaches have been designed by the same team and a novel gaming and gamification methodology. The “Hologramatic Corfu” application has been designed, for the exploration of the site covering user requirments before, during and after the trip, with the use of transmedia content such as photos, 360-degree videos, augmented reality and hologrammatic videos. Also, a statistical analysis of travellers’ visits to specific points of interest is actively utilized enabling visitors to dynamically re-rooted during their visit, safeguarding sustainability and accessibility and inclusivity along the entire tourism cycle. “BRENDA” is designed specifically to promote gastronomic and historical tourism. This serious game implements and combines gaming and gamification elements in order to connect local businesses with cultural points of interest. As the environment of the project has a strong touristic orientation, “BRENDA” supports food-related gamified processes and historical games involving active participation of both local communities (content providers) and visitors (players) which are more likely to be successfully performed in the informal environment of travelling and promote sustainable tourism experiences. Finally, the paper presents the ability to re-use existing gaming components within new areas of interest via minimal adaptation and the use of transmedia aspects that enables destinations to be rebranded into smart destinations.Keywords: smart tourism, gamification, user experience, transmedia content
Procedia PDF Downloads 173439 Light, Restorativeness and Performance in the Workplace: A Pilot Study
Authors: D. Scarpanti, M. Brondino, M. Pasini
Abstract:
Background: the present study explores the role of light and restorativeness on work. According with the Attention Restoration Theory (ART) and a Model of Work Environment, the main idea is that some features of environment, i.e., lighting, influences the direct attention, and so, the performance. Restorativeness refers to the presence/absence level of all the characteristics of physical environment that help to regenerate direct attention. Specifically, lighting can affect level of fascination and attention in one hand; and in other hand promotes several biological functions via pineal gland. Different reviews on this topic show controversial results. In order to bring light on this topic, the hypotheses of this study are that lighting can affect the construct of restorativeness and, in the second time, the restorativeness can affect the performance. Method: the participants are 30 workers of a mechatronic company in the North Italy. Every subject answered to a questionnaire valuing their subjective perceptions of environment in a different way: some objective features of environment, like lighting, temperature and air quality; some subjective perceptions of this environment; finally, the participants answered about their perceived performance. The main attention is on the features of light and his components: visual comfort, general preferences and pleasantness; and the dimensions of the construct of restorativeness; fascination, coherence and being away. The construct of performance per se is conceptualized in three level: individual, team membership and organizational membership; and in three different components: proficiency, adaptability, and proactivity, for a total of 9 subcomponents. Findings: path analysis showed that some characteristics of lighting respectively affected the dimension of fascination; and, as expected, the dimension of fascination affected work performance. Conclusions: The present study is a first pilot step of a wide research. These first results can be summarized with the statement that lighting and restorativeness contribute to explain work performance variability: in details perceptions of visual comfort, satisfaction and pleasantness, and fascination respectively. Results related to fascination are particularly interesting because fascination is conceptualized as the opposite of the construct of direct attention. The main idea is, in order to regenerate attentional capacity, it’s necessary to provide a lacking of attention (fascination). The sample size did not permit to test simultaneously the role of the perceived characteristics of light to see how they differently contribute to predict fascination of the work environment. However, the results highlighted the important role that light could have in predicting restorativeness dimensions and probably with a larger sample we could find larger effects also on work performance. Furthermore, longitudinal data will contribute to better analyze the causal model along time. Applicative implications: the present pilot study highlights the relevant role of lighting and perceived restorativeness in the work environment and the importance to focus attention on light features and the restorative characteristics in the design of work environments.Keywords: lighting, performance, restorativeness, workplace
Procedia PDF Downloads 154438 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays
Authors: Min Han, Di Wu, Lin Yuan, Fei Liu
Abstract:
Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance
Procedia PDF Downloads 274437 Techno-Economic Analysis of 1,3-Butadiene and ε-Caprolactam Production from C6 Sugars
Authors: Iris Vural Gursel, Jonathan Moncada, Ernst Worrell, Andrea Ramirez
Abstract:
In order to achieve the transition from a fossil to bio-based economy, biomass needs to replace fossil resources in meeting the world’s energy and chemical needs. This calls for development of biorefinery systems allowing cost-efficient conversion of biomass to chemicals. In biorefinery systems, feedstock is converted to key intermediates called platforms which are converted to wide range of marketable products. The C6 sugars platform stands out due to its unique versatility as precursor for multiple valuable products. Among the different potential routes from C6 sugars to bio-based chemicals, 1,3-butadiene and ε-caprolactam appear to be of great interest. Butadiene is an important chemical for the production of synthetic rubbers, while caprolactam is used in production of nylon-6. In this study, ex-ante techno-economic performance of 1,3-butadiene and ε-caprolactam routes from C6 sugars were assessed. The aim is to provide insight from an early stage of development into the potential of these new technologies, and the bottlenecks and key cost-drivers. Two cases for each product line were analyzed to take into consideration the effect of possible changes on the overall performance of both butadiene and caprolactam production. Conceptual process design for the processes was developed using Aspen Plus based on currently available data from laboratory experiments. Then, operating and capital costs were estimated and an economic assessment was carried out using Net Present Value (NPV) as indicator. Finally, sensitivity analyses on processing capacity and prices was done to take into account possible variations. Results indicate that both processes perform similarly from an energy intensity point of view ranging between 34-50 MJ per kg of main product. However, in terms of processing yield (kg of product per kg of C6 sugar), caprolactam shows higher yield by a factor 1.6-3.6 compared to butadiene. For butadiene production, with the economic parameters used in this study, for both cases studied, a negative NPV (-642 and -647 M€) was attained indicating economic infeasibility. For the caprolactam production, one of the cases also showed economic infeasibility (-229 M€), but the case with the higher caprolactam yield resulted in a positive NPV (67 M€). Sensitivity analysis indicated that the economic performance of caprolactam production can be improved with the increase in capacity (higher C6 sugars intake) reflecting benefits of the economies of scale. Furthermore, humins valorization for heat and power production was considered and found to have a positive effect. Butadiene production was found sensitive to the price of feedstock C6 sugars and product butadiene. However, even at 100% variation of the two parameters, butadiene production remained economically infeasible. Overall, the caprolactam production line shows higher economic potential in comparison to that of butadiene. The results are useful in guiding experimental research and providing direction for further development of bio-based chemicals.Keywords: bio-based chemicals, biorefinery, C6 sugars, economic analysis, process modelling
Procedia PDF Downloads 152436 Influence of Footing Offset over Stability of Geosynthetic Reinforced Soil Abutments with Variable Facing under Lateral Excitation
Authors: Ashutosh Verma, Satyendra MIttal
Abstract:
The loss of strength at the facing-reinforcement interface brought on by the seasonal thermal expansion/contraction of the bridge deck has been responsible for several geosynthetic reinforced soil abutment failures over the years. This results in excessive settlement below the bridge seat, which results in bridge bumps along the approach road and shortens abutment's design life. There are surely a wide variety of facing configurations available to designers when choosing the sort of facade. These layouts can generally be categorised into three groups: continuous, full height rigid (FHR) and modular (panels/block). The current work aims to experimentally explore the behavior of these three facing categories using 1g physical model testing under serviceable cyclic lateral displacements. With configurable facing arrangements to represent these three facing categories, a field instrumented GRS abutment prototype was modelled into a N scaled down 1g physical model (N = 5) to reproduce field behavior. Peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) for footing offset (x/H) as 0.1, 0.2, 0.3, 0.4 and 0.5 at 100 cycles have been measured for cyclic lateral displacement of top of facing at loading rate of 1mm/min. Three types of cyclic displacements have been carried out to replicate active condition (CA), passive condition (CP), and active-passive condition (CAP) for each footing offset. The results demonstrated that a significant decrease in the earth pressure over the facing occurs when footing offset increases. It is worth noticing that the highest rate of increment in earth pressure and footing settlement were observed for each facing configuration at the nearest footing offset. Interestingly, for the farthest footing offset, similar responses of each facing type were observed, which indicates that the upon reaching a critical offset point presumably beyond the active region in the backfill, the lateral responses become independent of the stresses from the external footing load. Evidently, the footing load complements the stresses developed due to lateral excitation resulting in significant footing settlements for nearer footing offsets. The modular facing proved inefficient in resisting footing settlement due to significant buckling along the depth of facing. Instead of relative displacement along the depth of facing, continuous facing rotates around the base when it fails, especially for nearer footing offset causing significant depressions in the backfill area surrounding the footing. FHR facing, on the other hand, have been successful in confining the stresses in the soil domain itself reducing the footing settlement. It may be suitably concluded that increasing the footing offset may render stability to the GRS abutment with any facing configuration even for higher cycles of excitation.Keywords: GRS abutments, 1g physical model, footing offset, cyclic lateral displacement
Procedia PDF Downloads 82435 Development of International Entry-Level Nursing Competencies to Address the Continuum of Substance Use
Authors: Cheyenne Johnson, Samantha Robinson, Christina Chant, Ann M. Mitchell, Carol Price, Carmel Clancy, Adam Searby, Deborah S. Finnell
Abstract:
Introduction: Substance use along the continuum from at-risk use to a substance use disorder (SUD) contributes substantially to the burden of disease and related harms worldwide. There is a growing body of literature that highlights the lack of substance use related content in nursing curricula. Furthermore, there is also a lack of consensus on key competencies necessary for entry-level nurses. Globally, there is a lack of established nursing competencies related to prevention, health promotion, harm reduction and treatment of at-risk substance use and SUDs. At a critical time in public health, this gap in nursing curricula contributes to a lack of preparation for entry-level nurses to support people along the continuum of substance use. Thus, in practice, early opportunities for screening, support, and interventions may be missed. To address this gap, an international committee was convened to develop international entry-level nursing competencies specifying the knowledge, skills, and abilities that all nurses should possess in order to address the continuum of substance use. Methodology: An international steering committee, including representation from Canada, United States, United Kingdom, and Australia was established to lead this work over a one-year time period. The steering committee conducted a scoping review, undertaken to examine nursing competency frameworks, and to inform a competency structure that would guide this work. The next steps were to outline key competency areas and establish leaders for working groups to develop the competencies. In addition, a larger international committee was gathered to contribute to competency working groups, review the collective work and concur on the final document. Findings: A comprehensive framework was developed with competencies covering a wide spectrum of substance use across the lifespan and in the context of prevention, health promotion, harm reduction and treatment, including special populations. The development of this competency-based framework meets an identified need to provide guidance for universities, health authorities, policy makers, nursing regulators and other organizations that provide and support nursing education which focuses on care for patients and families with at-risk substance use and SUDs. Conclusion: Utilizing these global competencies as expected outcomes of an educational and skill building curricula for entry-level nurses holds great promise for incorporating evidence-informed training in the care and management of people across the continuum of substance use.Keywords: addiction nursing, addiction nursing curriculum, competencies, substance use
Procedia PDF Downloads 175434 Factors Influencing the Uptake of Vaccinations amongst Pregnant Women Following the COVID-19 Pandemic
Authors: Jo Parsons, Cath Grimley, Debra Bick, Sarah Hillman, Louise Clarke, Helen Atherton
Abstract:
The problem: Vaccinations are routinely offered to pregnant women in the UK for influenza (flu), pertussis (whooping cough), and COVID-19, yet the uptake of these vaccinations in pregnancy remains low. Pregnant women are at increased risk of hospitalisation, morbidity, and mortality from these preventable illnesses, which can also expose their unborn babies to an increased risk of serious complications, including in utero death. This research aims to explore how pregnant women feel about vaccinations offered during pregnancy (flu, whooping cough, and COVID-19), particularly following the COVID-19 pandemic. It also aims to examine factors influencing women’s decisions about vaccinations during pregnancy and how they feel about their health and vulnerabilities to illness arising from the COVID-19 pandemic. The approach: This is a qualitative study involving semi-structured interviews with pregnant women and midwives in the UK. Interviews with pregnant women explored their views since the COVID-19 pandemic about vaccinations offered during pregnancy and whether the pandemic has influenced perceptions of vulnerability to illness in pregnant women. Interviews with midwives explored vaccination discussions they routinely have with pregnant women and identified some of the barriers to vaccination that pregnant women discuss with them. Pregnant women were recruited via participating hospitals and community groups. Midwives were recruited via participating hospitals and midwife-specific social media groups. All interviews were conducted remotely (using telephone or Microsoft Teams) and analysed using thematic analysis. Findings: 43 pregnant women and 16 midwives were recruited and interviewed. The findings presented will focus on data from pregnant women. Pregnant women reported a wide range of views and vaccination behaviour, and identified several factors influencing their decision whether to accept vaccinations or not. These included internal factors (comprised of beliefs about susceptibility to illness, perceptions of immunity, fear, and feelings of responsibility), other influences (including visibility of illness and external influences such as healthcare professional recommendations), vaccination-related factors (comprised of beliefs about effectiveness and safety of vaccinations, availability and accessibility of vaccinations and preferences for alternative forms of protection to vaccination) and COVID-19 specific factors (including COVID-19 vaccinations and COVID-19 specific influences). Implications: Findings identified some of the factors that affect pregnant women’s decisions when deciding to have a vaccination or not and how these decisions have been influenced by COVID-19. Findings highlight areas where healthcare professional advice needs to focus, such as the provision of information about the increased vulnerability to illnesses during pregnancy and consideration of opportunistic vaccination at hospital appointments to maximise uptake of vaccinations during pregnancy. Findings of this study will inform the development of an intervention to increase vaccination uptake amongst pregnant women.Keywords: vaccination, pregnancy, qualitative, interviews, COVID-19
Procedia PDF Downloads 96433 Seed Associated Microbial Communities of Holoparasitic Cistanche Species from Armenia and Portugal
Authors: K. Petrosyan, R. Piwowarczyk, K. Ruraż, S. Thijs, J. Vangronsveld, W. Kaca
Abstract:
Holoparasitic plants are flowering heterotrophic angiosperms which with the help of an absorbing organ - haustorium, attach to another plant, the so-called the host. Due to the different hosts, unusual lifestyle, lack of roots, chlorophylls and photosynthesis, these plants are interesting and unique study objects for global biodiversity. The seeds germination of the parasitic plants also is unique: they germinate only in response to germination stimulants, namely strigolactones produced by the root of an appropriate host. Resistance of the seeds on different environmental conditions allow them to stay viable in the soil for more than 20 years. Among the wide range of plant protection mechanisms the endophytic communities have a specific role. In this way, they have the potential to mitigate the impacts of adverse conditions such as soil salinization. The major objective of our study was to compare the bacterial endo-microbiomes from seeds of two holoparasitic plants from Orobanchaceae family, Cistanche – C. armena (Armenia) and C. phelypaea (Portugal) – from saline habitats different in soil water status. The research aimed to perform how environmental conditions influence on the diversity of the bacterial communities of C. armena and C. phelypaea seeds. This was achieved by comparison of the endophytic microbiomes of two species and isolation of culturable bacteria. A combination of culture-dependent and molecular techniques was employed for the identification of the seed endomicrobiome (culturable and unculturable). Using the V3-V4 hypervariable region of the 16S rRNA gene, four main taxa were identified: Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, but the relative proportion of the taxa was different in each type of seed. Generally, sixteen phyla, 323 genera and 710 bacterial species were identified, mainly Gram negative, halotolerant bacteria with an environmental origin. However, also some unclassified and unexplored taxonomic groups were found in the seeds of both plants. 16S rRNA gene sequencing analysis from both species identified the gram positive, endospore forming, halotolerant and alkaliphile Bacillus spp. which suggests that the endophytic bacteria of examined seeds possess traits that are correlated with the natural habitat of their hosts. The cultivable seed endophytes from C. armena and C. phelypaea were rather similar, notwithstanding the big distances between their growth habitats - Armenia and Portugal. Although the seed endophytic microbiomes of C. armena and C. phelypaea contain a high number of common bacterial taxa, also remarkable differences exist. We demonstrated that the environmental conditions or abiotic stresses influence on diversity of the bacterial communities of holoparasiotic seeds. To the best of our knowledge the research is the first report of endophytes from seeds of holoparasitic Cistanche armena and C. phelypaea plants.Keywords: microbiome, parasitic plant, salinity, seeds
Procedia PDF Downloads 72