Search results for: data mining applications and discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30893

Search results for: data mining applications and discovery

28073 Clogging Reduction Design Factor for Geosynthetics Used in Sustainable Urban Drainage Systems and Roads

Authors: Jaime Carpio-García, Elena Blanco-Fernández, Javier González-Fernández, Daniel Castro-Fresno

Abstract:

Sustainable urban drainage systems (SUDS) are more often used in order to prevent floods, water treatment, fight against pollution, urban heat island effect, and global warming in applications like green roofs, permeable pavements, and others. Furthermore, geosynthetics are also worldwide used as a part of drainage systems in road construction. Geotextiles are an essential part of both, and one of the main geotextile properties in those applications is permeability, whose behavior is not well established along its service life. In this paper, clogging reduction design factors for an estimated service life of 25 years are experimentally obtained for five different geotextiles used in SUDS and roads combined with two different soils and with two pollutants, motor oil, and lime, in order to evaluate chemical clogging, too. The effect of characteristic opening size and other characteristics of the geosynthetics are also discussed in order to give civil engineers, together with the clogging reduction factors, a better long-time design of geotextiles used in their SUDS and roads.

Keywords: geotextiles, drainage, clogging, reduction factor

Procedia PDF Downloads 79
28072 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 111
28071 Speedup Breadth-First Search by Graph Ordering

Authors: Qiuyi Lyu, Bin Gong

Abstract:

Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.

Keywords: breadth-first search, BFS, graph ordering, graph algorithm

Procedia PDF Downloads 141
28070 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications

Authors: Udayan Patankar, Shashwati Bhagat, Vilas Nitneware, Ants Koel

Abstract:

An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band.

Keywords: RFIC, PAE, RF CMOS, impedance matching

Procedia PDF Downloads 230
28069 A Relational Data Base for Radiation Therapy

Authors: Raffaele Danilo Esposito, Domingo Planes Meseguer, Maria Del Pilar Dorado Rodriguez

Abstract:

As far as we know, it is still unavailable a commercial solution which would allow to manage, openly and configurable up to user needs, the huge amount of data generated in a modern Radiation Oncology Department. Currently, available information management systems are mainly focused on Record & Verify and clinical data, and only to a small extent on physical data. Thus, results in a partial and limited use of the actually available information. In the present work we describe the implementation at our department of a centralized information management system based on a web server. Our system manages both information generated during patient planning and treatment, and information of general interest for the whole department (i.e. treatment protocols, quality assurance protocols etc.). Our objective it to be able to analyze in a simple and efficient way all the available data and thus to obtain quantitative evaluations of our treatments. This would allow us to improve our work flow and protocols. To this end we have implemented a relational data base which would allow us to use in a practical and efficient way all the available information. As always we only use license free software.

Keywords: information management system, radiation oncology, medical physics, free software

Procedia PDF Downloads 247
28068 A Study of Safety of Data Storage Devices of Graduate Students at Suan Sunandha Rajabhat University

Authors: Komol Phaisarn, Natcha Wattanaprapa

Abstract:

This research is a survey research with an objective to study the safety of data storage devices of graduate students of academic year 2013, Suan Sunandha Rajabhat University. Data were collected by questionnaire on the safety of data storage devices according to CIA principle. A sample size of 81 was drawn from population by purposive sampling method. The results show that most of the graduate students of academic year 2013 at Suan Sunandha Rajabhat University use handy drive to store their data and the safety level of the devices is at good level.

Keywords: security, safety, storage devices, graduate students

Procedia PDF Downloads 356
28067 The Impact of Basic TRIZ Training on Psychological Flexibility among University Students

Authors: Bakr M. Saeid

Abstract:

Psychological flexibility is a basic ability that allows people to adapt to a changing, difficult world. TRIZ is a Theory of Solving Inventive Problems that has many applications in both science & technology and creativity development; this research aimed to investigate the impact of basic TRIZ training on psychological flexibility among university students. The research sample included (30) university students divided into two groups: experimental group (n=15) and control group (n=15). The Psychological Flexibility Questionnaire (PFQ) was conducted in the pre-test and post-test on the experimental and control group, as the study treatment was applied to the experimental group only. Data were analyzed statistically by the Mann-Whitney test and Wilcoxon z test; results showed the effectiveness of the TRIZ training program on the development of psychological flexibility and its five factors. Results were interpreted, recommendations were presented.

Keywords: psychological flexibility, TRIZ, positive perception of change, self as flexible and innovative, perception of reality

Procedia PDF Downloads 161
28066 Simulation of a Cost Model Response Requests for Replication in Data Grid Environment

Authors: Kaddi Mohammed, A. Benatiallah, D. Benatiallah

Abstract:

Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes.

Keywords: response time, query, consistency, bandwidth, storage capacity, CERN

Procedia PDF Downloads 276
28065 Development of Open Source Geospatial Certification Model Based on Geospatial Technology Competency Model

Authors: Tanzeel Ur Rehman Khan, Franz Josef Behr, Phillip Davis

Abstract:

Open source geospatial certifications are needed in geospatial technology education and industry sector. In parallel with proprietary software, free and open source software solutions become important in geospatial technology research and play an important role for the growth of the geospatial industry. ESRI, GISCI (GIS Certification Institute), ASPRS (American Society of Photogrammetry and remote sensing), and Meta spatial are offering certifications on proprietary and open source software. These are portfolio and competency based certifications depending on GIS Body of Knowledge (Bok). The analysis of these certification approaches might lead to the discovery of some gaps in them and will open a new way to develop certifications related to the geospatial open source (OS). This new certification will investigate the different geospatial competencies according to open source tools that help to identify geospatial professionals and strengthen the geospatial academic content. The goal of this research is to introduce a geospatial certification model based on geospatial technology competency model (GTCM).The developed certification will not only incorporate the importance of geospatial education and production of the geospatial competency-based workforce in universities and companies (private or public) as well as describe open source solutions with tools and technology. Job analysis, market analysis, survey analysis of this certification opens a new horizon for business as well.

Keywords: geospatial certification, open source, geospatial technology competency model, geoscience

Procedia PDF Downloads 570
28064 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece

Authors: N. Samarinas, C. Evangelides, C. Vrekos

Abstract:

The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.

Keywords: classification, fuzzy logic, tolerance relations, rainfall data

Procedia PDF Downloads 318
28063 Exploring Utility and Intrinsic Value among UAE Arabic Teachers in Integrating M-Learning

Authors: Dina Tareq Ismail, Alexandria A. Proff

Abstract:

The United Arab Emirates (UAE) is a nation seeking to advance in all fields, particularly education. One area of focus for UAE 2021 agenda is to restructure UAE schools and universities by equipping them with highly developed technology. The agenda also advises educational institutions to prepare students with applicable and transferrable Information and Communication Technology (ICT) skills. Despite the emphasis on ICT and computer literacy skills, there exists limited empirical data on the use of M-Learning in the literature. This qualitative study explores the motivation of higher primary Arabic teachers in private schools toward implementing and integrating M-Learning apps in their classrooms. This research employs a phenomenological approach through the use of semistructured interviews with nine purposefully selected Arabic teachers. The data were analyzed using a content analysis via multiple stages of coding: open, axial, and thematic. Findings reveal three primary themes: (1) Arabic teachers with high levels of procedural knowledge in ICT are more motivated to implement M-Learning; (2) Arabic teachers' perceptions of self-efficacy influence their motivation toward implementation of M-Learning; (3) Arabic teachers implement M-Learning when they possess high utility and/or intrinsic value in these applications. These findings indicate a strong need for further training, equipping, and creating buy-in among Arabic teachers to enhance their ICT skills in implementing M-Learning. Further, given the limited availability of M-Learning apps designed for use in the Arabic language on the market, it is imperative that developers consider designing M-Learning tools that Arabic teachers, and Arabic-speaking students, can use and access more readily. This study contributes to closing the knowledge gap on teacher-motivation for implementing M-Learning in their classrooms in the UAE.

Keywords: ICT skills, m-learning, self-efficacy, teacher-motivation

Procedia PDF Downloads 109
28062 Customer Satisfaction and Effective HRM Policies: Customer and Employee Satisfaction

Authors: S. Anastasiou, C. Nathanailides

Abstract:

The purpose of this study is to examine the possible link between employee and customer satisfaction. The service provided by employees, help to build a good relationship with customers and can help at increasing their loyalty. Published data for job satisfaction and indicators of customer services were gathered from relevant published works which included data from five different countries. The reviewed data indicate a significant correlation between indicators of customer and employee satisfaction in the Banking sector. There was a significant correlation between the two parameters (Pearson correlation R2=0.52 P<0.05) The reviewed data provide evidence that there is some practical evidence which links these two parameters.

Keywords: job satisfaction, job performance, customer’ service, banks, human resources management

Procedia PDF Downloads 326
28061 Extracting Therapeutic Grade Essential Oils from the Lamiaceae Plant Family in the United Arab Emirates (UAE): Highlights on Great Possibilities and Sever Difficulties

Authors: Suzan M. Shahin, Mohammed A. Salem

Abstract:

Essential oils are expensive phytochemicals produced and extracted from specific species belonging to particular families in the plant kingdom. In the United Arab Emirates country (UAE), which is located in the arid region of the world, nine species, from the Lamiaceae family, having the capability to produce therapeutic grade essential oils. These species include; Mentha spicata, Ocimum forskolei, Salvia macrosiphon, Salvia aegyptiaca, Salvia macilenta, Salvia spinosa, Teucrium polium, Teucrium stocksianum, and Zataria multiflora. Although, such potential species are indigenous to the UAE, however, there are almost no studies available to investigate the chemical composition and the quality of the extracted essential oils under the UAE climatological conditions. Therefore, great attention has to be given to such valuable natural resources, through conducting highly supported research projects, tailored to the UAE conditions, and investigating different extraction techniques, including the application of the latest available technologies, such as superficial fluid CO2. This is crucially needed; in order to accomplish the greatest possibilities in the medicinal field, specifically in the discovery of new therapeutic chemotypes, as well as, to achieve the sustainability of this natural resource in the country.

Keywords: essential oils, extraction techniques, Lamiaceae, traditional medicine, United Arab Emirates (UAE)

Procedia PDF Downloads 464
28060 Purification of Bacillus Lipopeptides for Diverse Applications

Authors: Vivek Rangarajan, Kim G. Clarke

Abstract:

Bacillus lipopeptides are biosurfactants with wide ranging applications in the medical, food, agricultural, environmental and cosmetic industries. They are produced as a mix of three families, surfactin, iturin and fengycin, each comprising a large number of homologues of varying functionalities. Consequently, the method and degree of purification of the lipopeptide cocktail becomes particularly important if the functionality of the lipopeptide end-product is to be maximized for the specific application. However, downstream processing of Bacillus lipopeptides is particularly challenging due to the subtle variations observed in the different lipopeptide homologues and isoforms. To date, the most frequently used lipopeptide purification operations have been acid precipitation, solvent extraction, membrane ultrafiltration, adsorption and size exclusion. RP-HPLC (reverse phase high pressure liquid chromatography) also has potential for fractionation of the lipopeptide homologues. In the studies presented here, membrane ultrafiltration and RP-HPLC were evaluated for lipopeptide purification to different degrees of purities for maximum functionality. Batch membrane ultrafiltration using 50 kDa polyether sulphone (PES) membranes resulted in lipopeptide recovery of about 68% for surfactin and 82 % for fengycin. The recovery was further improved to 95% by using size-conditioned lipopeptide micelles. The conditioning of lipopeptides with Ca2+ ions resulted in uniformly sized micelles with average size of 96.4 nm and a polydispersity index of 0.18. The size conditioning also facilitated removal of impurities (molecular weight ranging between 2335-3500 Da) through operation of the system under dia-filtration mode, in a way similar to salt removal from protein by dialysis. The resultant purified lipopeptide was devoid of macromolecular impurities and could ideally suit applications in the cosmetic and food industries. Enhanced purification using RP-HPLC was carried out in an analytical C18 column, with the aim to fractionate lipopeptides into their constituent homologues. The column was eluted with mobile phase comprising acetonitrile and water over an acetonitrile gradient, 35% - 80%, over 70 minutes. The gradient elution program resulted in as many as 41 fractions of individual lipopeptide homologues. The efficacy test of these fractions against fungal phytopathogens showed that first 21 fractions, identified to be homologues of iturins and fengycins, displayed maximum antifungal activities, suitable for biocontrol in the agricultural industry. Thus, in the current study, the downstream processing of lipopeptides leading to tailor-made products for selective applications was demonstrated using two major downstream unit operations.

Keywords: bacillus lipopeptides, membrane ultrafiltration, purification, RP-HPLC

Procedia PDF Downloads 210
28059 Modeling of Enthalpy and Heat Capacity of Phase-Change Materials

Authors: Igor Medved, Anton Trnik, Libor Vozar

Abstract:

Phase-change materials (PCMs) are of great interest in the applications where a temperature level needs to be maintained and/or where there is demand for thermal energy storage. Examples are storage of solar energy, cold, and space heating/cooling of buildings. During a phase change, the enthalpy vs. temperature plot of PCMs shows a jump and there is a distinct peak in the heat capacity plot. We present a theoretical description from which these jumps and peaks can be obtained. We apply our theoretical results to fit experimental data with very good accuracy for selected materials and changes between two phases. The development is based on the observation that PCMs are polycrystalline; i.e., composed of many single-crystalline grains. The enthalpy and heat capacity are thus interpreted as averages of the contributions from the individual grains. We also show how to determine the baseline and excess part of the heat capacity and thus the latent heat corresponding to the phase change.

Keywords: averaging, enthalpy jump, heat capacity peak, phase change

Procedia PDF Downloads 463
28058 Evaluation of Australian Open Banking Regulation: Balancing Customer Data Privacy and Innovation

Authors: Suman Podder

Abstract:

As Australian ‘Open Banking’ allows customers to share their financial data with accredited Third-Party Providers (‘TPPs’), it is necessary to evaluate whether the regulators have achieved the balance between protecting customer data privacy and promoting data-related innovation. Recognising the need to increase customers’ influence on their own data, and the benefits of data-related innovation, the Australian Government introduced ‘Consumer Data Right’ (‘CDR’) to the banking sector through Open Banking regulation. Under Open Banking, TPPs can access customers’ banking data that allows the TPPs to tailor their products and services to meet customer needs at a more competitive price. This facilitated access and use of customer data will promote innovation by providing opportunities for new products and business models to emerge and grow. However, the success of Open Banking depends on the willingness of the customers to share their data, so the regulators have augmented the protection of data by introducing new privacy safeguards to instill confidence and trust in the system. The dilemma in policymaking is that, on the one hand, lenient data privacy laws will help the flow of information, but at the risk of individuals’ loss of privacy, on the other hand, stringent laws that adequately protect privacy may dissuade innovation. Using theoretical and doctrinal methods, this paper examines whether the privacy safeguards under Open Banking will add to the compliance burden of the participating financial institutions, resulting in the undesirable effect of stifling other policy objectives such as innovation. The contribution of this research is three-fold. In the emerging field of customer data sharing, this research is one of the few academic studies on the objectives and impact of Open Banking in the Australian context. Additionally, Open Banking is still in the early stages of implementation, so this research traces the evolution of Open Banking through policy debates regarding the desirability of customer data-sharing. Finally, the research focuses not only on the customers’ data privacy and juxtaposes it with another important objective of promoting innovation, but it also highlights the critical issues facing the data-sharing regime. This paper argues that while it is challenging to develop a regulatory framework for protecting data privacy without impeding innovation and jeopardising yet unknown opportunities, data privacy and innovation promote different aspects of customer welfare. This paper concludes that if a regulation is appropriately designed and implemented, the benefits of data-sharing will outweigh the cost of compliance with the CDR.

Keywords: consumer data right, innovation, open banking, privacy safeguards

Procedia PDF Downloads 144
28057 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 89
28056 Generation of Automated Alarms for Plantwide Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.

Keywords: detection, monitoring, process data, noise

Procedia PDF Downloads 255
28055 Leveraging Mobile Apps for Citizen-Centric Urban Planning: Insights from Tajawob Implementation

Authors: Alae El Fahsi

Abstract:

This study explores the ‘Tajawob’ app's role in urban development, demonstrating how mobile applications can empower citizens and facilitate urban planning. Tajawob serves as a digital platform for community feedback, engagement, and participatory governance, addressing urban challenges through innovative tech solutions. This research synthesizes data from a variety of sources, including user feedback, engagement metrics, and interviews with city officials, to assess the app’s impact on citizen participation in urban development in Morocco. By integrating advanced data analytics and user experience design, Tajawob has bridged the communication gap between citizens and government officials, fostering a more collaborative and transparent urban planning process. The findings reveal a significant increase in civic engagement, with users actively contributing to urban management decisions, thereby enhancing the responsiveness and inclusivity of urban governance. Challenges such as digital literacy, infrastructure limitations, and privacy concerns are also discussed, providing a comprehensive overview of the obstacles and opportunities presented by mobile app-based citizen engagement platforms. The study concludes with strategic recommendations for scaling the Tajawob model to other contexts, emphasizing the importance of adaptive technology solutions in meeting the evolving needs of urban populations. This research contributes to the burgeoning field of smart city innovations, offering key insights into the role of digital tools in facilitating more democratic and participatory urban environments.

Keywords: smart cities, digital governance, urban planning, strategic design

Procedia PDF Downloads 65
28054 Meanings and Concepts of Standardization in Systems Medicine

Authors: Imme Petersen, Wiebke Sick, Regine Kollek

Abstract:

In systems medicine, high-throughput technologies produce large amounts of data on different biological and pathological processes, including (disturbed) gene expressions, metabolic pathways and signaling. The large volume of data of different types, stored in separate databases and often located at different geographical sites have posed new challenges regarding data handling and processing. Tools based on bioinformatics have been developed to resolve the upcoming problems of systematizing, standardizing and integrating the various data. However, the heterogeneity of data gathered at different levels of biological complexity is still a major challenge in data analysis. To build multilayer disease modules, large and heterogeneous data of disease-related information (e.g., genotype, phenotype, environmental factors) are correlated. Therefore, a great deal of attention in systems medicine has been put on data standardization, primarily to retrieve and combine large, heterogeneous datasets into standardized and incorporated forms and structures. However, this data-centred concept of standardization in systems medicine is contrary to the debate in science and technology studies (STS) on standardization that rather emphasizes the dynamics, contexts and negotiations of standard operating procedures. Based on empirical work on research consortia that explore the molecular profile of diseases to establish systems medical approaches in the clinic in Germany, we trace how standardized data are processed and shaped by bioinformatics tools, how scientists using such data in research perceive such standard operating procedures and which consequences for knowledge production (e.g. modeling) arise from it. Hence, different concepts and meanings of standardization are explored to get a deeper insight into standard operating procedures not only in systems medicine, but also beyond.

Keywords: data, science and technology studies (STS), standardization, systems medicine

Procedia PDF Downloads 345
28053 The Use of Lane-Centering to Assure the Visible Light Communication Connectivity for a Platoon of Autonomous Vehicles

Authors: Mohammad Y. Abualhoul, Edgar Talavera Munoz, Fawzi Nashashibi

Abstract:

The new emerging Visible Light Communication (VLC) technology has been subjected to intensive investigation, evaluation, and lately, deployed in the context of convoy-based applications for Intelligent Transportations Systems (ITS). The technology limitations were defined and supported by different solutions proposals to enhance the crucial alignment and mobility limitations. In this paper, we propose the incorporation of VLC technology and Lane-Centering (LC) technique to assure the VLC-connectivity by keeping the autonomous vehicle aligned to the lane center using vision-based lane detection in a convoy-based formation. Such combination can ensure the optical communication connectivity with a lateral error less than 30 cm. As soon as the road lanes are detectable, the evaluated system showed stable behavior independently from the inter-vehicle distances and without the need for any exchanged information of the remote vehicles. The evaluation of the proposed system is verified using VLC prototype and an empirical result of LC running application over 60 km in Madrid M40 highway.

Keywords: visible light communication, lane-centerin, platooning, intelligent transportation systems, road safety applications

Procedia PDF Downloads 176
28052 Integrated On-Board Diagnostic-II and Direct Controller Area Network Access for Vehicle Monitoring System

Authors: Kavian Khosravinia, Mohd Khair Hassan, Ribhan Zafira Abdul Rahman, Syed Abdul Rahman Al-Haddad

Abstract:

The CAN (controller area network) bus is introduced as a multi-master, message broadcast system. The messages sent on the CAN are used to communicate state information, referred as a signal between different ECUs, which provides data consistency in every node of the system. OBD-II Dongles that are based on request and response method is the wide-spread solution for extracting sensor data from cars among researchers. Unfortunately, most of the past researches do not consider resolution and quantity of their input data extracted through OBD-II technology. The maximum feasible scan rate is only 9 queries per second which provide 8 data points per second with using ELM327 as well-known OBD-II dongle. This study aims to develop and design a programmable, and latency-sensitive vehicle data acquisition system that improves the modularity and flexibility to extract exact, trustworthy, and fresh car sensor data with higher frequency rates. Furthermore, the researcher must break apart, thoroughly inspect, and observe the internal network of the vehicle, which may cause severe damages to the expensive ECUs of the vehicle due to intrinsic vulnerabilities of the CAN bus during initial research. Desired sensors data were collected from various vehicles utilizing Raspberry Pi3 as computing and processing unit with using OBD (request-response) and direct CAN method at the same time. Two types of data were collected for this study. The first, CAN bus frame data that illustrates data collected for each line of hex data sent from an ECU and the second type is the OBD data that represents some limited data that is requested from ECU under standard condition. The proposed system is reconfigurable, human-readable and multi-task telematics device that can be fitted into any vehicle with minimum effort and minimum time lag in the data extraction process. The standard operational procedure experimental vehicle network test bench is developed and can be used for future vehicle network testing experiment.

Keywords: CAN bus, OBD-II, vehicle data acquisition, connected cars, telemetry, Raspberry Pi3

Procedia PDF Downloads 212
28051 Purification and Pre-Crystallization of Recombinant PhoR Cytoplasmic Domain Protein from Mycobacterium Tuberculosis H37Rv

Authors: Oktira Roka Aji, Maelita R. Moeis, Ihsanawati, Ernawati A. Giri-Rachman

Abstract:

Globally, tuberculosis (TB) remains a leading cause of death. The emergence of multidrug-resistant strains and extensively drug-resistant strains have become a major public concern. One of the potential candidates for drug target is the cytoplasmic domain of PhoR Histidine Kinase, a part of the Two Component System (TCS) PhoR-PhoP in Mycobacterium tuberculosis (Mtb). TCS PhoR-PhoP relay extracellular signal to control the expression of 114 virulent associated genes in Mtb. The 3D structure of PhoR cytoplasmic domain is needed to screen novel drugs using structure based drug discovery. The PhoR cytoplasmic domain from Mtb H37Rv was overexpressed in E. coli BL21(DE3), then purified using IMAC Ni-NTA Agarose his-tag affinity column and DEAE-ion exchange column chromatography. The molecular weight of the purified protein was estimated to be 37 kDa after SDS-PAGE analysis. This sample was used for pre-crystallization screening by applying sitting drop vapor diffusion method using Natrix (HR2-116) 48 solutions crystal screen kit at 25ºC. Needle-like crystals were observed after the seventh day of incubation in test solution No.47 (0.1 M KCl, 0.01 M MgCl2.6H2O, 0.05 M Tris-Cl pH 8.5, 30% v/v PEG 4000). Further testing is required for confirming the crystal.

Keywords: tuberculosis, two component system, histidine kinase, needle-like crystals

Procedia PDF Downloads 434
28050 A Survey on Intelligent Connected-Vehicle Applications Based on Intercommunication Techniques in Smart Cities

Authors: B. Karabuluter, O. Karaduman

Abstract:

Connected-Vehicles consists of intelligent vehicles, each of which can communicate with each other. Smart Cities are the most prominent application area of intelligent vehicles that can communicate with each other. The most important goal that is desired to be realized in Smart Cities planned for facilitating people's lives is to make transportation more comfortable and safe with intelligent/autonomous/driverless vehicles communicating with each other. In order to ensure these, the city must have communication infrastructure in the first place, and the vehicles must have the features to communicate with this infrastructure and with each other. In this context, intelligent transport studies to solve all transportation and traffic problems in classical cities continue to increase rapidly. In this study, current connected-vehicle applications developed for smart cities are considered in terms of communication techniques, vehicular networking, IoT, urban transportation implementations, intelligent traffic management, road safety, self driving. Taxonomies and assessments performed in the work show the trend of studies in inter-vehicle communication systems in smart cities and they are contributing to by ensuring that the requirements in this area are revealed.

Keywords: smart city, connected vehicles, infrastructures, VANET, wireless communication, intelligent traffic management

Procedia PDF Downloads 530
28049 The Security Challenges of Urbanization and Environmental Degradation in the Niger-Delta Area of Nigeria

Authors: Gloria Ogungbade, Ogaba Oche, Moses Duruji, Chris Ehiobuche, Lady Ajayi

Abstract:

Human’s continued sustenance on earth and the quality of living are heavily dependent on the environment. The major components of the environment being air, water and land are the supporting pillars of the human existence, which they depend on directly or indirectly for survival and well-being. Unfortunately, due to some of the human activities on the environment, there seems to be a war between humans and the environment, which is evident in his over-exploitation and inadequate management of the basic components of the environment. Since the discovery of crude oil in the Niger Delta, the region has experienced various forms of degradation caused by pollution from oil spillage, gas flaring and other forms of environmental pollution, as a result of reckless way and manner with which oil is being exploited by the International Oil Corporations (IOCs) operating within the region. The Nigerian government on the other, not having strong regulations guiding the activities of the operations of these IOCs, has done almost nothing to curtail the activities of these IOCs because of the revenue generated the IOCs, as such the region is deprived of the basic social amenities and infrastructures. The degree of environmental pollution suffered within the region affects their major sources of livelihood – being fishing and farming, and has also left the region in poverty, which has led to a large number of people migrating to the urban areas to escape poverty. This paper investigates how environment degradation impact urbanization and security in the region.

Keywords: environmental degradation, environmental pollution, gas flaring, oil spillage, urbanization

Procedia PDF Downloads 295
28048 In silico Designing of Imidazo [4,5-b] Pyridine as a Probable Lead for Potent Decaprenyl Phosphoryl-β-D-Ribose 2′-Epimerase (DprE1) Inhibitors as Antitubercular Agents

Authors: Jineetkumar Gawad, Chandrakant Bonde

Abstract:

Tuberculosis (TB) is a major worldwide concern whose control has been exacerbated by HIV, the rise of multidrug-resistance (MDR-TB) and extensively drug resistance (XDR-TB) strains of Mycobacterium tuberculosis. The interest for newer and faster acting antitubercular drugs are more remarkable than any time. To search potent compounds is need and challenge for researchers. Here, we tried to design lead for inhibition of Decaprenyl phosphoryl-β-D-ribose 2′-epimerase (DprE1) enzyme. Arabinose is an essential constituent of mycobacterial cell wall. DprE1 is a flavoenzyme that converts decaprenylphosphoryl-D-ribose into decaprenylphosphoryl-2-keto-ribose, which is intermediate in biosynthetic pathway of arabinose. Latter, DprE2 converts keto-ribose into decaprenylphosphoryl-D-arabinose. We had a selection of 23 compounds from azaindole series for computational study, and they were drawn using marvisketch. Ligands were prepared using Maestro molecular modeling interface, Schrodinger, v10.5. Common pharmacophore hypotheses were developed by applying dataset thresholds to yield active and inactive set of compounds. There were 326 hypotheses were developed. On the basis of survival score, ADRRR (Survival Score: 5.453) was selected. Selected pharmacophore hypotheses were subjected to virtual screening results into 1000 hits. Hits were prepared and docked with protein 4KW5 (oxydoreductase inhibitor) was downloaded in .pdb format from RCSB Protein Data Bank. Protein was prepared using protein preparation wizard. Protein was preprocessed, the workspace was analyzed using force field OPLS 2005. Glide grid was generated by picking single atom in molecule. Prepared ligands were docked with prepared protein 4KW5 using Glide docking. After docking, on the basis of glide score top-five compounds were selected, (5223, 5812, 0661, 0662, and 2945) and the glide docking score (-8.928, -8.534, -8.412, -8.411, -8.351) respectively. There were interactions of ligand and protein, specifically HIS 132, LYS 418, TRY 230, ASN 385. Pi-pi stacking was observed in few compounds with basic Imidazo [4,5-b] pyridine ring. We had basic azaindole ring in parent compounds, but after glide docking, we received compounds with Imidazo [4,5-b] pyridine as a basic ring. That might be the new lead in the process of drug discovery.

Keywords: DprE1 inhibitors, in silico drug designing, imidazo [4, 5-b] pyridine, lead, tuberculosis

Procedia PDF Downloads 157
28047 Single Ion Transport with a Single-Layer Graphene Nanopore

Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru

Abstract:

Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.

Keywords: graphene nanomembrane, single ion transport, Coulomb blockade, nanofluidics

Procedia PDF Downloads 324
28046 Taxonomic Classification for Living Organisms Using Convolutional Neural Networks

Authors: Saed Khawaldeh, Mohamed Elsharnouby, Alaa Eddin Alchalabi, Usama Pervaiz, Tajwar Aleef, Vu Hoang Minh

Abstract:

Taxonomic classification has a wide-range of applications such as finding out more about the evolutionary history of organisms that can be done by making a comparison between species living now and species that lived in the past. This comparison can be made using different kinds of extracted species’ data which include DNA sequences. Compared to the estimated number of the organisms that nature harbours, humanity does not have a thorough comprehension of which specific species they all belong to, in spite of the significant development of science and scientific knowledge over many years. One of the methods that can be applied to extract information out of the study of organisms in this regard is to use the DNA sequence of a living organism as a marker, thus making it available to classify it into a taxonomy. The classification of living organisms can be done in many machine learning techniques including Neural Networks (NNs). In this study, DNA sequences classification is performed using Convolutional Neural Networks (CNNs) which is a special type of NNs.

Keywords: deep networks, convolutional neural networks, taxonomic classification, DNA sequences classification

Procedia PDF Downloads 450
28045 Recovering Copper From Tailing and E-Waste to Create Copper Nanoparticles with Antimicrobial Properties

Authors: Erico R. Carmona, Lucas Hernandez-Saravia, Aliro Villacorta, Felipe Carevic

Abstract:

Tailings and electronic waste (e-waste) are an important source of global contamination. Chile is one of Organisation for Economic Co-operation and Development (OECD) member countries that least recycled this kind of industrial waste, reaching only 3% of the total. Tailings and e-waste recycling offers a valuable tool to minimize the increasing accumulation of waste, supplement the scarcity of some raw materials and to obtain economic benefits through the commercialization of these. It should be noted that this type of industrial waste is an important source of valuable metals, such as copper, which allow generating new business and added value through its transformation into new materials with advanced physical and biological properties. In this sense, the development of nanotechnology has led to the creation of nanomaterials with multiple applications given their unique physicochemical properties. Among others, copper nanoparticles (CuNPs) have gained great interest due to their optical, catalytic, conductive properties, and particularly because of their broad-spectrum antimicrobial activity. There are different synthesis methods of copper nanoparticles; however, green synthesis is one of the most promising methodologies, since it is simple, low-cost, ecological, and generates stable nanoparticles, which makes it a promising methodology for scaling up. Currently, there are few initiatives that involve the development of methods for the recovery and transformation of copper from waste to produce nanoparticles with new properties and better technological benefits. Thus, the objective of this work is to show preliminary data about the develop a sustainable transformation process of tailings and e-waste that allows obtaining a copper-based nanotechnological product with potential antimicrobial applications. For this, samples of tailings and e-waste collected from Tarapacá and Antofagasta region of northern Chile were used to recover copper through efficient, ecological, and low-cost alkaline hydrometallurgical treatments, which to allow obtaining copper with a high degree of purity. On the other hand, the transformation process from recycled copper to a nanomaterial was carried out through a green synthesis approach by using vegetal organic residue extracts that allows obtaining CuNPs following methodologies previously reported by authors. Initial physical characterization with UV-Vis, FTIR, AFM, and TEM methodologies will be reported for CuNPs synthesized.

Keywords: nanomaterials, industrial waste, chile, recycling

Procedia PDF Downloads 98
28044 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Authors: Nazaket Gazieva

Abstract:

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Keywords: phonogram, speech signal, temporal characteristics, fundamental frequency, biometric fingerprints

Procedia PDF Downloads 147