Search results for: urban dynamics modelling
5229 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions
Authors: Saad Roustom, Hajo Ribberink
Abstract:
In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.Keywords: connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations
Procedia PDF Downloads 905228 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling
Authors: Vishnu Asokan, Zaid M. Paloba
Abstract:
Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution
Procedia PDF Downloads 1435227 A Low-Cost Air Quality Monitoring Internet of Things Platform
Authors: Christos Spandonidis, Stefanos Tsantilas, Elias Sedikos, Nektarios Galiatsatos, Fotios Giannopoulos, Panagiotis Papadopoulos, Nikolaos Demagos, Dimitrios Reppas, Christos Giordamlis
Abstract:
In the present paper, a low cost, compact and modular Internet of Things (IoT) platform for air quality monitoring in urban areas is presented. This platform comprises of dedicated low cost, low power hardware and the associated embedded software that enable measurement of particles (PM2.5 and PM10), NO, CO, CO2 and O3 concentration in the air, along with relative temperature and humidity. This integrated platform acts as part of a greater air pollution data collecting wireless network that is able to monitor the air quality in various regions and neighborhoods of an urban area, by providing sensor measurements at a high rate that reaches up to one sample per second. It is therefore suitable for Big Data analysis applications such as air quality forecasts, weather forecasts and traffic prediction. The first real world test for the developed platform took place in Thessaloniki, Greece, where 16 devices were installed in various buildings in the city. In the near future, many more of these devices are going to be installed in the greater Thessaloniki area, giving a detailed air quality map of the city.Keywords: distributed sensor system, environmental monitoring, Internet of Things, smart cities
Procedia PDF Downloads 1465226 Evaluation of Simulated Noise Levels through the Analysis of Temperature and Rainfall: A Case Study of Nairobi Central Business District
Authors: Emmanuel Yussuf, John Muthama, John Ng'ang'A
Abstract:
There has been increasing noise levels all over the world in the last decade. Many factors contribute to this increase, which is causing health related effects to humans. Developing countries are not left out of the whole picture as they are still growing and advancing their development. Motor vehicles are increasing on urban roads; there is an increase in infrastructure due to the rising population, increasing number of industries to provide goods and so many other activities. All this activities lead to the high noise levels in cities. This study was conducted in Nairobi’s Central Business District (CBD) with the main objective of simulating noise levels in order to understand the noise exposed to the people within the urban area, in relation to weather parameters namely temperature, rainfall and wind field. The study was achieved using the Neighbourhood Proximity Model and Time Series Analysis, with data obtained from proxies/remotely-sensed from satellites, in order to establish the levels of noise exposed to which people of Nairobi CBD are exposed to. The findings showed that there is an increase in temperature (0.1°C per year) and a decrease in precipitation (40 mm per year), which in comparison to the noise levels in the area, are increasing. The study also found out that noise levels exposed to people in Nairobi CBD were roughly between 61 and 63 decibels and has been increasing, a level which is high and likely to cause adverse physical and psychological effects on the human body in which air temperature, precipitation and wind contribute so much in the spread of noise. As a noise reduction measure, the use of sound proof materials in buildings close to busy roads, implementation of strict laws to most emitting sources as well as further research on the study was recommended. The data used for this study ranged from the year 2000 to 2015, rainfall being in millimeters (mm), temperature in degrees Celsius (°C) and the urban form characteristics being in meters (m).Keywords: simulation, noise exposure, weather, proxy
Procedia PDF Downloads 3795225 Common Space Production as a Solution to the Affordable Housing Problem: Its Relationship with the Squating Process in Turkey
Authors: Gözde Arzu Sarıcan
Abstract:
Contemporary urbanization processes and spatial transformations are intensely debated across various fields of social sciences. One prominent concept in these discussions is "common spaces." Common spaces offer a critical theoretical framework, particularly for addressing the social and economic inequalities brought about by urbanization. This study examines the processes of commoning and their impacts through the lens of squatter neighborhoods in Turkey, emphasizing the importance of affordable housing. It focuses on the role and significance of these neighborhoods in the formation of common spaces, analyzing the collective actions and resistance strategies of residents. This process, which began with the construction of shelters to meet the shelter needs of low-income households migrating from rural to urban areas, has turned into low-quality squatter settlements over time. For low-income households lacking the economic power to rent or buy homes in the city, these areas provided an affordable housing solution. Squatter neighborhoods reflect the efforts of local communities to protect and develop their communal living spaces through collective actions and resistance strategies. This collective creation process involves the appropriation of occupied land as a common resource through the rules established by the commons. Organized occupations subdivide these lands, shaped through collective creation processes. For the squatter communities striving for economic and social adaptation, these areas serve as buffer zones for urban integration. In squatter neighborhoods, bonds of friendship, kinship, and compatriotism are strong, playing a significant role in the creation and dissemination of collective knowledge. Squatter areas can be described as common spaces that emerge out of necessity for low-income and marginalized groups. The design and construction of housing in squatter neighborhoods are shaped by the collective participation and skills of the residents. Streets are formed through collective decision-making and labor. Over time, the demands for housing are communicated to local authorities, enhancing the potential for commoning. Common spaces are shaped by collective needs and demands, appropriated, and transformed into potential new spaces. Common spaces are continually redefined and recreated. In this context, affordable housing becomes an essential aspect of these common spaces, providing a foundation for social and economic stability. This study evaluates the processes of commoning and their effects through the lens of squatter neighborhoods in Turkey. Communities living in squatter neighborhoods have managed to create and protect communal living spaces, especially in situations where official authorities have been inadequate. Common spaces are built on values such as solidarity, cooperation, and collective resistance. In urban planning and policy development processes, it is crucial to consider the concept of common spaces. Policies that support the collective efforts and resistance strategies of communities can contribute to more just and sustainable living conditions in urban areas. In this context, the concept of common spaces is considered an important tool in the fight against urban inequalities and in the expression and defense mechanisms of communities. By emphasizing the importance of affordable housing within these spaces, this study highlights the critical role of common spaces in addressing urban social and economic challenges.Keywords: affordable housing, common space, squating process, turkey
Procedia PDF Downloads 325224 The Effect of a Saturated Kink on the Dynamics of Tungsten Impurities in the Plasma Core
Authors: H. E. Ferrari, R. Farengo, C. F. Clauser
Abstract:
Tungsten (W) will be used in ITER as one of the plasma facing components (PFCs). The W could migrate to the plasma center. This could have a potentially deleterious effect on plasma confinement. Electron cyclotron resonance heating (ECRH) can be used to prevent W accumulation. We simulated a series of H mode discharges in ASDEX U with PFC containing W, where central ECRH was used to prevent W accumulation in the plasma center. The experiments showed that the W density profiles were flat after a sawtooth crash, and become hollow in between sawtooth crashes when ECRH has been applied. It was also observed that a saturated kink mode was active in these conditions. We studied the effect of saturated kink like instabilities on the redistribution of W impurities. The kink was modeled as the sum of a simple analytical equilibrium (large aspect ratio, circular cross section) plus the perturbation produced by the kink. A numerical code that follows the exact trajectories of the impurity ions in the total fields and includes collisions was employed. The code is written in Cuda C and runs in Graphical Processing Units (GPUs), allowing simulations with a large number of particles with modest resources. Our simulations show that when the W ions have a thermal velocity distribution, the kink has no effect on the W density. When we consider the plasma rotation, the kink can affect the W density. When the average passing frequency of the W particles is similar to the frequency of the kink mode, the expulsion of W ions from the plasma core is maximum, and the W density shows a hollow structure. This could have implications for the mitigation of W accumulation.Keywords: impurity transport, kink instability, tungsten accumulation, tungsten dynamics
Procedia PDF Downloads 1715223 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues
Authors: Ali Ben Abbes, Imed Riadh Farah
Abstract:
Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban
Procedia PDF Downloads 3545222 Sustainable Living Where the Immaterial Matters
Authors: Maria Hadjisoteriou, Yiorgos Hadjichristou
Abstract:
This paper aims to explore and provoke a debate, through the work of the design studio, “living where the immaterial matters” of the architecture department of the University of Nicosia, on the role that the “immaterial matter” can play in enhancing innovative sustainable architecture and viewing the cities as sustainable organisms that always grow and alter. The blurring, juxtaposing binary of immaterial and matter, as the theoretical backbone of the Unit is counterbalanced by the practicalities of the contested sites of the last divided capital Nicosia with its ambiguous green line and the ghost city of Famagusta in the island of Cyprus. Jonathan Hill argues that the ‘immaterial is as important to architecture as the material concluding that ‘Immaterial–Material’ weaves the two together, so that they are in conjunction not opposition’. This understanding of the relationship of the immaterial vs material set the premises and the departing point of our argument, and talks about new recipes for creating hybrid public space that can lead to the unpredictability of a complex and interactive, sustainable city. We hierarchized the human experience as a priority. We distinguish the notion of space and place referring to Heidegger’s ‘building dwelling thinking’: ‘a distinction between space and place, where spaces gain authority not from ‘space’ appreciated mathematically but ‘place’ appreciated through human experience’. Following the above, architecture and the city are seen as one organism. The notions of boundaries, porous borders, fluidity, mobility, and spaces of flows are the lenses of the investigation of the unit’s methodology, leading to the notion of a new hybrid urban environment, where the main constituent elements are in a flux relationship. The material and the immaterial flows of the town are seen interrelated and interwoven with the material buildings and their immaterial contents, yielding to new sustainable human built environments. The above premises consequently led to choices of controversial sites. Indisputably a provoking site was the ghost town of Famagusta where the time froze back in 1974. Inspired by the fact that the nature took over the a literally dormant, decaying city, a sustainable rebirthing was seen as an opportunity where both nature and built environment, material and immaterial are interwoven in a new emergent urban environment. Similarly, we saw the dividing ‘green line’ of Nicosia completely failing to prevent the trespassing of images, sounds and whispers, smells and symbols that define the two prevailing cultures and becoming a porous creative entity which tends to start reuniting instead of separating , generating sustainable cultures and built environments. The authors would like to contribute to the debate by introducing a question about a new recipe of cooking the built environment. Can we talk about a new ‘urban recipe’: ‘cooking architecture and city’ to deliver an ever changing urban sustainable organism, whose identity will mainly depend on the interrelationship of the immaterial and material constituents?Keywords: blurring zones, porous borders, spaces of flow, urban recipe
Procedia PDF Downloads 4205221 A Hybrid of BioWin and Computational Fluid Dynamics Based Modeling of Biological Wastewater Treatment Plants for Model-Based Control
Authors: Komal Rathore, Kiesha Pierre, Kyle Cogswell, Aaron Driscoll, Andres Tejada Martinez, Gita Iranipour, Luke Mulford, Aydin Sunol
Abstract:
Modeling of Biological Wastewater Treatment Plants requires several parameters for kinetic rate expressions, thermo-physical properties, and hydrodynamic behavior. The kinetics and associated mechanisms become complex due to several biological processes taking place in wastewater treatment plants at varying times and spatial scales. A dynamic process model that incorporated the complex model for activated sludge kinetics was developed using the BioWin software platform for an Advanced Wastewater Treatment Plant in Valrico, Florida. Due to the extensive number of tunable parameters, an experimental design was employed for judicious selection of the most influential parameter sets and their bounds. The model was tuned using both the influent and effluent plant data to reconcile and rectify the forecasted results from the BioWin Model. Amount of mixed liquor suspended solids in the oxidation ditch, aeration rates and recycle rates were adjusted accordingly. The experimental analysis and plant SCADA data were used to predict influent wastewater rates and composition profiles as a function of time for extended periods. The lumped dynamic model development process was coupled with Computational Fluid Dynamics (CFD) modeling of the key units such as oxidation ditches in the plant. Several CFD models that incorporate the nitrification-denitrification kinetics, as well as, hydrodynamics was developed and being tested using ANSYS Fluent software platform. These realistic and verified models developed using BioWin and ANSYS were used to plan beforehand the operating policies and control strategies for the biological wastewater plant accordingly that further allows regulatory compliance at minimum operational cost. These models, with a little bit of tuning, can be used for other biological wastewater treatment plants as well. The BioWin model mimics the existing performance of the Valrico Plant which allowed the operators and engineers to predict effluent behavior and take control actions to meet the discharge limits of the plant. Also, with the help of this model, we were able to find out the key kinetic and stoichiometric parameters which are significantly more important for modeling of biological wastewater treatment plants. One of the other important findings from this model were the effects of mixed liquor suspended solids and recycle ratios on the effluent concentration of various parameters such as total nitrogen, ammonia, nitrate, nitrite, etc. The ANSYS model allowed the abstraction of information such as the formation of dead zones increases through the length of the oxidation ditches as compared to near the aerators. These profiles were also very useful in studying the behavior of mixing patterns, effect of aerator speed, and use of baffles which in turn helps in optimizing the plant performance.Keywords: computational fluid dynamics, flow-sheet simulation, kinetic modeling, process dynamics
Procedia PDF Downloads 2105220 Schedule a New Production Plan by Heuristic Methods
Authors: Hanife Merve Öztürk, Sıdıka Dalgan
Abstract:
In this project, a capacity analysis study is done at TAT A. Ş. Maret Plant. Production capacity of products which generate 80% of sales amount are determined. Obtained data entered the LEKIN Scheduling Program and we get production schedules by using heuristic methods. Besides heuristic methods, as mathematical model, disjunctive programming formulation is adapted to flexible job shop problems by adding a new constraint to find optimal schedule solution.Keywords: scheduling, flexible job shop problem, shifting bottleneck heuristic, mathematical modelling
Procedia PDF Downloads 4015219 Rheological and Computational Analysis of Crude Oil Transportation
Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh
Abstract:
Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity
Procedia PDF Downloads 4555218 Development and Validation of a Semi-Quantitative Food Frequency Questionnaire for Use in Urban and Rural Communities of Rwanda
Authors: Phenias Nsabimana, Jérôme W. Some, Hilda Vasanthakaalam, Stefaan De Henauw, Souheila Abbeddou
Abstract:
Tools for the dietary assessment in adults are limited in low- and middle-income settings. The objective of this study was to develop and validate a semi-quantitative food frequency questionnaire (FFQ) against the multiple pass-24 h recall tool for use in urban and rural Rwanda. A total of 212 adults (154 females and 58 males), 18-49 aged, including 105 urban and 107 rural residents, from the four regions of Rwanda, were recruited in the present study. A multiple-pass 24- H recall technique was used to collect dietary data in both urban and rural areas in four different rounds, on different days (one weekday and one weekend day), separated by a period of three months, from November 2020 to October 2021. The details of all the foods and beverages consumed over the 24h period of the day prior to the interview day were collected during face-to-face interviews. A list of foods, beverages, and commonly consumed recipes was developed by the study researchers and ten research assistants from the different regions of Rwanda. Non-standard recipes were collected when the information was available. A single semi-quantitative FFQ was also developed in the same group discussion prior to the beginning of the data collection. The FFQ was collected at the beginning and the end of the data collection period. Data were collected digitally. The amount of energy and macro-nutrients contributed by each food, recipe, and beverage will be computed based on nutrient composition reported in food composition tables and weight consumed. Median energy and nutrient contents of different food intakes from FFQ and 24-hour recalls and median differences (24-hour recall –FFQ) will be calculated. Kappa, Spearman, Wilcoxon, and Bland-Altman plot statistics will be conducted to evaluate the correlation between estimated nutrient and energy intake found by the two methods. Differences will be tested for their significance and all analyses will be done with STATA 11. Data collection was completed in November 2021. Data cleaning is ongoing and the data analysis is expected to be completed by July 2022. A developed and validated semi-quantitative FFQ will be available for use in dietary assessment. The developed FFQ will help researchers to collect reliable data that will support policy makers to plan for proper dietary change intervention in Rwanda.Keywords: food frequency questionnaire, reproducibility, 24-H recall questionnaire, validation
Procedia PDF Downloads 1415217 Laying the Proto-Ontological Conditions for Floating Architecture as a Climate Adaptation Solution for Rising Sea Levels: Conceptual Framework and Definition of a Performance Based Design
Authors: L. Calcagni, A. Battisti, M. Hensel, D. S. Hensel
Abstract:
Since the beginning of the 21st century, we have seen a dynamic growth of water-based (WB) architecture, mainly due to the increasing threat of floods caused by sea level rise and heavy rains, all correlated with climate change. At the same time, the shortage of land available for urban development also led architects, engineers, and policymakers to reclaim the seabed or to build floating structures. Furthermore, the drive to produce energy from renewable resources has expanded the sector of offshore research, mining, and energy industry which seeks new types of WB structures. In light of these considerations, the time is ripe to consider floating architecture as a full-fledged building typology. Currently, there is no universally recognized academic definition of a floating building. Research on floating architecture lacks a proper, commonly shared vocabulary and typology distinction. Moreover, there is no global international legal framework for urban development on water, and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, first of all, the research intends to overcome the semantic and typological issues through the conceptualization of floating architecture, laying the proto-ontological conditions for floating development, and secondly to identify the parameters to be considered in the definition of a specific PBBD framework, setting the scene for national planning strategies. The theoretical overview and re-semanticization process involve the attribution of a new meaning to the term floating architecture. This terminological work of semantic redetermination is carried out through a systematic literature review and involves quantitative and historical research as well as logical argumentation methods. As it is expected that floating urban development is most likely to take place as an extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than to those of the offshore industry. Therefore, the identification and categorization of parameters –looking towards the potential formation of a PBBD framework for floating development– takes the urban and architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics (i.e. stability and buoyancy) from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of regulatory systems that are effective in different countries around the world, addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, inhabiting water is proposed not only as a viable response to the problem of rising sea levels, thus as a resilient frontier for urban development, but also as a response to energy insecurity, clean water, and food shortages, environmental concerns, and urbanization, in line with Blue Economy principles and the Agenda 2030. This review shows how floating architecture is to all intents and purposes, an urban adaptation measure and a solution towards self-sufficiency and energy-saving objectives. Moreover, the adopted methodology is, to all extents, open to further improvements and integrations, thus not rigid and already completely determined. Along with new designs and functions that will come into play in the practice field, eventually, life on water will seem no more unusual than life on land, especially by virtue of the multiple advantages it provides not only to users but also to the environment.Keywords: adaptation measures, building typology, floating architecture, performance based building design, rising sea levels
Procedia PDF Downloads 975216 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory
Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol
Abstract:
This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory
Procedia PDF Downloads 3015215 An Exploratory Analysis of Brisbane's Commuter Travel Patterns Using Smart Card Data
Authors: Ming Wei
Abstract:
Over the past two decades, Location Based Service (LBS) data have been increasingly applied to urban and transportation studies due to their comprehensiveness and consistency. However, compared to other LBS data including mobile phone data, GPS and social networking platforms, smart card data collected from public transport users have arguably yet to be fully exploited in urban systems analysis. By using five weekdays of passenger travel transaction data taken from go card – Southeast Queensland’s transit smart card – this paper analyses the spatiotemporal distribution of passenger movement with regard to the land use patterns in Brisbane. Work and residential places for public transport commuters were identified after extracting journeys-to-work patterns. Our results show that the locations of the workplaces identified from the go card data and residential suburbs are largely consistent with those that were marked in the land use map. However, the intensity for some residential locations in terms of population or commuter densities do not match well between the map and those derived from the go card data. This indicates that the misalignment between residential areas and workplaces to a certain extent, shedding light on how enhancements to service management and infrastructure expansion might be undertaken.Keywords: big data, smart card data, travel pattern, land use
Procedia PDF Downloads 2855214 Bangladesh’s July Revolution: Analyzing the 2024 Movement for Free Speech and Democracy
Authors: Abu Bakar Siddik
Abstract:
The July Movement in Bangladesh marked a pivotal moment in the nation’s struggle for democratic freedom and the right to free speech. This movement, driven by citizens, intellectuals, and activists, opposed authoritarian governance and the violation of civil liberties. By encouraging support for democratic reforms, it significantly changed the political landscape and highlighted the importance of grassroots activism for human rights. This essay examines the sociopolitical dynamics of the July Movement and its roots in popular resistance to authoritarian rule. It explores the movement's beginnings, emphasizing how citizens, scholars, and activists united to challenge the regime that restricted freedom of speech. In order to show how the movement gathered support for democratic reforms and ultimately helped bring about the overthrow of the regime, the article examines significant demonstrations, speeches, and government acts. This book offers a thorough examination of how the July Movement changed Bangladesh's political landscape by acting as a revolution for free speech and a trigger for the overthrow of autocratic authority, using historical documents, media coverage, and firsthand recollections. This study provides insightful information about how grassroots activism advances human rights.Keywords: July movement, Bangladesh, free speech, democracy, authoritarianism, civil liberties, political change, human rights, social movements, protests, political landscape, regime change, activism, socio-political dynamics
Procedia PDF Downloads 165213 Exploring the Dynamics in the EU-Association of Southeast Asia Nations Interregional Relationship, 2012-2017
Authors: Xuechen Chen
Abstract:
The EU-ASEAN relations which can be dated back to 1972 represents one of the oldest group-to-group relationship in international politics. Despite a longstanding dialogue partnership, the EU and ASEAN have long been reluctant to forge deeper and substantial cooperation in political and security domains. However, the year of 2012 witnessed a salient shift in EU-ASEAN relations, with the EU significantly elevating ASEAN's profile in its external relations. Given the limited scholarly attention that has been devoted to this change in ASEAN-EU relations, this article explores why there has been a greater level of engagement and approximation between the EU and ASEAN. In particular, it asks why the EU, which had long been reluctant to recognize ASEAN as a strategic partner, has changed its policy towards ASEAN. Drawing on social constructivism, this article argues that the EU’s and ASEAN’s evolving identity-formation processes have played a significant role in reshaping their mutual perceptions, which subsequently leads to the modification of the interregional policies of both actors. The methodology of this study is based on content analysis of a wide range of official documents and policy papers from the EU and ASEAN, as well as more than 20 in-depth elite interviews with diplomats and experts working on the EU-ASEAN relationship from both organisations. Departing from the existing works which mainly adopt a Eurocentric perspective when analysing the EU-ASEAN interregionalism, this study suggests that the approximation of the EU-ASEAN relationship between 2012 and 2017 is driven by both actors’ adjustment of international identities, together with the internal dynamics and systematic changes within both regions.Keywords: Association of Southeast Asia Nations, European Union, EU foreign policy, interregionalism
Procedia PDF Downloads 1475212 Hepatitis E among Pregnant Women in Urmia, Iran
Authors: Zakieh Rostamzadeh Khameneh, Nariman Sepehrvand, Khalkhali-Zahra Shirmohamadi
Abstract:
Background: Although the hepatitis E virus mostly causes a self-limited disease in general population, the disease is more severe in pregnant women. Hepatitis E accounts for about 10% of pregnancy-associated deaths in southern Asia. Methods: 136 pregnant women who referred to urban health centers of Urmia for pursuing pregnancy-related health services were selected randomly and enrolled in a descriptive, cross-sectional study. Each subject was tested for the presence of anti-HEV IgG antibody using an enzyme-linked immunosorbent assay (ELISA, Dia.Pro). Results: The mean age among 136 pregnant women was 25.12±4.91 years old (range of 14-39 years). Only five cases (3.6%) among all 136 subjects were demonstrated to be seropositive for anti-HEV IgG using ELISA method. There was no significant difference between age (P=0.88), income level (P=0.19) of two seropositive and seronegative groups. All seropositive cases were from urban areas. Conclusion: The seroprevalence of anti-HEV IgG is low in the population of pregnant women in Urmia, Iran. Because of limited sample size in this study, we recommend to perform further studies with larger sample size in other regions of Iran in order to be able to systematically generalize the findings of studies to the population of Iranian pregnant women.Keywords: pregnancy, hepatitis E, women, ELISA
Procedia PDF Downloads 3025211 A Platform for Managing Residents' Carbon Trajectories Based on the City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xuerui, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
Climate change is a global problem facing humanity and this is now the consensus of the mainstream scientific community. In accordance with the carbon peak and carbon neutral targets and visions set out in the United Nations Framework Convention on Climate Change, the Kyoto Protocol and the Paris Agreement, this project uses the City Intelligent Model (CIM) and Artificial Intelligence Machine Vision (ICR) as the core technologies to accurately quantify low carbon behaviour into green corn, which is a means of guiding ecologically sustainable living patterns. Using individual communities as management units and blockchain as a guarantee of fairness in the whole cycle of green currency circulation, the project will form a modern resident carbon track management system based on the principle of enhancing the ecological resilience of communities and the cohesiveness of community residents, ultimately forming an ecologically sustainable smart village that can be self-organised and managed.Keywords: urban planning, urban governance, CIM, artificial Intelligence, sustainable development
Procedia PDF Downloads 835210 Evaluation of Thermal Comfort and Energy Consumption in Classroom
Authors: I. Kadek Candra Parmana Wiguna, Wiwik Budiawan, Heru Prastawa
Abstract:
Semarang has become not only a metropolitan city but also a centre of government that has experienced significant changes in urban land use. Temperature increases in urban areas result from the expansion of development. The average temperature in Semarang reached 27.10°C to 29.60°C in 2022. The state of thermal sensation is very dependent on the mode of operation; Industrial Engineering building is mostly equipped with an air conditioner (AC). This study aims to analyze the thermal comfort level and energy consumption of air conditioners in classroom of industrial engineering. Participants in this study amounted to 31 students with data collection for 4 weeks. Results of the physical environment are Ta in: 25.52°C, Ta out: 32.71 °C, Rh in: 61.14%, Rh out: 59.43%, and Av in: 0.037 m/s. The results of clothing insulation are 41% of the respondents belonged to the categories 0.31 - 0.5 clo (summer domming) and 0.51 - 0.70 clo (spring clothing). Regarding the predicted mean vote (PMV), the average value is 0.63, and only 14.85% result of the predicted percentage dissatisfied (PPD). The neutral temperature with measurement Griffith’s constant 0.5/°C was 27.16°C, but the statistical test results show that the comfort temperature to use TSV ≤ 0 which is 28.55°C. The highest average power (watt) measurement results during week 3, which is 1613.65 watts. It is concluded in this study that the thermal comfort conditions in the classroom are adequate and acceptable to more than 90% of respondents.Keywords: thermal comfort, PMV/PPD, air conditioner, TSV
Procedia PDF Downloads 335209 Methodological Approach to the Elaboration and Implementation of the Spatial-Urban Plan for the Special Purpose Area: Case-Study of Infrastructure Corridor of Highway E-80, Section Nis-Merdare, Serbia
Authors: Nebojsa Stefanovic, Sasa Milijic, Natasa Danilovic Hristic
Abstract:
Spatial plan of the special purpose area constitutes a basic tool in the planning of infrastructure corridor of a highway. The aim of the plan is to define the planning basis and provision of spatial conditions for the construction and operation of the highway, as well as for developing other infrastructure systems in the corridor. This paper presents a methodology and approach to the preparation of the Spatial Plan for the special purpose area for the infrastructure corridor of the highway E-80, Section Niš-Merdare in Serbia. The applied methodological approach is based on the combined application of the integrative and participatory method in the decision-making process on the sustainable development of the highway corridor. It was found that, for the planning and management of the infrastructure corridor, a key problem is coordination of spatial and urban planning, strategic environmental assessment and sectoral traffic planning and designing. Through the development of the plan, special attention is focused on increasing the accessibility of the local and regional surrounding, reducing the adverse impacts on the development of settlements and the economy, protection of natural resources, natural and cultural heritage, and the development of other infrastructure systems in the corridor of the highway. As a result of the applied methodology, this paper analyzes the basic features such as coverage, the concept, protected zones, service facilities and objects, the rules of development and construction, etc. Special emphasis is placed to methodology and results of the Strategic Environmental Assessment of the Spatial Plan, and to the importance of protection measures, with the special significance of air and noise protection measures. For evaluation in the Strategic Environmental Assessment, a multicriteria expert evaluation (semi-quantitative method) of planned solutions was used in relation to the set of goals and relevant indicators, based on the basic set of indicators of sustainable development. Evaluation of planned solutions encompassed the significance and size, spatial conditions and probability of the impact of planned solutions on the environment, and the defined goals of strategic assessment. The framework of the implementation of the Spatial Plan is presented, which is determined for the simultaneous elaboration of planning solutions at two levels: the strategic level of the spatial plan and detailed urban plan level. It is also analyzed the relationship of the Spatial Plan to other applicable planning documents for the planning area. The effects of this methodological approach relate to enabling integrated planning of the sustainable development of the infrastructure corridor of the highway and its surrounding area, through coordination of spatial, urban and sectoral traffic planning and design, as well as the participation of all key actors in the adoption and implementation of planned decisions. By the conclusions of the paper, it is pointed to the direction for further research, particularly in terms of harmonizing methodology of planning documentation and preparation of technical-design documentation.Keywords: corridor, environment, highway, impact, methodology, spatial plan, urban
Procedia PDF Downloads 2125208 Impact of Traffic Restrictions due to Covid19, on Emissions from Freight Transport in Mexico City
Authors: Oscar Nieto-Garzón, Angélica Lozano
Abstract:
In urban areas, on-road freight transportation creates several social and environmental externalities. Then, it is crucial that freight transport considers not only economic aspects, like retailer distribution cost reduction and service improvement, but also environmental effects such as global CO2 and local emissions (e.g. Particulate Matter, NOX, CO) and noise. Inadequate infrastructure development, high rate of urbanization, the increase of motorization, and the lack of transportation planning are characteristics that urban areas from developing countries share. The Metropolitan Area of Mexico City (MAMC), the Metropolitan Area of São Paulo (MASP), and Bogota are three of the largest urban areas in Latin America where air pollution is often a problem associated with emissions from mobile sources. The effect of the lockdown due to COVID-19 was analyzedfor these urban areas, comparing the same period (January to August) of years 2016 – 2019 with 2020. A strong reduction in the concentration of primary criteria pollutants emitted by road traffic were observed at the beginning of 2020 and after the lockdown measures.Daily mean concentration of NOx decreased 40% in the MAMC, 34% in the MASP, and 62% in Bogota. Daily mean ozone levels increased after the lockdown measures in the three urban areas, 25% in MAMC, 30% in the MASP and 60% in Bogota. These changes in emission patterns from mobile sources drastically changed the ambient atmospheric concentrations of CO and NOX. The CO/NOX ratioat the morning hours is often used as an indicator of mobile sources emissions. In 2020, traffic from cars and light vehicles was significantly reduced due to the first lockdown, but buses and trucks had not restrictions. In theory, it implies a decrease in CO and NOX from cars or light vehicles, maintaining the levels of NOX by trucks(or lower levels due to the congestion reduction). At rush hours, traffic was reduced between 50% and 75%, so trucks could get higher speeds, which would reduce their emissions. By means an emission model, it was found that an increase in the average speed (75%) would reduce the emissions (CO, NOX, and PM) from diesel trucks by up to 30%. It was expected that the value of CO/NOXratio could change due to thelockdownrestrictions. However, although there was asignificant reduction of traffic, CO/NOX kept its trend, decreasing to 8-9 in 2020. Hence, traffic restrictions had no impact on the CO/NOX ratio, although they did reduce vehicle emissions of CO and NOX. Therefore, these emissions may not adequately represent the change in the vehicle emission patterns, or this ratio may not be a good indicator of emissions generated by vehicles. From the comparison of the theoretical data and those observed during the lockdown, results that the real NOX reduction was lower than the theoretical reduction. The reasons could be that there are other sources of NOX emissions, so there would be an over-representation of NOX emissions generated by diesel vehicles, or there is an underestimation of CO emissions. Further analysis needs to consider this ratioto evaluate the emission inventories and then to extend these results forthe determination of emission control policies to non-mobile sources.Keywords: COVID-19, emissions, freight transport, latin American metropolis
Procedia PDF Downloads 1365207 Pressure-Controlled Dynamic Equations of the PFC Model: A Mathematical Formulation
Authors: Jatupon Em-Udom, Nirand Pisutha-Arnond
Abstract:
The phase-field-crystal, PFC, approach is a density-functional-type material model with an atomic resolution on a diffusive timescale. Spatially, the model incorporates periodic nature of crystal lattices and can naturally exhibit elasticity, plasticity and crystal defects such as grain boundaries and dislocations. Temporally, the model operates on a diffusive timescale which bypasses the need to resolve prohibitively small atomic-vibration time steps. The PFC model has been used to study many material phenomena such as grain growth, elastic and plastic deformations and solid-solid phase transformations. In this study, the pressure-controlled dynamic equation for the PFC model was developed to simulate a single-component system under externally applied pressure; these coupled equations are important for studies of deformable systems such as those under constant pressure. The formulation is based on the non-equilibrium thermodynamics and the thermodynamics of crystalline solids. To obtain the equations, the entropy variation around the equilibrium point was derived. Then the resulting driving forces and flux around the equilibrium were obtained and rewritten as conventional thermodynamic quantities. These dynamics equations are different from the recently-proposed equations; the equations in this study should provide more rigorous descriptions of the system dynamics under externally applied pressure.Keywords: driving forces and flux, evolution equation, non equilibrium thermodynamics, Onsager’s reciprocal relation, phase field crystal model, thermodynamics of single-component solid
Procedia PDF Downloads 3055206 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile
Authors: Meenakshi Srivastava, A. K. Mishra
Abstract:
This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR
Procedia PDF Downloads 1245205 Enhancing Seismic Resilience in Urban Environments
Authors: Beatriz González-rodrigo, Diego Hidalgo-leiva, Omar Flores, Claudia Germoso, Maribel Jiménez-martínez, Laura Navas-sánchez, Belén Orta, Nicola Tarque, Orlando Hernández- Rubio, Miguel Marchamalo, Juan Gregorio Rejas, Belén Benito-oterino
Abstract:
Cities facing seismic hazard necessitate detailed risk assessments for effective urban planning and vulnerability identification, ensuring the safety and sustainability of urban infrastructure. Comprehensive studies involving seismic hazard, vulnerability, and exposure evaluations are pivotal for estimating potential losses and guiding proactive measures against seismic events. However, broad-scale traditional risk studies limit consideration of specific local threats and identify vulnerable housing within a structural typology. Achieving precise results at neighbourhood levels demands higher resolution seismic hazard exposure, and vulnerability studies. This research aims to bolster sustainability and safety against seismic disasters in three Central American and Caribbean capitals. It integrates geospatial techniques and artificial intelligence into seismic risk studies, proposing cost-effective methods for exposure data collection and damage prediction. The methodology relies on prior seismic threat studies in pilot zones, utilizing existing exposure and vulnerability data in the region. Emphasizing detailed building attributes enables the consideration of behaviour modifiers affecting seismic response. The approach aims to generate detailed risk scenarios, facilitating prioritization of preventive actions pre-, during, and post-seismic events, enhancing decision-making certainty. Detailed risk scenarios necessitate substantial investment in fieldwork, training, research, and methodology development. Regional cooperation becomes crucial given similar seismic threats, urban planning, and construction systems among involved countries. The outcomes hold significance for emergency planning and national and regional construction regulations. The success of this methodology depends on cooperation, investment, and innovative approaches, offering insights and lessons applicable to regions facing moderate seismic threats with vulnerable constructions. Thus, this framework aims to fortify resilience in seismic-prone areas and serves as a reference for global urban planning and disaster management strategies. In conclusion, this research proposes a comprehensive framework for seismic risk assessment in high-risk urban areas, emphasizing detailed studies at finer resolutions for precise vulnerability evaluations. The approach integrates regional cooperation, geospatial technologies, and adaptive fragility curve adjustments to enhance risk assessment accuracy, guiding effective mitigation strategies and emergency management plans.Keywords: assessment, behaviour modifiers, emergency management, mitigation strategies, resilience, vulnerability
Procedia PDF Downloads 685204 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates
Authors: Babak Safaei, A. M. Fattahi
Abstract:
Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method
Procedia PDF Downloads 3295203 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation
Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar
Abstract:
The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.Keywords: computational fluid dynamics (CFD), erosion, slurry transportation, k-ε Model
Procedia PDF Downloads 4085202 Computational Fluid Dynamics (CFD) Simulation Approach for Developing New Powder Dispensing Device
Authors: Revanth Rallapalli
Abstract:
Manually dispensing solids and powders can be difficult as it requires gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in development of such devices saving time and money by reducing the number of prototypes and testing. Furthermore, this paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to trocar’s end side is done by rotation of the screw conveyor. Thus, the performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and also at the effective area within a quick turnaround time frame.Keywords: DDPM-KTGF, gas-solids multiphase flow, screw conveyor, Unsteady
Procedia PDF Downloads 1805201 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems
Authors: M. Beheshti, S. Saegrov, T. M. Muthanna
Abstract:
Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management
Procedia PDF Downloads 3335200 Measurement and Modelling of HIV Epidemic among High Risk Groups and Migrants in Two Districts of Maharashtra, India: An Application of Forecasting Software-Spectrum
Authors: Sukhvinder Kaur, Ashok Agarwal
Abstract:
Background: For the first time in 2009, India was able to generate estimates of HIV incidence (the number of new HIV infections per year). Analysis of epidemic projections helped in revealing that the number of new annual HIV infections in India had declined by more than 50% during the last decade (GOI Ministry of Health and Family Welfare, 2010). Then, National AIDS Control Organisation (NACO) planned to scale up its efforts in generating projections through epidemiological analysis and modelling by taking recent available sources of evidence such as HIV Sentinel Surveillance (HSS), India Census data and other critical data sets. Recently, NACO generated current round of HIV estimates-2012 through globally recommended tool “Spectrum Software” and came out with the estimates for adult HIV prevalence, annual new infections, number of people living with HIV, AIDS-related deaths and treatment needs. State level prevalence and incidence projections produced were used to project consequences of the epidemic in spectrum. In presence of HIV estimates generated at state level in India by NACO, USIAD funded PIPPSE project under the leadership of NACO undertook the estimations and projections to district level using same Spectrum software. In 2011, adult HIV prevalence in one of the high prevalent States, Maharashtra was 0.42% ahead of the national average of 0.27%. Considering the heterogeneity of HIV epidemic between districts, two districts of Maharashtra – Thane and Mumbai were selected to estimate and project the number of People-Living-with-HIV/AIDS (PLHIV), HIV-prevalence among adults and annual new HIV infections till 2017. Methodology: Inputs in spectrum included demographic data from Census of India since 1980 and sample registration system, programmatic data on ‘Alive and on ART (adult and children)’,‘Mother-Baby pairs under PPTCT’ and ‘High Risk Group (HRG)-size mapping estimates’, surveillance data from various rounds of HSS, National Family Health Survey–III, Integrated Biological and Behavioural Assessment and Behavioural Sentinel Surveillance. Major Findings: Assuming current programmatic interventions in these districts, an estimated decrease of 12% points in Thane and 31% points in Mumbai among new infections in HRGs and migrants is observed from 2011 by 2017. Conclusions: Project also validated decrease in HIV new infection among one of the high risk groups-FSWs using program cohort data since 2012 to 2016. Though there is a decrease in HIV prevalence and new infections in Thane and Mumbai, further decrease is possible if appropriate programme response, strategies and interventions are envisaged for specific target groups based on this evidence. Moreover, evidence need to be validated by other estimation/modelling techniques; and evidence can be generated for other districts of the state, where HIV prevalence is high and reliable data sources are available, to understand the epidemic within the local context.Keywords: HIV sentinel surveillance, high risk groups, projections, new infections
Procedia PDF Downloads 211