Search results for: harmony search algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3788

Search results for: harmony search algorithms

1028 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 83
1027 Expanding the Therapeutic Utility of Curcumin

Authors: Azza H. El-Medany, Hanan H. Hagar, Omnia A. Nayel, Jamila H. El-Medany

Abstract:

In search for drugs that can target cancer cell micro-environment in as much as being able to halt malignant cellular transformation, the natural dietary phytochemical curcumin was currently assessed in DMH-induced colorectal cancer rat model. The study enrolled 50 animals divided into a control group (n=10) and DMH-induced colorectal cancer control group (n=20) (20mg/kg-body weight for 28 weeks) versus curcumin-treated group (n=20) (160 mg/kg suspension daily oral for further 8 weeks). Treatment by curcumin succeeded to significantly decrease the percent of ACF and tended to normalize back the histological changes retrieved in adenomatous and stromal cells induced by DMH. The drug also significantly elevated GSH and significantly reduced most of the accompanying biochemical elevations (namely MDA, TNF-α, TGF-β and COX2) observed in colonic carcinomatous tissue, induced by DMH, thus succeeding to revert that of MDA, COX2 and TGF-β back to near normal as justified by being non-significantly altered as compared to normal controls. The only exception was PAF that was insignificantly altered by the drug. When taken together, it could be concluded that curcumin possess the potentiality to halt some of the orchestrated cross-talk between cancerous transformation and its micro-environmental niche that contributes to cancer initiation, progression and metastasis in this experimental cancer colon model. Envisioning these merits to a drug with already known safety preferentiality, awaits final results of current ongoing clinical trials, before curcumin can be added to the new therapeutic armamentarium of anticancer therapy.

Keywords: curcumin, dimethyl hydralazine, aberrant crypt foci, malondialdehyde, reduced glutathione, cyclooxygenase-2, tumour necrosis factor-alpha, transforming growth factor-beta, platelet activating factor

Procedia PDF Downloads 276
1026 The Nexus between Downstream Supply Chain Losses and Food Security in Nigeria: Empirical Evidence from the Yam Industry

Authors: Alban Igwe, Ijeoma Kalu, Alloy Ezirim

Abstract:

Food insecurity is a global problem, and the search for food security has assumed a central stage in the global development agenda as the United Nations currently placed zero hunger as a goal number in its sustainable development goals. Nigeria currently ranks 107th out of 113 countries in the global food security index (GFSI), a metric that defines a country's ability to furnish its citizens with food and nutrients for healthy living. Paradoxically, Nigeria is a global leader in food production, ranking 1st in yam (over 70% of global output), beans (over 41% of global output), cassava (20% of global output) and shea nuts, where it commands 53% of global output. Furthermore, it ranks 2nd in millet, sweet potatoes, and cashew nuts. It is Africa's largest producer of rice. So, it is apparent that Nigeria's food insecurity woes must relate to a factor other than food production. We investigated the nexus between food security and downstream supply chain losses in the yam industry with secondary data from the Food and Agricultural Organization (FAOSTAT) and the National Bureau of Statics for the decade 2012-2021. In analyzing the data, multiple regression techniques were used, and findings reveal that downstream losses have a strong positive correlation with food security (r = .763*) and a 58.3% variation in food security is explainable by post-downstream supply chain food losses. The study discovered that yam supply chain losses within the period under review averaged 50.6%, suggestive of the fact that downstream supply chain losses are the drainpipe and the major source of food insecurity in Nigeria. Therefore, the study concluded that there is a significant relationship between downstream supply chain losses and food insecurity and recommended the establishment of food supply chain structures and policies to enhance food security in Nigeria.

Keywords: food security, downstream supply chain losses, yam, nigeria, supply chain

Procedia PDF Downloads 64
1025 Survey Research Assessment for Renewable Energy Integration into the Mining Industry

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

Mining operations are energy intensive, and the share of energy costs in total costs is often quoted in the range of 40 %. Saving on energy costs is, therefore, a key element of any mine operator. With the improving reliability and security of renewable energy (RE) sources, and requirements to reduce carbon dioxide emissions, perspectives for using RE in mining operations emerge. These aspects are stimulating the mining companies to search for ways to substitute fossil energy with RE. Hereby, the main purpose of this study is to present the survey research assessment in matter of finding out the key issues related to the integration of RE into mining activities, based on the mining and renewable energy experts’ opinion. The purpose of the paper is to present the outcomes of a survey conducted among mining and renewable energy experts about the feasibility of RE in mining operations. The survey research has been developed taking into consideration the following categories: first of all, the mining and renewable energy experts were chosen based on the specific criteria. Secondly, they were offered a questionnaire to gather their knowledge and opinions on incentives for mining operators to turn to RE, barriers and challenges to be expected, environmental effects, appropriate business models and the overall impact of RE on mining operations. The outcomes of the survey allow for the identification of factors which favor and disfavor decision-making on the use of RE in mining operations. It concludes with a set of recommendations for further study. One of them relates to a deeper analysis of benefits for mining operators when using RE, and another one suggests that appropriate business models considering economic and environmental issues need to be studied and developed. The results of the paper will be used for developing a hybrid optimized model which might be adopted at mines according to their operation processes as well as economic and environmental perspectives.

Keywords: carbon dioxide emissions, mining industry, photovoltaic, renewable energy, survey research, wind generation

Procedia PDF Downloads 337
1024 Using Printouts as Social Media Evidence and Its Authentication in the Courtroom

Authors: Chih-Ping Chang

Abstract:

Different from traditional objective evidence, social media evidence has its own characteristics with easily tampering, recoverability, and cannot be read without using other devices (such as a computer). Simply taking a screenshot from social network sites must be questioned its original identity. When the police search and seizure digital information, a common way they use is to directly print out digital data obtained and ask the signature of the parties at the presence, without taking original digital data back. In addition to the issue on its original identity, this conduct to obtain evidence may have another two results. First, it will easily allege that is tampering evidence because the police wanted to frame the suspect and falsified evidence. Second, it is not easy to discovery hidden information. The core evidence associated with crime may not appear in the contents of files. Through discovery the original file, data related to the file, such as the original producer, creation time, modification date, and even GPS location display can be revealed from hidden information. Therefore, how to show this kind of evidence in the courtroom will be arguably the most important task for ruling social media evidence. This article, first, will introduce forensic software, like EnCase, TCT, FTK, and analyze their function to prove the identity with another digital data. Then turning back to the court, the second part of this article will discuss legal standard for authentication of social media evidence and application of that forensic software in the courtroom. As the conclusion, this article will provide a rethinking, that is, what kind of authenticity is this rule of evidence chase for. Does legal system automatically operate the transcription of scientific knowledge? Or furthermore, it wants to better render justice, not only under scientific fact, but through multivariate debating.

Keywords: federal rule of evidence, internet forensic, printouts as evidence, social media evidence, United States v. Vayner

Procedia PDF Downloads 271
1023 The Application of Participatory Social Media in Collaborative Planning: A Systematic Review

Authors: Yujie Chen , Zhen Li

Abstract:

In the context of planning transformation, how to promote public participation in the formulation and implementation of collaborative planning has been the focused issue of discussion. However, existing studies have often been case-specific or focused on a specific design field, leaving the role of participatory social media (PSM) in urban collaborative planning generally questioned. A systematic database search was conducted in December 2019. Articles and projects were eligible if they reported a quantitative empirical study applying participatory social media in the collaborative planning process (a prospective, retrospective, experimental, longitudinal research, or collective actions in planning practices). Twenty studies and seven projects were included in the review. Findings showed that social media are generally applied in public spatial behavior, transportation behavior, and community planning fields, with new technologies and new datasets. PSM has provided a new platform for participatory design, decision analysis, and collaborative negotiation most widely used in participatory design. Findings extracted several existing forms of PSM. PSM mainly act as three roles: the language of decision-making for communication, study mode for spatial evaluation, and decision agenda for interactive decision support. Three optimization content of PSM were recognized, including improving participatory scale, improvement of the grass-root organization, and promotion of politics. However, basically, participants only could provide information and comment through PSM in the future collaborative planning process, therefore the issues of low data response rate, poor spatial data quality, and participation sustainability issues worth more attention and solutions.

Keywords: participatory social media, collaborative planning, planning workshop, application mode

Procedia PDF Downloads 108
1022 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 80
1021 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 137
1020 Frequency of Alloimmunization in Sickle Cell Disease Patients in Africa: A Systematic Review with Meta-analysis

Authors: Theresa Ukamaka Nwagha, Angela Ogechukwu Ugwu, Martins Nweke

Abstract:

Background and Objectives: Blood transfusion is an effective and proven treatment for some severe complications of sickle cell disease. Recurrent transfusions have put patients with sickle cell disease at risk of developing antibodies against the various antigens they were exposed to. This study aims to investigate the frequency of red blood cell alloimmunization in patients with sickle disease in Africa. Materials and Methods: This is a systematic review of peer-reviewed literature published in English. The review was conducted consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. Data sources for the review include MEDLINE, PubMed, CINAHL, and Academic Search Complete. Included in this review are articles that reported the frequency/prevalence of red blood cell alloimmunization in sickle cell disease patients in Africa. Eligible studies were subjected to independent full-text screening and data extraction. Risk of bias assessment was conducted with the aid of the mixed method appraisal tool. We employed a random-effects model of meta-analysis to estimate the pooled prevalence. We computed Cochrane’s Q statistics and I2 and prediction interval to quantify heterogeneity in effect size. Results: The prevalence estimates range from 2.6% to 29%. Pooled prevalence was estimated to be 10.4% (CI 7.7.–13.8); PI = 3.0 – 34.0%), with significant heterogeneity (I2 = 84.62; PI = 2.0-32.0%) and publication bias (Egger’s t-test = 1.744, p = 0.0965). Conclusion: The frequency of red cell alloantibody varies considerably in Africa. The alloantibodies appeared frequent in this order: the Rhesus, Kell, Lewis, Duffy, MNS, and Lutheran

Keywords: frequency, red blood cell, alloimmunization, sickle cell disease, Africa

Procedia PDF Downloads 69
1019 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 116
1018 Exclusive Value Adding by iCenter Analytics on Transient Condition

Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata

Abstract:

During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.

Keywords: analytics, diagnostics, monitoring, turbomachinery

Procedia PDF Downloads 51
1017 Policy and System Research for Health of Ageing Population

Authors: Sehrish Ather

Abstract:

Introduction: To improve organizational achievements through the production of new knowledge, health policy and system research is the basic requirement. An aging population is always the source of the increased burden of chronic diseases, disabilities, mental illnesses, and other co-morbidities; therefore the provision of quality health care services to every group of the population should be achieved by making strong policy and system research for the betterment of health care system. Unfortunately, the whole world is lacking policies and system research for providing health care to their elderly population. Materials and Methods: A literature review of published studies on aging diseases was done, ranging from the year 2011-2018. Geriatric, population, health policy, system, and research were the key terms used for the search. Databases searched were Google Scholar, PubMed, Science Direct, Ovid, and Research Gate. Grey literature was searched from various websites, including IHME, Library of the University of Lahore, World Health Organization (Ageing and Life Course), and Personal communication with Neuro-physicians. After careful reviewing published and un-published information, it was decided to carry on with commentary. Results and discussion: Most of the published studies have highlighted the need to advocate the funders of health policy and stakeholders of healthcare system research, and it was detected as a major issue, research on policy and healthcare system to provide health care to 'geriatric population' was found as highly neglected area. Conclusion: It is concluded that physicians are more involved with the policy and system research regarding any type of diseases, but scientists and researchers of basic and social science are less likely to be involved in methods used for health policy and system research due to lack of funding and resources. Therefore ageing diseases should be considered as a priority, and comprehensive policy and system research should be initiated for diseases of the geriatric population.

Keywords: geriatric population, health care system, health policy, system research

Procedia PDF Downloads 85
1016 Moving from Computer Assisted Learning Language to Mobile Assisted Learning Language Edutainment: A Trend for Teaching and Learning

Authors: Ahmad Almohana

Abstract:

Technology has led to rapid changes in the world, and most importantly to education, particularly in the 21st century. Technology has enhanced teachers’ potential and has resulted in the provision of greater interaction and choices for learners. In addition, technology is helping to improve individuals’ learning experiences and building their capacity to read, listen, speak, search, analyse, memorise and encode languages, as well as bringing learners together and creating a sense of greater involvement. This paper has been organised in the following way: the first section provides a review of the literature related to the implementation of CALL (computer assisted learning language), and it explains CALL and its phases, as well as attempting to highlight and analyse Warschauer’s article. The second section is an attempt to describe the move from CALL to mobilised systems of edutainment, which challenge existing forms of teaching and learning. It also addresses the role of the teacher and the curriculum content, and how this is affected by the computerisation of learning that is taking place. Finally, an empirical study has been conducted to collect data from teachers in Saudi Arabia using quantitive and qualitative method tools. Connections are made between the area of study and the personal experience of the researcher carrying out the study with a methodological reflection on the challenges faced by the teachers of this same system. The major findings were that it is worth spelling out here that despite the circumstances in which students and lecturers are currently working, the participants revealed themselves to be highly intelligent and articulate individuals who were constrained from revealing this criticality and creativity by the system of learning and teaching operant in most schools.

Keywords: CALL, computer assisted learning language, EFL, English as a foreign language, ELT, English language teaching, ETL, enhanced technology learning, MALL, mobile assisted learning language

Procedia PDF Downloads 139
1015 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 18
1014 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple

Authors: Hasan Basaran, Emre Unal

Abstract:

Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.

Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode

Procedia PDF Downloads 79
1013 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 36
1012 The Prevalence of Cardiovascular Diseases in World-Class Triathletes: An Internet-Based Study from 2006 to 2019

Authors: Lingxia Li, Frédéric Schnell, Shuzhe Ding, Solène Le Douairon Lahaye

Abstract:

Background: The prevalence of cardiovascular diseases (CVD) in different triathlon sports disciplines has not been determined. Purpose: The present study aimed to determine the prevalence of CVD in world-class triathletes according to their sex, sports disciplines (aquathlon, duathlon, triathlon…), and formats (short/medium, long, and ultra-long distance). Methods: Male and female elite athletes from eleven triathlon sport disciplines, ranked in the internationally yearly top 10 between 2006 and 2019, were included. The athlete’s name was associated in a Google search with selected key terms related to heart disease and/or cardiac abnormalities. The prevalence and the hazard function of the variation were calculated, and the differences were then compared. Results: From 1329 athletes (male 639, female 690), 13 cases of CVD (0.98%, 95% CI: [0.45-1.51]) were identified, and the mean age of their occurrence was 29±6 years. Although no sex differences were found in each sport discipline/format (p > 0.05), severe outcomes (sudden cardiac arrest/death and those who had to stop their sports practice) were only observed in males. Short-distance triathlon (5.08%, 95% CI: [1.12-9.05]) was more affected than other disciplines in short/medium, long, and ultra-long formats. The prevalence of CVD in athletes who participated in multi-type of sports disciplines (4.14%, 95% CI: [1.14-7.15]) was higher than in those who participated in one type (0.52%, 95% CI: [0.10-0.93]) (p = 0.0004). Conclusion: Athletes in short-distance triathlon were more affected than other disciplines in short/medium, long and ultra-long formats. Athletes who participate in short/medium distances and those who participate in multi-type of sports disciplines should be closely monitored regardless of sex.

Keywords: cardiovascular diseases, sudden cardiac death, triathlon sport disciplines, world-class athletes

Procedia PDF Downloads 117
1011 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 117
1010 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 68
1009 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 383
1008 Embedded System of Signal Processing on FPGA: Underwater Application Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.

Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing

Procedia PDF Downloads 53
1007 The Impact of Ultrasonicator on the Vertical and Horizontal Mixing Profile of Petrol-Bioethanol

Authors: D. Nkazi, S. E. Iyuke, J. Mulopo

Abstract:

Increasing global energy demand as well as air quality concerns have in recent years led to the search for alternative clean fuels to replace fossil fuels. One such alternative is the blending of petrol with ethanol, which has numerous advantages such ethanol’s ability to act as oxygenate thus reducing the carbon monoxide emissions from the exhaust of internal combustion engines of vehicles. However, the hygroscopic nature of ethanol is a major concern in obtaining a perfectly homogenized petrol-ethanol fuel. This problem has led to the study of ways of homogenizing the petrol-ethanol mixtures. During the blending process, volumes fraction of ethanol and petrol were studied with respect to the depth within the storage container to confirm homogenization of the blend and time of storage. The results reveal that the density of the mixture was constant. The binodal curve of the ternary diagram shows an increase of homogeneous region, indicating an improved of interaction between water and petrol. The concentration distribution in the reactor showed proof of cavitation formation since in both directions, the variation of concentration with both time and distance was found to be oscillatory. On comparing the profiles in both directions, the concentration gradient, diffusion flux, and energy and diffusion rates were found to be higher in the vertical direction compared to the horizontal direction. It was therefore concluded that ultrasonication creates cavitation in the mixture which enhances mass transfer and mixing of ethanol and petrol. The horizontal direction was found to be the diffusion rate limiting step which proposed that the blender should have a larger height to diameter ratio. It is, however, recommended that further studies be done on the rate-limiting step so as to have actual dimensions of the reactor.

Keywords: ultrasonication, petrol, ethanol, concentration

Procedia PDF Downloads 342
1006 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 386
1005 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 304
1004 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 28
1003 Quaternized PPO/PSF Anion Exchange Membranes Doped with ZnO-Nanoparticles for Fuel Cell Application

Authors: P. F. Msomi, P. T. Nonjola, P. G. Ndungu, J. Ramontja

Abstract:

In view of the projected global energy demand and increasing levels of greenhouse gases and pollutants issues have inspired an intense search for alternative new energy technologies, which will provide clean, low cost and environmentally friendly solutions to meet the end user requirements. Alkaline anion exchange membrane fuel cells (AAEMFC) have been recognized as ideal candidates for the generation of such clean energy for future stationary and mobile applications due to their many advantages. The key component of the AAEMFC is the anion exchange membrane (AEM). In this report, a series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anionic exchange membranes (AEM) were successfully fabricated and characterized for alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. The characteristic properties of the QPPO/PSF and QPPO/PSF-ZnO blend membrane were investigated with X-ray diffraction (XRD), thermogravimetric analysis (TGA) scanning electron microscope (SEM) and contact angle (CA). To confirm successful quaternisation, FT-IR spectroscopy and proton nuclear magnetic resonance (1H NMR) were used. Other properties such as ion exchange capacity (IEC), water uptake, contact angle and ion conductivity (IC) were also undertaken to check if the prepared nanocomposite materials are suitable for fuel cell application. The membrane intrinsic properties were found to be enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a highest IEC of 3.72 mmol/g and a 30-fold IC increase of the nanocomposite due to its lower methanol permeability. The above results indicate that QPPO/PSF-ZnO is a good candidate for AAEMFC application.

Keywords: anion exchange membrane, fuel cell, zinc oxide nanoparticle, nanocomposite

Procedia PDF Downloads 392
1002 The Planner's Pentangle: A Proposal for a 21st-Century Model of Planning for Sustainable Development

Authors: Sonia Hirt

Abstract:

The Planner's Triangle, an oft-cited model that visually defined planning as the search for sustainability to balance the three basic priorities of equity, economy, and environment, has influenced planning theory and practice for a quarter of a century. In this essay, we argue that the triangle requires updating and expansion. Even if planners keep sustainability as their key core aspiration at the center of their imaginary geometry, the triangle's vertices have to be rethought. Planners should move on to a 21st-century concept. We propose a Planner's Pentangle with five basic priorities as vertices of a new conceptual polygon. These five priorities are Wellbeing, Equity, Economy, Environment, and Esthetics (WE⁴). The WE⁴ concept more accurately and fully represents planning’s history. This is especially true in the United States, where public art and public health played pivotal roles in the establishment of the profession in the late 19th and early 20th centuries. It also more accurately represents planning’s future. Both health/wellness and aesthetic concerns are becoming increasingly important in the 21st century. The pentangle can become an effective tool for understanding and visualizing planning's history and present. Planning has a long history of representing urban presents and future as conceptual models in visual form. Such models can play an important role in understanding and shaping practice. For over two decades, one such model, the Planner's Triangle, stood apart as the expression of planning's pursuit for sustainability. But if the model is outdated and insufficiently robust, it can diminish our understanding of planning practice, as well as the appreciation of the profession among non-planners. Thus, we argue for a new conceptual model of what planners do.

Keywords: sustainable development, planning for sustainable development, planner's triangle, planner's pentangle, planning and health, planning and art, planning history

Procedia PDF Downloads 115
1001 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 58
1000 Performance Analysis of Vision-Based Transparent Obstacle Avoidance for Construction Robots

Authors: Siwei Chang, Heng Li, Haitao Wu, Xin Fang

Abstract:

Construction robots are receiving more and more attention as a promising solution to the manpower shortage issue in the construction industry. The development of intelligent control techniques that assist in controlling the robots to avoid transparency and reflected building obstacles is crucial for guaranteeing the adaptability and flexibility of mobile construction robots in complex construction environments. With the boom of computer vision techniques, a number of studies have proposed vision-based methods for transparent obstacle avoidance to improve operation accuracy. However, vision-based methods are also associated with disadvantages such as high computational costs. To provide better perception and value evaluation, this study aims to analyze the performance of vision-based techniques for avoiding transparent building obstacles. To achieve this, commonly used sensors, including a lidar, an ultrasonic sensor, and a USB camera, are equipped on the robotic platform to detect obstacles. A Raspberry Pi 3 computer board is employed to compute data collecting and control algorithms. The turtlebot3 burger is employed to test the programs. On-site experiments are carried out to observe the performance in terms of success rate and detection distance. Control variables include obstacle shapes and environmental conditions. The findings contribute to demonstrating how effectively vision-based obstacle avoidance strategies for transparent building obstacle avoidance and provide insights and informed knowledge when introducing computer vision techniques in the aforementioned domain.

Keywords: construction robot, obstacle avoidance, computer vision, transparent obstacle

Procedia PDF Downloads 53
999 The Management of Care by People with Type 2 Diabetes versus the Professional Care at Primary Health Care in Brazil

Authors: Nunila Ferreira de Oliveira, Silvana Martins Mishima

Abstract:

Diabetes mellitus type 2 (DM2) prevalence, is increasing on the world, in Brazil is considered a public health problem. Treatment focuses on glycemic control depending primarily of lifestyle changes - not drug treatment (NDT), may involve drug therapy (DT) and requires continuous health monitoring. In Brazil this monitoring is performed by the Unified Health System (SUS) through Primary Health Care (PHC), which stimulate people with DM2 empowerment for care management. SUS was approved in 1988 and the PHC operationalization was strengthened with the creation of the Family Health Strategy (FHS) in 1994. Our aim was to analyze the people with DM2 participation in front of the care management health monitoring in the FHS. Qualitative research was carried out through non-participant observation of attendance of 25 people with DM2 in the FHS and interviewed at home. Ethical guidelines were followed. It was found that people with DM2 only follow professionals’ recommendations that make sense according to their own conceptions of health/disease; most of them emphasize the importance of (DT) with little emphasis on the NDT, was found great difficulty in the NDT and lack of knowledge about the disease and care. As regards monitoring the FHS, were observed therapeutic practices based on the bio medical model, although the APS search for another care perspective; NDT is not systematically accompanied by the health team and takes place a few educational activities on the DM2 in the FHS, with low user adoption. The work of the FHS is done by multidisciplinary teams, but we see the need for greater participation of nurses in clinical-care follow-up of this population and may also act in adapting to the NDT. Finally we emphasize the need for professional practices that consider the difficulties to care management by people with DM2, especially because of the NDT. It is noticed that the measures recommended by the FHS professionals are not always developed by people with DM2. We must seek the empowerment of people with DM2 to manage the form of care associated with the FHS team, seeking to reduce the incidence of complications and higher quality of life.

Keywords: diabetes mellitus, primary health care, nursing, management of care

Procedia PDF Downloads 431