Search results for: energy intensive industries
8178 Thermoplastic-Intensive Battery Trays for Optimum Electric Vehicle Battery Pack Performance
Authors: Dinesh Munjurulimana, Anil Tiwari, Tingwen Li, Carlos Pereira, Sreekanth Pannala, John Waters
Abstract:
With the rapid transition to electric vehicles (EVs) across the globe, car manufacturers are in need of integrated and lightweight solutions for the battery packs of these vehicles. An integral part of a battery pack is the battery tray, which constitutes a significant portion of the pack’s overall weight. Based on the functional requirements, cost targets, and packaging space available, a range of materials –from metals, composites, and plastics– are often used to develop these battery trays. This paper considers the design and development of integrated thermoplastic-intensive battery trays, using the available packaging space from a representative EV battery pack. Presented as a proposed alternative are multiple concepts to integrate several connected systems such as cooling plates and underbody impact protection parts of a multi-piece incumbent battery pack. The resulting digital prototype was evaluated for several mechanical performance measures such as mechanical shock, drop, crush resistance, modal analysis, and torsional stiffness. The performance of this alternative design is then compared with the incumbent solution. In addition, insights are gleaned into how these novel approaches can be optimized to meet or exceed the performance of incumbent designs. Preliminary manufacturing feasibility of the optimal solution using injection molding and other commonly used manufacturing methods for thermoplastics is briefly explained. Then numerical and analytical evaluations are performed to show a representative Pareto front of cost vs. volume of the production parts. The proposed solution is observed to offer weight savings of up to 40% on a component level and part elimination of up to two systems in the battery pack of a typical battery EV while offering the potential to meet the required performance measures highlighted above. These conceptual solutions are also observed to potentially offer secondary benefits such as improved thermal and electrical isolations and be able to achieve complex geometrical features, thus demonstrating the ability to use the complete packaging space available in the vehicle platform considered. The detailed study presented in this paper serves as a valuable reference for researches across the globe working on the development of EV battery packs – especially those with an interest in the potential of employing alternate solutions as part of a mixed-material system to help capture untapped opportunities to optimize performance and meet critical application requirements.Keywords: thermoplastics, lightweighting, part integration, electric vehicle battery packs
Procedia PDF Downloads 2058177 Numerical Investigation of Phase Change Materials (PCM) Solidification in a Finned Rectangular Heat Exchanger
Authors: Mounir Baccar, Imen Jmal
Abstract:
Because of the rise in energy costs, thermal storage systems designed for the heating and cooling of buildings are becoming increasingly important. Energy storage can not only reduce the time or rate mismatch between energy supply and demand but also plays an important role in energy conservation. One of the most preferable storage techniques is the Latent Heat Thermal Energy Storage (LHTES) by Phase Change Materials (PCM) due to its important energy storage density and isothermal storage process. This paper presents a numerical study of the solidification of a PCM (paraffin RT27) in a rectangular thermal storage exchanger for air conditioning systems taking into account the presence of natural convection. Resolution of continuity, momentum and thermal energy equations are treated by the finite volume method. The main objective of this numerical approach is to study the effect of natural convection on the PCM solidification time and the impact of fins number on heat transfer enhancement. It also aims at investigating the temporal evolution of PCM solidification, as well as the longitudinal profiles of the HTF circling in the duct. The present research undertakes the study of two cases: the first one treats the solidification of PCM in a PCM-air heat exchanger without fins, while the second focuses on the solidification of PCM in a heat exchanger of the same type with the addition of fins (3 fins, 5 fins, and 9 fins). Without fins, the stratification of the PCM from colder to hotter during the heat transfer process has been noted. This behavior prevents the formation of thermo-convective cells in PCM area and then makes transferring almost conductive. In the presence of fins, energy extraction from PCM to airflow occurs at a faster rate, which contributes to the reduction of the discharging time and the increase of the outlet air temperature (HTF). However, for a great number of fins (9 fins), the enhancement of the solidification process is not significant because of the effect of confinement of PCM liquid spaces for the development of thermo-convective flow. Hence, it can be concluded that the effect of natural convection is not very significant for a high number of fins. In the optimum case, using 3 fins, the increasing temperature of the HTF exceeds approximately 10°C during the first 30 minutes. When solidification progresses from the surfaces of the PCM-container and propagates to the central liquid phase, an insulating layer will be created in the vicinity of the container surfaces and the fins, causing a low heat exchange rate between PCM and air. As the solid PCM layer gets thicker, a progressive regression of the field of movements is induced in the liquid phase, thus leading to the inhibition of heat extraction process. After about 2 hours, 68% of the PCM became solid, and heat transfer was almost dominated by conduction mechanism.Keywords: heat transfer enhancement, front solidification, PCM, natural convection
Procedia PDF Downloads 1878176 Production of Neutrons by High Intensity Picosecond Laser Interacting with Thick Solid Target at XingGuangIII
Authors: Xi Yuan, Xuebin Zhu, Bojun Li
Abstract:
This work describes the experiment to produce high-intensity pulsed neutron beams on XingGuangIII laser facility. The high-intensity laser is utilized to drive protons and deuterons, which hit a thick solid target to produce neutrons. The pulse duration of the laser used in the experiment is about 0.8 ps, and the laser energy is around 100 J. Protons and deuterons are accelerated from a 10-μm-thick deuterated polyethylene (CD₂) foil and diagnosed by a Thomson parabola ion-spectrometer. The energy spectrum of neutrons generated via ⁷Li(d,n) and ⁷Li(p,n) reaction when proton and deuteron beams hit a 5-mm-thick LiF target is measured by a scintillator-based time-of-flight spectrometer. Results from the neuron measurements show that the maximum neutron energy is about 12.5 MeV and the neutron yield is up to 2×10⁹/pulse. The high-intensity pulsed neutron beams demonstrated in this work can provide a valuable neutron source for material research, fast neutron induced fission research, and so on.Keywords: picosecond laser driven, fast neutron, time-of-flight spectrometry, XinggungIII
Procedia PDF Downloads 1658175 Effect of Post Circuit Resistance Exercise Glucose Feeding on Energy and Hormonal Indexes in Plasma and Lymphocyte in Free-Style Wrestlers
Authors: Miesam Golzadeh Gangraj, Younes Parvasi, Mohammad Ghasemi, Ahmad Abdi, Saeid Fazelifar
Abstract:
The purpose of the study was to determine the effect of glucose feeding on energy and hormonal indexes in plasma and lymphocyte immediately after wrestling – base techniques circuit exercise (WBTCE) in young male freestyle wrestlers. Sixteen wrestlers (weight = 75/45 ± 12/92 kg, age = 22/29 ± 0/90 years, BMI = 26/23 ± 2/64 kg/m²) were randomly divided into two groups: control (water), glucose (2 gr per kg body weight). Blood samples were obtained before, immediately, and 90 minutes of the post-exercise recovery period. Glucose (2 g/kg of body weight, 1W/5V) and water (equal volumes) solutions were given immediately after the second blood sampling. Data were analyzed by using an ANOVA (a repeated measure) and a suitable post hoc test (LSD). A significant decrease was observed in lymphocytes glycogen immediately after exercise (P < 0.001). In the experimental group, increase Lymphocyte glycogen concentration (P < 0.028) than in the control group in 90 min post-exercise. Plasma glucose concentrations increased in all groups immediately after exercise (P < 0.05). Plasma insulin concentrations in both groups decreased immediately after exercise, but at 90 min after exercise, its level was significantly increased only in glucose group (P < 0.001). Our results suggested that WBTCE protocol could be affected cellular energy sources and hormonal response. Furthermore, Glucose consumption can increase the lymphocyte glycogen and better energy within the cell.Keywords: glucose feeding, lymphocyte, Wrestling – base techniques circuit , exercise
Procedia PDF Downloads 2718174 Effects of Different Climate Zones, Building Types, and Primary Fuel Sources for Energy Production on Environmental Damage from Four External Wall Technologies for Residential Buildings in Israel
Authors: Svetlana Pushkar, Oleg Verbitsky
Abstract:
The goal of the present study is to evaluate environmental damage from four wall technologies under the following conditions: four climate zones in Israel, two building (conventional vs. low-energy) types, and two types of fuel source [natural gas vs. photovoltaic (PV)]. The hierarchical ReCiPe method with a two-stage nested (hierarchical) ANOVA test is applied. It was revealed that in a hot climate in Israel in a conventional building fueled by natural gas, OE is dominant (90 %) over the P&C stage (10 %); in a mild climate in Israel in a low-energy building with PV, the P&C stage is dominant (85 %) over the OE stage (15 %). It is concluded that if PV is used in the building sector in Israel, (i) the P&C stage becomes a significant factor that influences the environment, (ii) autoclaved aerated block is the best external wall technology, and (iii) a two-stage nested mixed ANOVA can be used to evaluate environmental damage via ReCiPe when wall technologies are compared.Keywords: life cycle assessment (LCA), photovoltaic, ReCiPe method, residential buildings
Procedia PDF Downloads 2938173 Coulomb-Explosion Driven Proton Focusing in an Arched CH Target
Authors: W. Q. Wang, Y. Yin, D. B. Zou, T. P. Yu, J. M. Ouyang, F. Q. Shao
Abstract:
High-energy-density state, i.e., matter and radiation at energy densities in excess of 10^11 J/m^3, is related to material, nuclear physics, astrophysics, and geophysics. Laser-driven particle beams are better suited to heat the matter as a trigger due to their unique properties of ultrashort duration and low emittance. Compared to X-ray and electron sources, it is easier to generate uniformly heated large-volume material for the proton and ion beams because of highly localized energy deposition. With the construction of state-of-art high power laser facilities, creating of extremely conditions of high-temperature and high-density in laboratories becomes possible. It has been demonstrated that on a picosecond time scale the solid density material can be isochorically heated to over 20 eV by the ultrafast proton beam generated from spherically shaped targets. For the above-mentioned technique, the proton energy density plays a crucial role in the formation of warm dense matter states. Recently, several methods have devoted to realize the focusing of the accelerated protons, involving externally exerted static-fields or specially designed targets interacting with a single or multi-pile laser pulses. In previous works, two co-propagating or opposite direction laser pulses are employed to strike a submicron plasma-shell. However, ultra-high pulse intensities, accurately temporal synchronization and undesirable transverse instabilities for a long time are still intractable for currently experimental implementations. A mechanism of the focusing of laser-driven proton beams from two-ion-species arched targets is investigated by multi-dimensional particle-in-cell simulations. When an intense linearly-polarized laser pulse impinges on the thin arched target, all electrons are completely evacuated, leading to a Coulomb-explosive electric-field mostly originated from the heavier carbon ions. The lighter protons in the moving reference frame by the ionic sound speed will be accelerated and effectively focused because of this radially isotropic field. At a 2.42×10^21 W/cm^2 laser intensity, a ballistic proton bunch with its energy-density as high as 2.15×10^17 J/m^3 is produced, and the highest proton energy and the focusing position agree well with that from the theory.Keywords: Coulomb explosion, focusing, high-energy-density, ion acceleration
Procedia PDF Downloads 3448172 Single Ion Transport with a Single-Layer Graphene Nanopore
Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru
Abstract:
Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.Keywords: graphene nanomembrane, single ion transport, Coulomb blockade, nanofluidics
Procedia PDF Downloads 3218171 Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate.Keywords: corrugated absorber, double flow, exergy efficiency, solar air heater
Procedia PDF Downloads 3748170 A Study on Measuring Emotional Labor and Burnout Levels of Shopping Mall Employess: The Case of the Province of Konya
Authors: Ilknur Çevik Tekin, Serdar Öge
Abstract:
As a result of globalization and changing consumer preferences, the number of shopping malls has increased significantly in recent years. Consumers prefer shopping malls to both do comfortable shopping in a short time and benefit from the social facilities there. Employees, who are obliged to behave to the consumers in the way the company wants them to do, often spend intensive emotional effort because companies buy the emotions the employees must display to customers in order to ensure customer satisfaction. The emotions the employees constantly try to contain may lead to the phenomenon of burn-out in time. This study was conducted to reveal the relationship between the emotional labor and burn-out levels of shopping mall employees, who work in shopping malls and are supposed to reflect the corporate culture.Keywords: emotional labor, burnout, shopping mall employees
Procedia PDF Downloads 3388169 Neuropsychiatric Outcomes of Intensive Music Therapy in Stroke Rehabilitation A Premilitary Investigation
Authors: Honey Bryant, Elvina Chu
Abstract:
Stroke is the leading cause of disability in adults in Canada and directly related to depression, anxiety, and sleep disorders; with an estimated annual cost of $50 billion in health care. Strokes not only impact the individual but society as a whole. Current stroke rehabilitation does not include Music Therapy, although it has success in clinical research in the use of stroke rehabilitation. This study examines the use of neurologic music therapy (NMT) in conjunction with stroke rehabilitation to improve sleep quality, reduce stress levels, and promote neurogenesis. Existing research on NMT in stroke is limited, which means any conclusive information gathered during this study will be significant. My novel hypotheses are a.) stroke patients will become less depressed and less anxious with improved sleep following NMT. b.) NMT will reduce stress levels and promote neurogenesis in stroke patients admitted for rehabilitation. c.) Beneficial effects of NMT will be sustained at least short-term following treatment. Participants were recruited from the in-patient stroke rehabilitation program at Providence Care Hospital in Kingston, Ontario, Canada. All participants-maintained stroke rehabilitation treatment as normal. The study was spilt into two groups, the first being Passive Music Listening (PML) and the second Neurologic Music Therapy (NMT). Each group underwent 10 sessions of intensive music therapy lasting 45 minutes for 10 consecutive days, excluding weekends. Psychiatric Assessments, Epworth Sleepiness Scale (ESS), Hospital Anxiety & Depression Rating Scale (HADS), and Music Engagement Questionnaire (MusEQ), were completed, followed by a general feedback interview. Physiological markers of stress were measured through blood pressure measurements and heart rate variability. Serum collections reviewed neurogenesis via Brain-derived neurotrophic factor (BDNF) and stress markers of cortisol levels. As this study is still on-going, a formal analysis of data has not been fully completed, although trends are following our hypotheses. A decrease in sleepiness and anxiety is seen upon the first cohort of PML. Feedback interviews have indicated most participants subjectively felt more relaxed and thought PML was useful in their recovery. If the hypothesis is supported, larger external funding which will allow for greater investigation of the use of NMT in stroke rehabilitation. As we know, NMT is not covered under Ontario Health Insurance Plan (OHIP), so there is limited scientific data surrounding its uses as a clinical tool. This research will provide detailed findings of the treatment of neuropsychiatric aspects of stroke. Concurrently, a passive music listening study is being designed to further review the use of PML in rehabilitation as well.Keywords: music therapy, psychotherapy, neurologic music therapy, passive music listening, neuropsychiatry, counselling, behavioural, stroke, stroke rehabilitation, rehabilitation, neuroscience
Procedia PDF Downloads 1138168 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development
Authors: Sreto Boljevic
Abstract:
In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES
Procedia PDF Downloads 2028167 Monitoring the Thin Film Formation of Carrageenan and PNIPAm Microgels
Authors: Selim Kara, Ertan Arda, Fahrettin Dolastir, Önder Pekcan
Abstract:
Biomaterials and thin film coatings play a fundamental role in medical, food and pharmaceutical industries. Carrageenan is a linear sulfated polysaccharide extracted from algae and seaweeds. To date, such biomaterials have been used in many smart drug delivery systems due to their biocompatibility and antimicrobial activity properties. Poly (N-isopropylacrylamide) (PNIPAm) gels and copolymers have also been used in medical applications. PNIPAm shows lower critical solution temperature (LCST) property at about 32-34 °C which is very close to the human body temperature. Below and above the LCST point, PNIPAm gels exhibit distinct phase transitions between swollen and collapsed states. A special class of gels are microgels which can react to environmental changes significantly faster than microgels due to their small sizes. Quartz crystal microbalance (QCM) measurement technique is one of the attractive techniques which has been used for monitoring the thin-film formation process. A sensitive QCM system was designed as to detect 0.1 Hz difference in resonance frequency and 10-7 change in energy dissipation values, which are the measures of the deposited mass and the film rigidity, respectively. PNIPAm microgels with the diameter around few hundred nanometers in water were produced via precipitation polymerization process. 5 MHz quartz crystals with functionalized gold surfaces were used for the deposition of the carrageenan molecules and microgels in the solutions which were slowly pumped through a flow cell. Interactions between charged carrageenan and microgel particles were monitored during the formation of the film layers, and the Sauerbrey masses of the deposited films were calculated. The critical phase transition temperatures around the LCST were detected during the heating and cooling cycles. It was shown that it is possible to monitor the interactions between PNIPAm microgels and biopolymer molecules, and it is also possible to specify the critical phase transition temperatures by using a QCM system.Keywords: carrageenan, phase transitions, PNIPAm microgels, quartz crystal microbalance (QCM)
Procedia PDF Downloads 2318166 Effects of Bacteria on Levels of AFM1 in Phosphate Buffer at Different Level of Energy Source
Authors: Ali M. Elgerbi, Obied A. Alwan, Al-Taher O. Alzwei, Abdurrahim A. Elouzi
Abstract:
The binding of AFM1 to bacteria in phosphate buffer solution depended on many factors such as: availability of energy, incubation period, species and strain of bacteria. Increase in concentration of sugar showed higher removal of AFM1 and faster than in phosphate buffer alone. With 1.0% glucose lactic acid bacteria and bifidobacteria showed toxin removal ranging from 7.7 to 39.7% whereas with 10.0% glucose the percentage removal was 21.8 to 45.4% at 96 hours of incubation.Keywords: aflatoxin M1, lactic acid bacteria, bifidobacteria , binding, phosphate buffer
Procedia PDF Downloads 5068165 Growth Performance and Economy of Production of Pullets Fed on Different Energy Based Sources
Authors: O. A. Anjola, M. A. Adejobi, A. Ogunbameru, F. P. Agbaye, R. O. Odunukan
Abstract:
This experiment was conducted for 8 weeks to evaluate the growth performance and economics of pullets fed on different dietary energy sources. A total of 300 Harco black was used for this experiment. The birds were completely randomized and divided into four diet treatment groups. Each treatment group had three replicates of twenty-five birds per replicate. Four diets containing maize, spaghetti, noodles, and biscuit was formulated to represent diet 1, 2, 3 and 4 respectively. Diet 1 containing maize is the control, while diet 2, 3, and 4 contains spaghetti, noodles, and biscuit waste meal at 100% replacement for maize on weight for weight basis. Performance indices on Feed intake, body weight, weight gain, feed conversion ratio (FCR) and economy of production were measured. Blood samples were also collected for heamatology and serum biochemistry assessment. The result of the experiment indicated that different dietary energy source fed to birds significantly (P < 0.05) affect feed intake, body weight, weight gain, and feed conversion ratio (FCR). The best cost of feed per kilogram of body weight gain was obtained in Spaghetti based diet (₦559.30). However, the best performance were obtained from diet 1(maize), it can be concluded that spaghetti as a replacement for maize in diet of pullet is most economical and profitable for production without any deleterious effects attached. Blood parameters of birds were not significantly (p > 0.05) influenced by the use of the dietary energy sources used in this experiment.Keywords: growth performance, spaghetti, noodles, biscuit, profit, hematology, serum biochemistry
Procedia PDF Downloads 2288164 Numerical Analysis of Heat and Mass Transfer in an Adsorbent Bed for Different Working Pairs
Authors: N. Allouache, O. Rahli
Abstract:
Solar radiation is by far the largest and the most world’s abundant, clean, and permanent energy source. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world. One of these important technologies is the solar refrigerating machines that make use of either absorption or adsorption technologies. In this present work, the adsorbent bed is modelized and optimized using different working pairs, such as zeolite-water, silica gel-water, activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol. The results show that the enhancement of the heat and mass transfer depends on the properties of the working pair; the performances of the adsorption cycle are essentially influenced by the choice of the adsorbent-adsorbate pair. The system can operate successfully for optimal parameters such as the evaporator, condenser, and generating temperatures. The activated carbon is the best adsorbent due to its high surface area and micropore volume.Keywords: adsorbent bed, heat and mass transfer, numerical analysis, working pairs
Procedia PDF Downloads 1498163 Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) Control of Quadcopters: A Comparative Analysis
Authors: Anel Hasić, Naser Prljača
Abstract:
In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.Keywords: MATLAB, MPC, PID, quadcopter, simulink
Procedia PDF Downloads 698162 Accurate Energy Assessment Technique for Mine-Water District Heat Network
Authors: B. Philip, J. Littlewood, R. Radford, N. Evans, T. Whyman, D. P. Jones
Abstract:
UK buildings and energy infrastructures are heavily dependent on natural gas, a large proportion of which is used for domestic space heating. However, approximately half of the gas consumed in the UK is imported. Improving energy security and reducing carbon emissions are major government drivers for reducing gas dependency. In order to do so there needs to be a wholesale shift in the energy provision to householders without impacting on thermal comfort levels, convenience or cost of supply to the end user. Heat pumps are seen as a potential alternative in modern well insulated homes, however, can the same be said of older homes? A large proportion of housing stock in Britain was built prior to 1919. The age of the buildings bears testimony to the quality of construction; however, their thermal performance falls far below the minimum currently set by UK building standards. In recent years significant sums of money have been invested to improve energy efficiency and combat fuel poverty in some of the most deprived areas of Wales. Increasing energy efficiency of older properties remains a significant challenge, which cannot be achieved through insulation and air-tightness interventions alone, particularly when alterations to historically important architectural features of the building are not permitted. This paper investigates the energy demand of pre-1919 dwellings in a former Welsh mining village, the feasibility of meeting that demand using water from the disused mine workings to supply a district heat network and potential barriers to success of the scheme. The use of renewable solar energy generation and storage technologies, both thermal and electrical, to reduce the load and offset increased electricity demand, are considered. A wholistic surveying approach to provide a more accurate assessment of total household heat demand is proposed. Several surveying techniques, including condition surveys, air permeability, heat loss calculations, and thermography were employed to provide a clear picture of energy demand. Additional insulation can bring unforeseen consequences which are detrimental to the fabric of the building, potentially leading to accelerated dilapidation of the asset being ‘protected’. Increasing ventilation should be considered in parallel, to compensate for the associated reduction in uncontrolled infiltration. The effectiveness of thermal performance improvements are demonstrated and the detrimental effects of incorrect material choice and poor installation are highlighted. The findings show estimated heat demand to be in close correlation to household energy bills. Major areas of heat loss were identified such that improvements to building thermal performance could be targeted. The findings demonstrate that the use of heat pumps in older buildings is viable, provided sufficient improvement to thermal performance is possible. Addition of passive solar thermal and photovoltaic generation can help reduce the load and running cost for the householder. The results were used to predict future heat demand following energy efficiency improvements, thereby informing the size of heat pumps required.Keywords: heat demand, heat pump, renewable energy, retrofit
Procedia PDF Downloads 928161 Design Development of Floating Performance Structure for Coastal Areas in the Maltese Islands
Authors: Rebecca E. Dalli Gonzi, Joseph Falzon
Abstract:
Background: Islands in the Mediterranean region offer opportunities for various industries to take advantage of the facilitation and use of versatile floating structures in coastal areas. In the context of dense land use, marine structures can contribute to ensure both terrestrial and marine resource sustainability. Objective: The aim of this paper is to present and critically discuss an array of issues that characterize the design process of a floating structure for coastal areas and to present the challenges and opportunities of providing such multifunctional and versatile structures around the Maltese coastline. Research Design: A three-tier research design commenced with a systematic literature review. Semi-structured interviews with stakeholders including a naval architect, a marine engineer and civil designers were conducted. A second stage preceded a focus group with stakeholders in design and construction of marine lightweight structures. The three tier research design ensured triangulation of issues. All phases of the study were governed by research ethics. Findings: Findings were grouped into three main themes: excellence, impact and implementation. These included design considerations, applications and potential impacts on local industry. Literature for the design and construction of marine structures in the Maltese Islands presented multiple gaps in the application of marine structures for local industries. Weather conditions, depth of sea bed and wave actions presented limitations on the design capabilities of the structure. Conclusion: Water structures offer great potential and conclusions demonstrate the applicability of such designs for Maltese waters. There is still no such provision within Maltese coastal areas for multi-purpose use. The introduction of such facilities presents a range of benefits for visiting tourists and locals thereby offering wide range of services to tourism and marine industry. Costs for construction and adverse weather conditions were amongst the main limitations that shaped design capacities of the water structures.Keywords: coastal areas, lightweight, marine structure, multi purpose, versatile, floating device
Procedia PDF Downloads 1618160 A Comparative Study of Photo and Electro-Fenton Reactions Efficiency in Degradation of Cationic Dyes Mixture
Authors: S. Bouafia Chergui, Nihal Oturan, Hussein Khalaf, Mehmet A. Oturan
Abstract:
The aim of this work was to compare the degradation of a mixture of three cationic dyes by advanced oxidation processes (electro-Fenton, photo-Fenton) in aqueous solution. These processes are based on the in situ production of hydroxyl radical, a highly strong oxidant, which allows the degradation of organic pollutants until their mineralization into CO2 and H2O. Under optimal operating conditions, the evolution of total organic carbon (TOC) and electrical energy efficiency have been investigated for the two processes.Keywords: photo-fenton, electro-fenton, energy efficiency, water treatment
Procedia PDF Downloads 5118159 SIF Computation of Cracked Plate by FEM
Authors: Sari Elkahina, Zergoug Mourad, Benachenhou Kamel
Abstract:
The main purpose of this paper is to perform a computations comparison of stress intensity factor 'SIF' evaluation in case of cracked thin plate with Aluminum alloy 7075-T6 and 2024-T3 used in aeronautics structure under uniaxial loading. This evaluation is based on finite element method with a virtual power principle through two techniques: the extrapolation and G−θ. The first one consists to extrapolate the nodal displacements near the cracked tip using a refined triangular mesh with T3 and T6 special elements, while the second, consists of determining the energy release rate G through G−θ method by potential energy derivation which corresponds numerically to the elastic solution post-processing of a cracked solid by a contour integration computation via Gauss points. The SIF obtained results from extrapolation and G−θ methods will be compared to an analytical solution in a particular case. To illustrate the influence of the meshing kind and the size of integration contour position simulations are presented and analyzed.Keywords: crack tip, SIF, finite element method, concentration technique, displacement extrapolation, aluminum alloy 7075-T6 and 2024-T3, energy release rate G, G-θ method, Gauss point numerical integration
Procedia PDF Downloads 3378158 Gender Differences in Research Output, Funding and Collaboration
Authors: Ashkan Ebadi, Andrea Schiffauerova
Abstract:
In spite of the global efforts toward gender equality, female researchers are still underrepresented in professional scientific activities. The gender gap is more seen in engineering and math-intensive technological scientific fields thus calling for a specific attention. This paper focuses on the Canadian funded researchers who are active in natural sciences and engineering, and analyses the gender aspects of researchers’ performance, their scientific collaboration patterns as well as their share of the federal funding within the period of 2000 to 2010. Our results confirm the existence of gender disparity among the examined Canadian researchers. Although it was observed that male researchers have been performing better in terms of number of publications, the impact of the research was almost the same for both genders. In addition, it was observed that research funding is more biased towards male researchers and they have more control over their scientific community as well.Keywords: bibliometrics, collaboration, funding, gender differences, research output
Procedia PDF Downloads 2788157 Towards the Development of Uncertainties Resilient Business Model for Driving the Solar Panel Industry in Nigeria Power Sector
Authors: Balarabe Z. Ahmad, Anne-Lorène Vernay
Abstract:
The emergence of electricity in Nigeria was dated back to 1896. The power plants have the potential to generate 12,522 MW of electric power. Whereas current dispatch is about 4,000 MW, access to electrification is about 60%, with consumption at 0.14 MWh/capita. The government embarked on energy reforms to mitigate energy poverty. The reform targeted the provision of electricity access to 75% of the population by 2020 and 90% by 2030. Growth of total electricity demand by a factor of 5 by 2035 had been projected. This means that Nigeria will require almost 530 TWh of electricity which can be delivered through generators with a capacity of 65 GW. Analogously, the geographical location of Nigeria has placed it in an advantageous position as the source of solar energy; the availability of a high sunshine belt is obvious in the country. The implication is that the far North, where energy poverty is high, equally has about twice the solar radiation as against southern Nigeria. Hence, the chance of generating solar electricity is 66% possible at 11850 x 103 GWh per year, which is one hundred times the current electricity consumption rate in the country. Harvesting these huge potentials may be a mirage if the entrepreneurs in the solar panel business are left with the conventional business models that are not uncertainty resilient. Currently, business entities in RE in Nigeria are uncertain of; accessing the national grid, purchasing potentials of cooperating organizations, currency fluctuation and interest rate increases. Uncertainties such as the security of projects and government policy are issues entrepreneurs must navigate to remain sustainable in the solar panel industry in Nigeria. The aim of this paper is to identify how entrepreneurial firms consider uncertainties in developing workable business models for commercializing solar energy projects in Nigeria. In an attempt to develop a novel business model, the paper investigated how entrepreneurial firms assess and navigate uncertainties. The roles of key stakeholders in helping entrepreneurs to manage uncertainties in the Nigeria RE sector were probed in the ongoing study. The study explored empirical uncertainties that are peculiar to RE entrepreneurs in Nigeria. A mixed-mode of research was embraced using qualitative data from face-to-face interviews conducted on the Solar Energy Entrepreneurs and the experts drawn from key stakeholders. Content analysis of the interview was done using Atlas. It is a nine qualitative tool. The result suggested that all stakeholders are required to synergize in developing an uncertainty resilient business model. It was opined that the RE entrepreneurs need modifications in the business recommendations encapsulated in the energy policy in Nigeria to strengthen their capability in delivering solar energy solutions to the yawning Nigerians.Keywords: uncertainties, entrepreneurial, business model, solar-panel
Procedia PDF Downloads 1498156 Orphan Node Inclusion Protocol for Wireless Sensor Network
Authors: Sandeep Singh Waraich
Abstract:
Wireless sensor network (WSN ) consists of a large number of sensor nodes. The disparity in their energy consumption usually lead to the loss of equilibrium in wireless sensor network which may further results in an energy hole problem in wireless network. In this paper, we have considered the inclusion of orphan nodes which usually remain unutilized as intermediate nodes in multi-hop routing. The Orphan Node Inclusion (ONI) Protocol lets the cluster member to bring the orphan nodes into their clusters, thereby saving important resources and increasing network lifetime in critical applications of WSN.Keywords: wireless sensor network, orphan node, clustering, ONI protocol
Procedia PDF Downloads 4208155 Relevance of Copyright and Trademark in the Gaming Industry
Authors: Deeksha Karunakar
Abstract:
The gaming industry is one of the biggest industries in the world. Video games are interactive works of authorship that require the execution of a computer programme on specialized hardware but which also incorporate a wide variety of other artistic mediums, such as music, scripts, stories, video, paintings, and characters, into which the player takes an active role. Therefore, video games are not made as singular, simple works but rather as a collection of elements that, if they reach a certain level of originality and creativity, can each be copyrighted on their own. A video game is made up of a wide variety of parts, all of which combine to form the overall sensation that we, the players, have while playing. The entirety of the components is implemented in the form of software code, which is then translated into the game's user interface. Even while copyright protection is already in place for the coding of software, the work that is produced because of that coding can also be protected by copyright. This includes the game's storyline or narrative, its characters, and even elements of the code on their own. In each sector, there is a potential legal framework required, and the gaming industry also requires legal frameworks. This represents the importance of intellectual property laws in each sector. This paper will explore the beginnings of video games, the various aspects of game copyrights, and the approach of the courts, including examples of a few different instances. Although the creative arts have always been known to draw inspiration from and build upon the works of others, it has not always been simple to evaluate whether a game has been cloned. The video game business is experiencing growth as it has never seen before today. The majority of today's video games are both pieces of software and works of audio-visual art. Even though the existing legal framework does not have a clause specifically addressing video games, it is clear that there is a great many alternative means by which this protection can be granted. This paper will represent the importance of copyright and trademark laws in the gaming industry and its regulations with the help of relevant case laws via utilizing doctrinal methodology to support its findings. The aim of the paper is to make aware of the applicability of intellectual property laws in the gaming industry and how the justice system is evolving to adapt to such new industries. Furthermore, it will provide in-depth knowledge of their relationship with each other.Keywords: copyright, DMCA, gaming industry, trademark, WIPO
Procedia PDF Downloads 698154 Wind Energy Potential of Southern Sindh, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Maliha Afshan Siddiqui
Abstract:
A study has been carried out to see the prospect of wind power potential of southern Sindh namely Karachi, Hawksbay, Norriabad, Hyderabad, Ketibander and Shahbander using local wind speed data. The monthly average wind speed for these area ranges from 4.5m/sec to 8.5m/sec at 30m height from ground. Extractable wind power, wind energy and Weibul parameter for above mentioned areas have been examined. Furthermore, the power output using fast and slow wind machine using different blade diameter along with the 4Kw and 20 Kw aero-generator were examined to see the possible use for deep well pumping and electricity supply to remote villages. The analysis reveals that in this wind corridor of southern Sindh Hawksbay, Ketibander and Shahbander belongs to wind power class-3 Hyderabad and Nooriabad belongs to wind power class-5 and Karachi belongs to wind power class-2. The result shows that the that higher wind speed values occur between June till August. It was found that considering maximum wind speed location, Hawksbay,Noriabad are the best location for setting up wind machines for power generation.Keywords: wind energy generation, Southern Sindh, seasonal change, Weibull parameter, wind machines
Procedia PDF Downloads 1498153 Street Begging: A Loss of Human Resource in Nigeria
Authors: Sulaiman Kassim Ibrahim
Abstract:
Human Resource is one of the most important elements in any country. They are very important in actualizing the potential of every sector in the country, i.e Agric, Education, Finance, Judiciary and all formal and informal sectors. The purpose of this study is to investigate the loss of human resource in Nigeria through street begging. The study used intensive literature review. Finding from the review indicate that a significant number of human resource are into street begging in the country undeveloped and untapped. The paper recommend that policy should be initiated to discourage street begging, develop this resource through education and empowerment, stop rural-urban migration by providing infrastructure in the rural areas and abolish informal (Almajiri or beggars school) and transform it into formal school.Keywords: human resource, street begging, Nigeria, Almajiri
Procedia PDF Downloads 2558152 Investigating the Performance of Power Industry in a Developing Nation for Industrialization and Environmental Security
Authors: Abel Edeowede Abhulimen
Abstract:
Due to supply irregularity and frequent outages, the need for reliability in power supply has grown unsatisfactorily over time in developing nations, impeding industrialization and fueling insecurity. This article attempts to break down the Nigerian power issue into its numerous sub-sectors in order to pinpoint the industry's ailment and suggest a viable fix. Monthly average performance data were obtained for the various sub-sectors across the industry for eight consecutive quarters. Whereas the amount of energy generated was found to be insufficient to engender industrialization in a nation like Nigeria, the transmission infrastructure was inadequate for the amount of power needed to be wheeled. Additionally, the distribution sub-sector was plagued with problems such as revenue collection inefficiency, severe enough to impede the growth of the entire industry. The country's goal of attaining energy sufficiency and industrialization would significantly be closer to reality with a conscious effort to increase the base of power generation through aggressive investment in Combined Cycle Gas Turbines (CCGT), decentralization of the transmission infrastructure, and strict monitoring of the distribution sub-sector for improved accountability and system reliability.Keywords: performance, power industry, industrialization, security, energy
Procedia PDF Downloads 728151 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines
Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky
Abstract:
Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods
Procedia PDF Downloads 1138150 The Moderating Role of the Employees' Green Lifestyle to the Effect of Green Human Resource Management Practices to Job Performance: A Structural Equation Model (SEM)
Authors: Lorraine Joyce Chua, Sheena Fatima Ragas, Flora Mae Tantay, Carolyn Marie Sunio
Abstract:
The Philippines is one of the countries most affected by weather-related disasters. The occurrence of natural disasters in this country increases due to environmental degradation making environment preservation a growing trend in the society including the corporate world. Most organizations implemented green practices in order to lower expenses unaware that some of these practices were already a part of a new trend in human resource management known as Green Human Resource Management (GHRM). GHRM is when business organizations implement HR policies programs processes and techniques that bring environmental impact and sustainability practices on the organization. In relation to this, the study hypothesizes that implementing GHRM practices in the workplace will spillover to an employees lifestyle and such lifestyle may moderate the impact of GHRM practices to his job performance. Private industries located in the Philippines National Capital Region (NCR) were purposively selected for the purpose of this study. They must be ISO14001 certified or are currently aiming for such certification. The employee respondents were randomly selected and were asked to answer a reliable and valid researcher-made questionnaire. Structural equation modeling (SEM) supported the hypothesis that GHRM practices may spillover to employees lifestyle stimulating such individual to start a green lifestyle which moderates the impact of GHRM to his job performance. It can also be implied that GHRM practices help shape employees to become environmentally aware and responsible which may help them in preserving the environment. The findings of this study may encourage Human Resource practitioners to implement GHRM practices in the workplace in order to take part in sustaining the environment while maintaining or improving employees job performance and keeping them motivated. This study can serve as a basis for future research regarding the importance of strengthening the GHRM implementation here in the Philippines. Future studies may focus more on the impact of GHRM to other factors, such as job loyalty and job satisfaction of the employees belonging to specific industries which would greatly contribute to the GHRM community in the Philippines.Keywords: GHRM practices, Green Human Resource Management, Green Lifestyle, ISO14001, job performance, Philippines
Procedia PDF Downloads 2668149 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces
Authors: Matthias Steffan, Franz Haas
Abstract:
The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding
Procedia PDF Downloads 283