Search results for: wind machines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1802

Search results for: wind machines

1802 Wind Energy Potential of Southern Sindh, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Maliha Afshan Siddiqui

Abstract:

A study has been carried out to see the prospect of wind power potential of southern Sindh namely Karachi, Hawksbay, Norriabad, Hyderabad, Ketibander and Shahbander using local wind speed data. The monthly average wind speed for these area ranges from 4.5m/sec to 8.5m/sec at 30m height from ground. Extractable wind power, wind energy and Weibul parameter for above mentioned areas have been examined. Furthermore, the power output using fast and slow wind machine using different blade diameter along with the 4Kw and 20 Kw aero-generator were examined to see the possible use for deep well pumping and electricity supply to remote villages. The analysis reveals that in this wind corridor of southern Sindh Hawksbay, Ketibander and Shahbander belongs to wind power class-3 Hyderabad and Nooriabad belongs to wind power class-5 and Karachi belongs to wind power class-2. The result shows that the that higher wind speed values occur between June till August. It was found that considering maximum wind speed location, Hawksbay,Noriabad are the best location for setting up wind machines for power generation.

Keywords: wind energy generation, Southern Sindh, seasonal change, Weibull parameter, wind machines

Procedia PDF Downloads 119
1801 PM Electrical Machines Diagnostic: Methods Selected

Authors: M. Barański

Abstract:

This paper presents a several diagnostic methods designed to electrical machines especially for permanent magnets (PM) machines. Those machines are commonly used in small wind and water systems and vehicles drives. Those methods are preferred by the author in periodic diagnostic of electrical machines. The special attention should be paid to diagnostic method of turn-to-turn insulation and vibrations. Both of those methods were created in Institute of Electrical Drives and Machines Komel. The vibration diagnostic method is the main thesis of author’s doctoral dissertation. This is method of determination the technical condition of PM electrical machine basing on its own signals is the subject of patent application No P.405669. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical machines with permanent magnets and there was no method found to determine the technical condition of such machine basing on their own signals.

Keywords: electrical vehicle, generator, main insulation, permanent magnet, thermography, turn-to-traction drive, turn insulation, vibrations

Procedia PDF Downloads 359
1800 Potentiality of the Wind Energy in Algeria

Authors: C. Benoudjafer, M. N. Tandjaoui, C. Benachaiba

Abstract:

The use of kinetic energy of the wind is in full rise in the world and it starts to be known in our country but timidly. One or more aero generators can be installed to produce for example electricity on isolated places or not connected to the electrical supply network. To use the wind as energy source, it is necessary to know first the energy needs for the population and study the wind intensity, speed, frequency and direction.

Keywords: Algeria, renewable energies, wind, wind power, aero-generators, wind energetic potential

Procedia PDF Downloads 394
1799 A Comprehensive Review of Axial Flux Machines and Its Applications

Authors: Shahbaz Amin, Sabir Hussain Shah, Sahib Khan

Abstract:

This paper presents a thorough review concerning the design types of axial flux permanent magnet machines (AFPM) in terms of different features such as construction, design, materials, and manufacturing. Particular emphasis is given on the design and performance analysis of AFPM machines. A comparison among different permanent magnet machines is also provided. First of all, early and modern axial flux machines are mentioned. Secondly, rotor construction of different axial flux machines is described, then different stator constructions are mentioned depending upon the presence of slots and stator back iron. Then according to the arrangement of the rotor stator structure the machines are classified into single, double and multi-stack arrangements. Advantages, disadvantages and applications of each type of rotor and stator are pointed out. Finally on the basis of the reviewed literature merits, demerits, features and application of different axial flux machines structures are explained and clarified. Thus, this paper provides connection between the machines that are currently being used in industry and the developments of AFPM throughout the years.

Keywords: axial flux machines, axial flux applications, coreless machines, PM machines

Procedia PDF Downloads 172
1798 Experimental Investigation of Tip-Speed-Ratio Effects on Wake Dynamics of Horizontal-Axis Wind Turbine

Authors: Paul Bayron, Richard Kelso, Rey Chin

Abstract:

Wind tunnel experiments were performed in the KC closed-circuit wind tunnel in the University of Adelaide to study the influence of tip-speed-ratio (

Keywords: hotwire anemometry, wake dynamics, wind tunnel, wind turbines

Procedia PDF Downloads 180
1797 Permanent Magnet Machine Can Be a Vibration Sensor for Itself

Authors: M. Barański

Abstract:

The article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article, the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results will be discussed. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application No P.405669, and it is the main thesis of author’s doctoral dissertation.

Keywords: vibrations, generator, permanent magnet, traction drive, electrical vehicle

Procedia PDF Downloads 340
1796 A Study on Method for Identifying Capacity Factor Declination of Wind Turbines

Authors: Dongheon Shin, Kyungnam Ko, Jongchul Huh

Abstract:

The investigation on wind turbine degradation was carried out using the nacelle wind data. The three Vestas V80-2MW wind turbines of Sungsan wind farm in Jeju Island, South Korea were selected for this work. The SCADA data of the wind farm for five years were analyzed to draw power curve of the turbines. It is assumed that the wind distribution is the Rayleigh distribution to calculate the normalized capacity factor based on the drawn power curve of the three wind turbines for each year. The result showed that the reduction of power output from the three wind turbines occurred every year and the normalized capacity factor decreased to 0.12%/year on average.

Keywords: wind energy, power curve, capacity factor, annual energy production

Procedia PDF Downloads 403
1795 Design and Development of Wind Turbine Emulator to Operate with 1.5 kW Induction Generator

Authors: Himani Ratna Dahiya

Abstract:

This paper contributes to design a Wind Emulator coupled to 1.5 kW Induction generator for Wind Energy Conversion System. A wind turbine emulator (WTE) is important equipment for developing wind energy conversion systems. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators that is hard to achieve with an actual wind turbine since the wind speed varies randomly. In this paper a wind emulator is modeled and simulated using MATLAB. Verification of the simulation results is done by experimental setup using DC motor-Induction generator set, LABVIEW and data acquisition card.

Keywords: Wind Turbine Emulator, LABVIEW, matlab, induction generator

Procedia PDF Downloads 563
1794 Assessment of the Effect of Wind Turbulence on the Aero-Hydrodynamic Behavior of Offshore Wind Turbines

Authors: Reza Dezvareh

Abstract:

The aim of this study is to investigate the amount of wind turbulence on the aero hydrodynamic behavior of offshore wind turbines with a monopile holder platform. Since in the sea, the wind turbine structures are under water and structures interactions, the dynamic analysis has been conducted under combined wind and wave loading. The offshore wind turbines have been investigated undertow models of normal and severe wind turbulence, and the results of this study show that the amplitude of fluctuation of dynamic response of structures including thrust force and base shear force of structures is increased with increasing the amount of wind turbulence, and this increase is not necessarily observed in the mean values of responses. Therefore, conducting the dynamic analysis is inevitable in order to observe the effect of wind turbulence on the structures' response.

Keywords: offshore wind turbine, wind turbulence, structural vibration, aero-hydro dynamic

Procedia PDF Downloads 171
1793 An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function

Authors: Ehsanolah Assareh, Mojtaba Biglari, Mojtaba Nedaei

Abstract:

Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds.

Keywords: wind energy, wind turbine, weibull, Sanar village, Iran

Procedia PDF Downloads 487
1792 Experimental and CFD of Desgined Small Wind Turbine

Authors: Tarek A. Mekail, Walid M. A. Elmagid

Abstract:

Many researches have concentrated on improving the aerodynamic performance of wind turbine blade through testing and theoretical studies. A small wind turbine blade is designed, fabricated and tested. The power performance of small horizontal axis wind turbines is simulated in details using Computational Fluid Dynamic (CFD). The three-dimensional CFD models are presented using ANSYS-CFX v13 software for predicting the performance of a small horizontal axis wind turbine. The simulation results are compared with the experimental data measured from a small wind turbine model, which designed according to a vehicle-based test system. The analysis of wake effect and aerodynamic of the blade can be carried out when the rotational effect was simulated. Finally, comparison between experimental, numerical and analytical performance has been done. The comparison is fairly good.

Keywords: small wind turbine, CFD of wind turbine, CFD, performance of wind turbine, test of small wind turbine, wind turbine aerodynamic, 3D model

Procedia PDF Downloads 507
1791 Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers

Authors: M. H. Abedi, A. Jalilvand

Abstract:

The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost.

Keywords: renewable energy, wind farm, optimization, planning

Procedia PDF Downloads 489
1790 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios

Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook

Abstract:

There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.

Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis

Procedia PDF Downloads 595
1789 Expanding the Evaluation Criteria for a Wind Turbine Performance

Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin

Abstract:

The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.

Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses

Procedia PDF Downloads 339
1788 Estimation of Wind Characteristics and Energy Yield at Different Towns in Libya

Authors: Farag Ahwide, Souhel Bousheha

Abstract:

A technical assessment has been made of electricity generation, considering wind turbines ranging between Vestas (V80-2.0 MW and V112-3.0 MW) and the air density is equal to 1.225 Kg/m3, at different towns in Libya. Wind speed might have been measured each 3 hours during 10 m stature at a time for 10 quite sometime between 2000 Furthermore 2009, these towns which are spotted on the bank from claiming Mediterranean ocean also how in the desert, which need aid Derna 1, Derna 2, Shahat, Benghazi, Ajdabya, Sirte, Misurata, Tripoli-Airport, Al-Zawya, Al-Kofra, Sabha, Nalut. The work presented long term "wind data analysis in terms of annual, seasonal, monthly and diurnal variations at these sites. Wind power density with different heights has been studied. Excel sheet program was used to calculate the values of wind power density and the values of wind speed frequency for the stations; their seasonally values have been estimated. Limit variable with rated wind pace to 10 different wind turbines need to be been estimated, which is used to focus those required yearly vitality yield of a wind vitality change framework (WECS), acknowledging wind turbines extending between 600 kW and 3000 kW).

Keywords: energy yield, wind turbines, wind speed, wind power density

Procedia PDF Downloads 268
1787 Design a Small-Scale Irrigation Wind-Powered Water Pump Using a Savonius Type VAWT

Authors: Getnet Ayele Kebede, Tasew Tadiwose Zewdie

Abstract:

In this study, a novel design of a wind-powered water pump for small-scale irrigation application by using the Savonius wind turbine of Vertical Axis Wind Turbine(VAWT) with 2 blades has been used. Calculations have been made on the energy available in the wind and an energy analysis was then performed to see what wind speed is required for the system to work. The rotor has a radius of 0.53 m giving a swept area of 1.27 m2 and this gives a solidity of 0.5, which is the minimum theoretical optimum value for wind turbine. The average extracted torque of the wind turbine is 0.922 Nm and Tip speed ratio is one this shows, the tips are moving at equal the speed of the wind and by 2 rotating of blades. This is sufficient to sustain the desired flow rate of (0.3125X 10-3) m3 per second with a maximum head of 10m and the expected working is 4hr/day, and also overcome other barriers to motion such as friction. Based on this novel design, we are able to achieve a cost-effective solution and simultaneously effective in self-starting under low wind speeds and it can catch the wind from all directions.

Keywords: Savonius wind turbine, Small-scale irrigation, Vertical Axis Wind Turbine, Water pump

Procedia PDF Downloads 133
1786 Comparisons of Individual and Group Replacement Policies for a Series Connection System with Two Machines

Authors: Wen Liang Chang, Mei Wei Wang, Ruey Huei Yeh

Abstract:

This paper studies the comparisons of individual and group replacement policies for a series connection system with two machines. Suppose that manufacturer’s production system is a series connection system which is combined by two machines. For two machines, when machines fail within the operating time, minimal repair is performed for machines by the manufacturer. The manufacturer plans to a preventive replacement for machines at a pre-specified time to maintain system normal operation. Under these maintenance policies, the maintenance cost rate models of individual and group replacement for a series connection system with two machines is derived and further, optimal preventive replacement time is obtained such that the expected total maintenance cost rate is minimized. Finally, some numerical examples are given to illustrate the influences of individual and group replacement policies to the maintenance cost rate.

Keywords: individual replacement, group replacement, replacement time, two machines, series connection system

Procedia PDF Downloads 456
1785 Prediction of Wind Speed by Artificial Neural Networks for Energy Application

Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui

Abstract:

In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.

Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed

Procedia PDF Downloads 649
1784 A Comparative Study between Ionic Wind and Conventional Fan

Authors: J. R. Lee, E. V. Lau

Abstract:

Ionic wind is developed when high voltage is supplied to an anode and a grounded cathode in a gaseous medium. This paper studies the ionic wind profile with different anode configurations, the relationship between electrode gap against the voltage supplied and finally a comparison of the heat transfer coefficient of ionic wind over a horizontal flat plate against a conventional fan experimentally. It is observed that increase in the distance between electrodes decreases at a rate of 1-e-0.0206x as the voltage supply is increased until a distance of 3.1536cm. It is also observed that the wind speed produced by ionic wind is stronger, 2.7ms-1 at 2W compared to conventional fan, 2.5ms-1 at 2W but the wind produced decays at a fast exponential rate and is more localized as compared to conventional fan wind that decays at a slower exponential rate and is less localized. Next, it is found out that the ionic wind profile is the same regardless of the position of the anode relative to the cathode. Lastly, it is discovered that ionic wind produced a heat transfer coefficient that is almost 1.6 times higher compared to a conventional fan with Nusselt number reaching 164 compared to 102 for conventional fan.

Keywords: conventional fan, heat transfer, ionic wind, wind profile

Procedia PDF Downloads 290
1783 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation

Procedia PDF Downloads 447
1782 Development of Low Noise Savonius Wind Turbines

Authors: Sanghyeon Kim, Cheolung Cheong

Abstract:

Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB.

Keywords: aerodynamic noise, Savonius wind turbine, vertical-axis wind turbine

Procedia PDF Downloads 409
1781 Wind Power Potential in Selected Algerian Sahara Regions

Authors: M. Dahbi, M. Sellam, A. Benatiallah, A. Harrouz

Abstract:

The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria The main purpose of this paper is to compared and discuss the wind power potential in three sites located in sahara of Algeria (south west of Algeria) and to perform an investigation on the wind power potential of desert of Algeria. In this comparative, wind speed frequency distributions data obtained from the web site SODA.com are used to calculate the average wind speed and the available wind power. The Weibull density function has been used to estimate the monthly power wind density and to determine the characteristics of monthly parameters of Weibull for these three sites. The annual energy produced by the BWC XL.1 1KW wind machine is obtained and compared. The analysis shows that in the south west of Algeria, at 10 m height, the available wind power was found to vary between 136.59 W/m2 and 231.04 W/m2. The highest potential wind power was found at Adrar, with 21h per day and the mean wind speed is above 6 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 512 KWh and 1643.2 kWh. However, the wind resource appears to be suitable for power production on the sahara and it could provide a viable substitute to diesel oil for irrigation pumps and rural electricity generation.

Keywords: Weibull distribution, parameters of Wiebull, wind energy, wind turbine, operating hours

Procedia PDF Downloads 460
1780 Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen

Authors: Bawadi M. A., Abbad J. A., Baras E. A.

Abstract:

This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site.

Keywords: wind speed analysis, Yemen wind energy, wind power density, Weibull distribution model

Procedia PDF Downloads 53
1779 The Acoustic Performance of Double-skin Wind Energy Facade

Authors: Sara Mota Carmo

Abstract:

Wind energy applied in architecture has been largely abandoned due to the uncomfortable noise it causes. This study aims to investigate the acoustical performance in the urban environment and indoor environment of a double-skin wind energy facade. Measurements for sound transmission were recorded by using a hand-held sound meter device on a reduced-scale prototype of a wind energy façade. The applied wind intensities ranged between 2m/s and 8m/s, and the increase sound produced were proportional to the wind intensity.The study validates the acoustic performance of wind energy façade using a double skin façade system, showing that noise reduction indoor by approximately 30 to 35 dB. However, the results found that above 6m/s win intensity, in urban environment, the wind energy system applied to the façade exceeds the maximum 50dB recommended by world health organization and needs some adjustments.

Keywords: double-skin wind energy facade, acoustic energy facade, wind energy in architecture, wind energy prototype

Procedia PDF Downloads 54
1778 Improving Power Quality in Wind Power Generation System

Authors: A. Omeiri, A. Djellad, P. O. Logerais, O. Riou, J. F. Durastanti

Abstract:

With the growing of electrical energy demand, wind power capacity has experienced tremendous growth in the past decade, thanks to wind power’s environmental benefits. Direct driven permanent magnet synchronous generator (PMSG) with a full size back-to-back converter set is one of the promising technologies employed with wind power generation. Wind grid integration brings the problems of voltage fluctuation and harmonic pollution. In the present study, the filter is placed between the wind system and the network to reduce the total harmonic distortion (THD) and enhance power quality during disturbances. The models of wind turbine, PMSG, power electronic converters and the filter are implemented in MATLAB/SIMULINK environment.

Keywords: wind energy conversion system, PMSG, PWM, THD, power quality, passive filter

Procedia PDF Downloads 611
1777 Vibration Signals of Small Vertical Axis Wind Turbines

Authors: Aqoul H. H. Alanezy, Ali M. Abdelsalam, Nouby M. Ghazaly

Abstract:

In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades.

Keywords: Savonius type wind turbine, number of blades, renewable energy, vibration signals

Procedia PDF Downloads 117
1776 Low Voltage Ride through Capability Techniques for DFIG-Based Wind Turbines

Authors: Sherif O. Zain Elabideen, Ahmed A. Helal, Ibrahim F. El-Arabawy

Abstract:

Due to the drastic increase of the wind turbines installed capacity; the grid codes are increasing the restrictions aiming to treat the wind turbines like other conventional sources sooner. In this paper, an intensive review has been presented for different techniques used to add low voltage ride through capability to Doubly Fed Induction Generator (DFIG) wind turbine. A system model with 1.5 MW DFIG wind turbine is constructed and simulated using MATLAB/SIMULINK to explore the effectiveness of the reviewed techniques.

Keywords: DFIG, grid side converters, low voltage ride through, wind turbine

Procedia PDF Downloads 380
1775 Wind Turbines Optimization: Shield Structure for a High Wind Speed Conditions

Authors: Daniyar Seitenov, Nazim Mir-Nasiri

Abstract:

Optimization of horizontal axis semi-exposed wind turbine has been performed using a shield protection that automatically protects the generator shaft at extreme wind speeds from over speeding, mechanical damage and continues generating electricity during the high wind speed conditions. A semi-exposed to wind generator has been designed and its structure has been described in this paper. The simplified point-force dynamic load model on the blades has been derived for normal and extreme wind conditions with and without shield involvement. Numerical simulation has been conducted at different values of wind speed to study the efficiency of shield application. The obtained results show that the maximum power generated by the wind turbine with shield does not exceed approximately the rated value of the generator, where shield serves as an automatic break for extreme wind speed values of 15 m/sec and above. Meantime the wind turbine without shield produced a power that is much larger than the rated value. The optimized horizontal axis semi-exposed wind turbine with shield protection is suitable for low and medium power generation when installed on the roofs of high rise buildings for harvesting wind energy. Wind shield works automatically with no power consumption. The structure of the generator with the protection, math simulation of kinematics and dynamics of power generation has been described in details in this paper.

Keywords: renewable energy, wind turbine, wind turbine optimization, high wind speed

Procedia PDF Downloads 148
1774 An Overview of Onshore and Offshore Wind Turbines

Authors: Mohammad Borhani, Afshin Danehkar

Abstract:

With the increase in population and the upward trend of energy demand, mankind has thought of using suppliers that guarantee a stable supply of energy, unlike fossil fuels, which, in addition to the widespread emission of greenhouse gases that one of the main factors in the destruction of the ozone layer and it will be finished in a short time in the not-so-distant future. In this regard, one of the sustainable ways of energy supply is the use of wind converters. That convert wind energy into electricity. For this reason, this research focused on wind turbines and their installation conditions. The main classification of wind turbines is based on the axis of rotation, which is divided into two groups: horizontal axis and vertical axis; each of these two types, with the advancement of technology in man-made environments such as cities, villages, airports, and other human environments can be installed and operated. The main difference between offshore and onshore wind turbines is their installation and foundation. Which are usually divided into five types; including of Monopile Wind Turbines, Jacket Wind Turbines, Tripile Wind Turbines, Gravity-Based Wind Turbines, and Floating Offshore Wind Turbines. For installation in a wind power plant requires an arrangement that produces electric power, the distance between the turbines is usually between 5 or 7 times the diameter of the rotor and if perpendicular to the wind direction be If they are 3 to 5 times the diameter of the rotor, they will be more efficient.

Keywords: wind farms, Savonius, Darrieus, offshore wind turbine, renewable energy

Procedia PDF Downloads 59
1773 Dynamics Behavior of DFIG Wind Energy Conversion System Incase Dip Voltage

Authors: N. Zerzouri, N. Benalia, N. Bensiali

Abstract:

During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today’s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.

Keywords: doubly fed induction generator (DFIG), wind energy, grid fault, electrical engineering

Procedia PDF Downloads 442