Search results for: early Alzheimer’s recognition
2600 Defining a Framework for Holistic Life Cycle Assessment of Building Components by Considering Parameters Such as Circularity, Material Health, Biodiversity, Pollution Control, Cost, Social Impacts, and Uncertainty
Authors: Naomi Grigoryan, Alexandros Loutsioli Daskalakis, Anna Elisse Uy, Yihe Huang, Aude Laurent (Webanck)
Abstract:
In response to the building and construction sectors accounting for a third of all energy demand and emissions, the European Union has placed new laws and regulations in the construction sector that emphasize material circularity, energy efficiency, biodiversity, and social impact. Existing design tools assess sustainability in early-stage design for products or buildings; however, there is no standardized methodology for measuring the circularity performance of building components. Existing assessment methods for building components focus primarily on carbon footprint but lack the comprehensive analysis required to design for circularity. The research conducted in this paper covers the parameters needed to assess sustainability in the design process of architectural products such as doors, windows, and facades. It maps a framework for a tool that assists designers with real-time sustainability metrics. Considering the life cycle of building components such as façades, windows, and doors involves the life cycle stages applied to product design and many of the methods used in the life cycle analysis of buildings. The current industry standards of sustainability assessment for metal building components follow cradle-to-grave life cycle assessment (LCA), track Global Warming Potential (GWP), and document the parameters used for an Environmental Product Declaration (EPD). Developed by the Ellen Macarthur Foundation, the Material Circularity Indicator (MCI) is a methodology utilizing the data from LCA and EPDs to rate circularity, with a "value between 0 and 1 where higher values indicate a higher circularity+". Expanding on the MCI with additional indicators such as the Water Circularity Index (WCI), the Energy Circularity Index (ECI), the Social Circularity Index (SCI), Life Cycle Economic Value (EV), and calculating biodiversity risk and uncertainty, the assessment methodology of an architectural product's impact can be targeted more specifically based on product requirements, performance, and lifespan. Broadening the scope of LCA calculation for products to incorporate aspects of building design allows product designers to account for the disassembly of architectural components. For example, the Material Circularity Indicator for architectural products such as windows and facades is typically low due to the impact of glass, as 70% of glass ends up in landfills due to damage in the disassembly process. The low MCI can be combatted by expanding beyond cradle-to-grave assessment and focusing the design process on disassembly, recycling, and repurposing with the help of real-time assessment tools. Design for Disassembly and Urban Mining has been integrated within the construction field on small scales as project-based exercises, not addressing the entire supply chain of architectural products. By adopting more comprehensive sustainability metrics and incorporating uncertainty calculations, the sustainability assessment of building components can be more accurately assessed with decarbonization and disassembly in mind, addressing the large-scale commercial markets within construction, some of the most significant contributors to climate change.Keywords: architectural products, early-stage design, life cycle assessment, material circularity indicator
Procedia PDF Downloads 882599 Conflict, Confusion or Compromise: Violence against Women, A Case Study of Pakistan
Authors: Farhat Jabeen, Syed Asfaq Hussain Bukhari
Abstract:
In the wake of the contemporary period the basic objective of the research paper points out that socio-cultural scenario of Pakistan reveals that gender-based violence is deep rooted in the society irrespective of language and ethnicity. This paper would reconnaissance the possibility reforms in Pakistan for diminishing of violence. Women are not given their due role, rights, and respect. Furthermore, they are treated as chattels. This presentation will cover the socio-customary practices in the context of discrimination, stigmatization, and violence against women. This paper envisages justice in a broader sense of recognition of rights for women, and masculine structure of society, socio-customary practices and discrimination against women are a very serious concern which needs to be understood as a multidimensional problem. The paper will specially focus on understanding the existing obstacles of women in Pakistan in the constitutional scenario. Women stumble across discrimination and human rights manipulations, voluptuous violation and manipulation including domestic viciousness and are disadvantaged by laws, strategies, and programming that do not take their concerns into considerations. This presentation examines the role of honour killings among Pakistani community. This affects their self-assurance and capability to elevation integrity campaign where gender inequalities and discrimination in social, legal domain are to be put right. This paper brings to light the range of practices, laws and legal justice regarding the status of women and also covers attitude towards compensations for murders/killings, domestic violence, rape, adultery, social behavior and recourse to justice.Keywords: discrimination, cultural, women, violence
Procedia PDF Downloads 3252598 Fetal Ilium as a Tool for Sex Determination: Discriminant Functional Analysis
Authors: Luv Sharma
Abstract:
Sex determination has been the most intriguing puzzle for forensic pathologists and anthropologists, for which efforts have been made for a long. Sexual dimorphism is well established in the adult pelvis, and it is known to provide the highest level of information about sexual dimorphism. This study was conducted to know whether this dimorphism exists in fetal bones or not. A total of 34 pairs of fetal pelvis bones (22 males and 12 Females), ages ranging from 4 months to full term, were collected from unidentified dead fetuses brought to the Department of Forensic Medicine for routine medicolegal autopsies to study for sexual dimorphism in the Department of Anatomy, Pt. BD Sharma PGIMS, Rohtak. Samples were divided into 2 age groups, and various metric parameters were recorded with the help of a digital vernier caliper. Data obtained was subjected to descriptive and discriminant functional analysis. Results of Descriptive and Discriminant Functional Analysis showed that sex determination can be done with 100% accuracy by using different combinations of parameters of fetal ilium. This study illustrates that sexual dimorphism exists from early fetal life after mid-pregnancy; it can be clearly established by discriminant functional analysis.Keywords: Ilium, fetus, sex determination, morphometric
Procedia PDF Downloads 592597 The Relationships between Autonomy-Based Insula Activity and Learning: A Functional Magnetic Resonance Imaging Study
Authors: Woogul Lee, Johnmarshall Reeve
Abstract:
Learners’ perceived autonomy predicts learners’ interest, engagement, and learning. To understand these processes, we conducted an fMRI experiment. In this experiment, participants saw the national flag and were asked to rate how much they freely wanted to learn about that particular national flag. The participants then learned the characteristics of the national flag. Results showed that (1) the degree of participants’ perceived autonomy was positively correlated with the degree of insula activity, (2) participants’ early-trial insula activity predicted corresponding late-trial dorsolateral prefrontal cortex activity, and (3) the degree of dorsolateral prefrontal cortex activity was positively correlated with the degree of participants’ learning about the characteristics of the national flag. Results suggest that learners’ perceived autonomy predicts learning through the mediation of insula activity associated with intrinsic satisfaction and 'pure self' processes.Keywords: insular cortex, autonomy, self-determination, dorsolateral prefrontal cortex
Procedia PDF Downloads 2052596 Institutional Repository ePrints at Indian Institute of Science: A Special Reference to JRD Tata Memorial Library, Bangalore, India
Authors: Nagarjuna Pitty
Abstract:
Over the past decade there has been substantial progress in the usage of ePrints resources national and international research community. JRD Tata Memorial Library has hosting for the web based ePrints services and maintenance to online user community. This paper provides an overview how to share JRDTML experiences in using GNU EPrints.org software to create and maintain the open-access institutional repository of IISc, ePrints@IISc. This paper states that the GNU EPrints.org is the first generic software for creating Open Access Initiative (OAI)-compliant repositories, which enables the researchers to self-archive their research publications thus facilitating open access to their publications. IISc has been using this software since early 2002. This paper tells that the GNU EPrints.org software is an excellent tool for creating and maintaining OAI-compliant repositories. It can be setup easily even by those who are not too much experts in computer. In this paper, author is sharing JRDTML experiences in using GNU ePrints.org software.Keywords: digital library, open access initiative, scholarly publications, institutional repository, ePrints@IISc
Procedia PDF Downloads 5582595 The World of Fireworks Factory Working Children in Bocaue, Bulacan
Authors: Agnes Crisostomo, Alvin Joseph Mapoy
Abstract:
This is a qualitative study which focuses on ten (10) children, with a mean age of 13.6, working in fireworks factories in Bocaue, Bulacan. The municipality of Bocaue was chosen since it is the center of trade for fireworks, and child laborers can easily penetrate in factories here. The researcher wanted to know what the possible negative effects are caused by working at an early age of a child in the physical, psychosocial, intellectual and emotional aspects of life. Results showed that social status of their parents and their lack of income forced the children to work for their family. Second, the child laborers still allot time for studying. They still do not give up in pursuing education even if they experience fatigue and illness which affect their physical development. Third, working has a great influence to the child’s life. Fourth, through socializing with others, they become more aware of life’s hardships. Usually, their co-workers are also their family members and friends; this is how they know the social status is their place, that due to poverty even the children should work for a living. Fifth, these child laborers are still hoping for a better future. Despite of their poor situation, they are still hoping that they can turn it upside down through education, perseverance and determination.Keywords: child labor, emotional, intellectual, psychosocial
Procedia PDF Downloads 2652594 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference, supervised learning
Procedia PDF Downloads 672593 Level of Behavioral Development for Hepatitis C Virus Cases Versus Their Contacts: Does Infection Make a Difference and What Is Beyond?
Authors: Ammal M. Metwally, Lobna A. ElEtreby, Rehan M. Saleh, Ghada Abdrabou, Somia I. Salama, Amira Orabi, Mohamed Abdelrahman
Abstract:
Hepatitis C virus infection is a public health threat in Egypt. To control infection, efforts should be spent to encourage healthy behavior. This study aimed to assess the level of behavioral development in order to create a positive environment for the adoption of the recommended behaviors. The study was conducted over one year from Jan. 2011 till Jan. 2012. Knowledge, attitude and behavior of 540 HCV patients and 102 of their contacts were assessed and the level of behavioral development was determined. The study revealed that the majority of patients and contacts knew that HCV infection is dangerous with perceived concern for early diagnosis and treatment. More than 75% knew the correct modes of transmission. The assessment showed positive attitudes towards the recommended practices with the intention to adopt those practices. Strategies to create opportunities to continue the recommended behaviors should be adopted together with the reinforcement of social support.Keywords: hepatitis C virus, level of behavioral development, recommended behaviors
Procedia PDF Downloads 3972592 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach
Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim
Abstract:
De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantationKeywords: De novo malignancy, bilirubin, data mining, transplantation
Procedia PDF Downloads 1052591 Jelly and Beans: Appropriate Use of Ultrasound in Acute Kidney Injury
Authors: Raja Ezman Raja Shariff
Abstract:
Acute kidney injury (AKI) is commonly seen in inpatients, and places a great cost on the NHS and patients. Timely and appropriate management is both nephron sparing and potentially life-saving. Ultrasound scanning (USS) is a well-recognised method for stratifying patients. Subsequently, the NICE AKI guidance has defined groups in whom scanning is recommended within 6 hours of request (pyonephrosis), within 24 hours (obstruction/cause unknown), and in whom routine scanning isn't recommended (cause for AKI identified). The audit looks into whether Stockport NHS Trust USS practice was in line with such recommendations. The audit evaluated 92 patients with AKI who had USS, between 01/01/14 to 30/04/14. Data collection was divided into 2 parts. Firstly, radiology request cards and the online imaging software (PACS) were evaluated. Then, the electronic case notes (ADVANTIS) was evaluated further. Based on request cards, 10% of requests were for pyonephrosis. Only 33% were scanned within 6hours and a further 33% within 24hours. 75% were requested for possible obstructions and unknown cause collectively. Of those due to possible obstruction, 71% of patients were scanned within 24 hours. Of those with unknown cause, 50% were scanned within 24 hours. 15% of requests had a cause declared and so potentially did not require scanning. Evaluation of the patients’ notes suggested further interesting findings. Firstly, potentially 39% of patients had a known cause for AKI, therefore, did not need USS. Subsequently, the cohort of unknown cause and possible obstruction was collectively reduced to 45%. Alarmingly the patient cohort with possible pyonephrosis went up to 16%, suggesting an under-recognition of this life-threatening condition. We plan to highlight these findings within our institution and make changes to encourage more appropriate requesting and timely scanning. Time will tell if we manage to save or increase our costs in this cost-conscious NHS. Patient benefits, though, seem to be guaranteed.Keywords: AKI, ARF, kidney, renal
Procedia PDF Downloads 4002590 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 422589 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 212588 Management of Coronary Heart Disease through Yoga
Authors: Subramaniam Iyer
Abstract:
The most common disease that is pertaining to all human beings is heart-related. The reasons for coronary artery disease are due to lifestyle and eating habits. Due to this, many people mentally become sick, feeling that soon they will die due to their heart problems. This results in stress and anxiety, which has become common amongst all the Indians. Medicines are the commonest curative remedy in India, but it is proposed through this article some remedies through yoga. This article does not guarantee a 100% result, but it is a preventive remedy for coronary artery disease. Yoga is giving a new lease of life to many, so to tackle chronic diseases, it provides remedies that will be lifelong. It is brought to many people by Patanjali. Yoga will provide support to patients having coronary artery disease through its various relevant postures (asanas), which can be done very easily. Yoga does not send a message that if you do it regularly, you will be relieved from a particular disease. If it is performed every day, it will add vital energy for a smooth life, even if you are suffering from any chronic disease. In this article, we will be providing 6 postures (asanas), which can be performed at any time in the day, but the early morning will always be preferred (empty stomach) to get a good result. Secondly, these postures must be implemented after due consultation with your physician. If your physician disapproves, don’t do these postures as it will be harmful to your body.Keywords: coronary artery, yoga, disease, remedy, medicine
Procedia PDF Downloads 1672587 Experimental Modal Analysis of Reinforced Concrete Square Slabs
Authors: M. S. Ahmed, F. A. Mohammad
Abstract:
The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square specimens (0.6m x 0.6m with 40 mm). Experimental analysis is based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to perform the dynamic behavior of RC slabs.Keywords: natural frequencies, mode shapes, modal analysis, RC slabs
Procedia PDF Downloads 4082586 Personal Factors and Career Adaptability in a Call Centre Work Environment: The Mediating Effects of Professional Efficacy
Authors: Nisha Harry
Abstract:
The study discussed in this article sought to assess whether a sense of professional efficacy mediates the relationship between personal factors and career adaptability. A quantitative cross-sectional survey approach was followed. A non–probability sample of (N = 409) of which predominantly early career and permanently employed black females in call centres in Africa participated in this study. In order to assess personal factors, the participants completed sense of meaningfulness and emotional intelligence measures. Measures of professional efficacy and career adaptability were also completed. The results of the mediational analysis revealed that professional efficacy significantly mediates the meaningfulness (sense of coherence) and career adaptability relationship, but not the emotional intelligence–career adaptability relationship. Call centre agents with professional efficacy are likely to be more work engaged as a result of their sense of meaningfulness and emotional intelligence.Keywords: call centre, professional efficacy, career adaptability, emotional intelligence
Procedia PDF Downloads 3582585 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 962584 Blood Thicker Than Water: A Case Report on Familial Ovarian Cancer
Authors: Joanna Marie A. Paulino-Morente, Vaneza Valentina L. Penolio, Grace Sabado
Abstract:
Ovarian cancer is extremely hard to diagnose in its early stages, and those afflicted at the time of diagnosis are typically asymptomatic and in the late stages of the disease, with metastasis to other organs. Ovarian cancers often occur sporadically, with only 5% associated with hereditary mutations. Mutations in the BRCA1 and BRCA2 tumor suppressor genes have been found to be responsible for the majority of hereditary ovarian cancers. One type of ovarian tumor is Malignant Mixed Mullerian Tumor (MMMT), which is a very rare and aggressive type, accounting for only 1% of all ovarian cancers. Reported is a case of a 43-year-old G3P3 (3003), who came into our institution due to a 2-month history of difficulty of breathing. Family history reveals that her eldest and younger sisters both died of ovarian malignancy, with her younger sister having a histopathology report of endometrioid ovarian carcinoma, left ovary stage IIIb. She still has 2 asymptomatic sisters. Physical examination pointed to pleural effusion of right lung, and presence of bilateral ovarian new growth, which had a Sassone score of 13. Admitting Diagnosis was G3P3 (3003), Ovarian New Growth, bilateral, Malignant; Pleural effusion secondary to malignancy. BRCA was requested to establish a hereditary mutation; however, the patient had no funds. Once the patient was stabilized, TAHBSO with surgical staging was performed. Intraoperatively, the pelvic cavity was occupied by firm, irregularly shaped ovaries, with a colorectal metastasis. Microscopic sections from both ovaries and the colorectal metastasis had pleomorphic tumor cells lined by cuboidal to columnar epithelium exhibiting glandular complexity, displaying nuclear atypia and increased nuclear-cytoplasmic ratio, which are infiltrating the stroma, consistent with the features of Malignant Mixed Mullerian Tumor, since MMMT is composed histologically of malignant epithelial and sarcomatous elements. In conclusion, discussed is the clinic-pathological feature of a patient with primary ovarian Malignant Mixed Mullerian Tumor, a rare malignancy comprising only 1% of all ovarian neoplasms. Also, by understanding the hereditary ovarian cancer syndromes and its relation to this patient, it cannot be overemphasized that a comprehensive family history is really fundamental for early diagnosis. The familial association of the disease, given that the patient has two sisters who were diagnosed with an advanced stage of ovarian cancer and succumbed to the disease at a much earlier age than what is reported in the general population, points to a possible hereditary syndrome which occurs in only 5% of ovarian neoplasms. In a low-resource setting, being in a third world country, the following will be recommended for monitoring and/or screening women who are at high risk for developing ovarian cancer, such as the remaining sisters of the patient: 1) Physical examination focusing on the breast, abdomen, and rectal area every 6 months. 2) Transvaginal sonography every 6 months. 3) Mammography annually. 4) CA125 for postmenopausal women. 5) Genetic testing for BRCA1 and BRCA2 will be reserved for those who are financially capable.Keywords: BRCA, hereditary breast-ovarian cancer syndrome, malignant mixed mullerian tumor, ovarian cancer
Procedia PDF Downloads 2892583 The Teaching and Learning Process and Information and Communication Technologies from the Remote Perspective
Authors: Rosiris Maturo Domingues, Patricia Luissa Masmo, Cibele Cavalheiro Neves, Juliana Dalla Martha Rodriguez
Abstract:
This article reports the experience of the pedagogical consultants responsible for the curriculum development of Senac São Paulo courses when facing the emergency need to maintain the pedagogical process in their schools in the face of the Covid-19 pandemic. The urgent adjustment to distance education resulted in the improvement of the process and the adoption of new teaching and learning strategies mediated by technologies. The processes for preparing and providing guidelines for professional education courses were also readjusted. Thus, a bank of teaching-learning strategies linked to digital resources was developed, categorized, and identified by their didactic-pedagogical potential, having as an intersection didactic planning based on learning objectives based on Bloom's taxonomy (revised), given its convergence with the competency approach adopted by Senac. Methodologically, a relationship was established between connectivity and digital networks and digital evolution in school environments, culminating in new paradigms and processes of educational communication and new trends in teaching and learning. As a result, teachers adhered to the use of digital tools in their practices, transposing face-to-face classroom methodologies and practices to online media, whose criticism was the use of ICTs in an instrumental way, reducing methodologies and practices to teaching only transmissive. There was recognition of the insertion of technology as a facilitator of the educational process in a non-palliative way and the development of a web curriculum, now and fully, carried out in contexts of ubiquity.Keywords: technologies, education, teaching-learning strategies, Bloom taxonomy
Procedia PDF Downloads 892582 Effect of Organizational Competitive Climate on Organizational Prosocial Behavior: Workplace Envy as a Mediator
Authors: Armaghan Eslami, Nasrin Arshadi
Abstract:
Scarce resources are the inseparable part of organization life. This fact that only small number of the employees can have these resources such as promotion, raise, and recognition can cause competition among employees, which create competitive climate. As well as any other competition, small number wins the reward, and a great number loses, one of the possible emotional reactions to this loss is negative emotions like malicious envy. In this case, the envious person may try to harm the envied person by reducing the prosocial behavior. Prosocial behavior is a behavior that aimed to benefit others. The main propose of this action is to maintain and increase well-being and well-fare of others. Therefore, one of the easiest ways for harming envied one is to suppress prosocial behavior. Prosocial behavior has positive and important implication for organizational efficiency. Our results supported our model and suggested that competitive climate has a significant effect on increasing workplace envy and on the other hand envy has significant negative impact on prosocial behavior. Our result also indicated that envy is the mediator in the relation between competitive climate and prosocial behavior. Organizational competitive climate can cause employees respond envy with negative emotion and hostile and damaging behavior toward envied person. Competition can lead employees to look out for proof of their self-worthiness; and, furthermore, they measure their self-worth, value and respect by the superiority that they gain in competitions. As a result, loss in competitions can harm employee’s self-definition and they try to protect themselves by devaluating envied other and being ‘less friendly’ to them. Some employees may find it inappropriate to engage in the harming behavior, but they may believe there is nothing against withholding the prosocial behavior.Keywords: competitive climate, mediator, prosocial behavior, workplace envy
Procedia PDF Downloads 3622581 Renal Complications in Patients with Falciparum Malaria
Authors: Saira Baloch, Mohsin Ali Baloch
Abstract:
Background: Malaria is a potentially life-threatening disease and also a major public health problem in Pakistan. Renal failure is an emerging problem correlated with morbidity and mortality, however can be diagnosed and treated in the early stages. Objectives: To elucidate the biochemical renal parameters in patients with falciparum malaria and comparison with healthy control subjects. Method: 80 patients, who were diagnosed to be affected by falciparum malaria. Detailed history, general physical and systemic examination and necessary pathological, biochemical renal laboratory parameters and investigations were done. Results: Among the 80 patients, 43 were males and 37 were females. All patients were infected with P. falciparum. All patients had increased serum creatinine and urea levels and urine output of less than 400 ml/day were categorized as suffering from renal failure. Conclusion: Patients infected with P. falciparum are at an increased risk of developing renal failure when compared to patients infected with other complications. P. vivax has massive potential to cause life threatening complications and even death. Further research is required to understand the exact pathogenesis of various complications encountered in vivax malaria.Keywords: falciparum malaria, renal failure, biochemical parameters, pathogenesis
Procedia PDF Downloads 3892580 Influence of Agricultural Utilization of Sewage Sludge Vermicompost on Plant Growth
Authors: Meiyan Xing, Cenran Li, Liang Xiang
Abstract:
Impacts of excess sludge vermicompost on the germination and early growth of plant were tested. The better effect of cow dung vermicompost (CV) on seed germination and seedling growth proved that cow dung was indeed the preferred additive in sludge vermicomposting as reported by plentiful researchers worldwide. The effects and the best amount of application of CV were further discussed. Results demonstrated that seed germination and seedling growth (seedlings number, plant height, stem diameter) were the best and heavy metal (Zn, Pb, Cr and As) contents of plant were the lowest when soil amended with CV by 15%. Additionally, CV fostered higher contents of chlorophyll a and chlorophyll b compared to the control when concentration ranged from 5 to 15%, thereafter a slight increase in chlorophyll content was observed form 15% to 25%. Thus, CV at the optimum proportion of 15% could serve as a feasible and satisfactory way of sludge agricultural utilization of sewage sludge. In summary, sewage sludge can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby not only providing a means of sewage sludge treatment and disposal, but also stimulating the growth of plant and the ability to resist disease.Keywords: cow dung vermicompost, seed germination, seedling growth, sludge utilization
Procedia PDF Downloads 2622579 In silico and in vitro Investigation of the Role of Acinetobacter baumannii in the Pathogenesis of Multiple Sclerosis
Authors: Kieren Luellman, Makenzi Rockwell, Eduardo Callegari, Nichole Haag, Chun Wu
Abstract:
Multiple sclerosis (MS) is an autoimmune disorder that damages the myelin sheath of neurons in the central nervous system. The presence of Acinetobacter bacteria and anti-Acinetobacter antibodies in MS patients has led to the hypothesis that the bacteria may contribute to MS pathogenesis. In this study, the protein sequences of Acinetobacter baumannii were compared to five peptides from three mammalian myelin proteins, i.e., Proteolipid Protein (PLP): PLP 139-151, PLP 178-191, Myelin Basic Protein (MBP): MBP 84-104 and Myelin Oligodendrocyte Glycoprotein (MOG): MOG 35-55 and MOG 92-106 respectively, known to induce experimental autoimmune encephalomyelitis (EAE), a condition similar to MS. We found 11 hits (i.e., with five or more amino acid sequence similarity) in Acinetobacter baumannii, which are identical or similar to PLP139-151, 32 hits to PLP178-191, 35 to MBP 84-104, 41 hits to MOG 35-55 and 26 hits to MOG92-106. In addition, Western blotting was used to assess possible interaction between the bacterial proteins and human anti-MBP, anti-MOG, and anti-PLP antibodies produced in rabbits, corresponding to MBP 84-104, MOG 35-55, and PLP 139-151, respectively. We found that both human Polyclonal anti-MOG antibody and anti-PLP antibody recognized a protein or more proteins of the same molecular mass of around 25 kDa. in Acinetobacter baumannii. The results suggested that this/these protein(s) might potentially serve as antigen(s) to induce anti-MOG antibody and anti-PLP antibody production in mammalian B cells. The proteomic study identified 433 hits, among which the sequence of Acinetobacter baumannii protein 491 subunit A matches a previously published enzyme Acinetobacter 3-Oxoadipate CoA-Transferase, in which a fragment of its peptide was observed to recognize MS patient serum via ELISA method. Our findings might pave the road to understanding one of the pathogenesis mechanisms of MS.Keywords: multiple sclerosis, pathogenesis, Acinetobacter baumannii, antibody recognition
Procedia PDF Downloads 1212578 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network
Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal
Abstract:
This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography
Procedia PDF Downloads 1442577 ADAM10 as a Potential Blood Biomarker of Cognitive Frailty
Authors: Izabela P. Vatanabe, Rafaela Peron, Patricia Manzine, Marcia R. Cominetti
Abstract:
Introduction: Considering the increase in life expectancy of world population, there is an emerging concern in health services to allocate better care and care to elderly, through promotion, prevention and treatment of health. It has been observed that frailty syndrome is prevalent in elderly people worldwide and this complex and heterogeneous clinical syndrome consist of the presence of physical frailty associated with cognitive dysfunction, though in absence of dementia. This can be characterized by exhaustion, unintentional weight loss, decreased walking speed, weakness and low level of physical activity, in addition, each of these symptoms may be a predictor of adverse outcomes such as hospitalization, falls, functional decline, institutionalization, and death. Cognitive frailty is a recent concept in literature, which is defined as the presence of physical frailty associated with mild cognitive impairment (MCI) however in absence of dementia. This new concept has been considered as a subtype of frailty, which along with aging process and its interaction with physical frailty, accelerates functional declines and can result in poor quality of life of the elderly. MCI represents a risk factor for Alzheimer's disease (AD) in view of high conversion rate for this disease. Comorbidities and physical frailty are frequently found in AD patients and are closely related to heterogeneity and clinical manifestations of the disease. The decreased platelets ADAM10 levels in AD patients, compared to cognitively healthy subjects, matched by sex, age and education. Objective: Based on these previous results, this study aims to evaluate whether ADAM10 platelet levels of could act as a biomarker of cognitive frailty. Methods: The study was approved by Ethics Committee of Federal University of São Carlos (UFSCar) and conducted in the municipality of São Carlos, headquarters of Federal University of São Carlos (UFSCar). Biological samples of subjects were collected, analyzed and then stored in a biorepository. ADAM10 platelet levels were analyzed by western blotting technique in subjects with MCI and compared to subjects without cognitive impairment, both with and without presence of frailty. Statistical tests of association, regression and diagnostic accuracy were performed. Results: The results have shown that ADAM10/β-actin ratio is decreased in elderly individuals with cognitive frailty compared to non-frail and cognitively healthy controls. Previous studies performed by this research group, already mentioned above, demonstrated that this reduction is still higher in AD patients. Therefore, the ADAM10/β-actin ratio appears to be a potential biomarker for cognitive frailty. The results bring important contributions to an accurate diagnosis of cognitive frailty from the perspective of ADAM10 as a biomarker for this condition, however, more experiments are being conducted, using a high number of subjects, and will help to understand the role of ADAM10 as biomarker of cognitive frailty and contribute to the implementation of tools that work in the diagnosis of cognitive frailty. Such tools can be used in public policies for the diagnosis of cognitive frailty in the elderly, resulting in a more adequate planning for health teams and better quality of life for the elderly.Keywords: ADAM10, biomarkers, cognitive frailty, elderly
Procedia PDF Downloads 2362576 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model
Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You
Abstract:
The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.Keywords: DBSCAN, potential function, speech signal, the UBSS model
Procedia PDF Downloads 1352575 The Use of Artificial Intelligence in the Prevention of Micro and Macrovascular Complications in Type Diabetic Patients in Low and Middle-Income Countries
Authors: Ebere Ellison Obisike, Justina N. Adalikwu-Obisike
Abstract:
Artificial intelligence (AI) is progressively transforming health and social care. With the rapid invention of various electronic devices, machine learning, and computing systems, the use of AI istraversing many health and social care practices. In this systematic review of journal and grey literature, this study explores how the applications of AI might promote the prevention of micro and macrovascular complications in type 1 diabetic patients. This review focuses on the use of a digitized blood glucose meter and the application of insulin pumps for the effective management of type 1 diabetes in low and middle-income countries. It is projected that the applications of AI may assist individuals with type 1 diabetes to monitor and control their blood glucose level and prevent the early onset of micro and macrovascular complications.Keywords: artificial intelligence, blood glucose meter, insulin pump, low and middle-income countries, micro and macrovascular complications, type 1 diabetes
Procedia PDF Downloads 1962574 Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High-Temperature Micromodels
Authors: Zakaria Hamdi, Mariyamni Awang
Abstract:
For the past decades, CO2 flooding has been used as a successful method for enhanced oil recovery (EOR). However, high mobility ratio and fingering effect are considered as important drawbacka of this process. Low temperature injection of CO2 into high temperature reservoirs may improve the oil recovery, but simulating multiphase flow in the non-isothermal medium is difficult, and commercial simulators are very unstable in these conditions. Furthermore, to best of authors’ knowledge, no experimental work was done to verify the results of the simulations and to understand the pore-scale process. In this paper, we present results of investigations on injection of low temperature CO2 into a high-pressure high-temperature micromodel with injection temperature range from 34 to 75 °F. Effect of temperature and saturation changes of different fluids are measured in each case. The results prove the proposed method. The injection of CO2 at low temperatures increased the oil recovery in high temperature reservoirs significantly. Also, CO2 rich phases available in the high temperature system can affect the oil recovery through the better sweep of the oil which is initially caused by penetration of LCO2 inside the system. Furthermore, no unfavorable effect was detected using this method. Low temperature CO2 is proposed to be used as early as secondary recovery.Keywords: enhanced oil recovery, CO₂ flooding, micromodel studies, miscible flooding
Procedia PDF Downloads 3522573 Comparison of Visio-spatial Intelligence Between Amateur Rugby and Netball Players Using a Hand-Eye Coordination Specific Visual Test Battery
Authors: Lourens Millard, Gerrit Jan Breukelman, Nonkululeko Mathe
Abstract:
Aim: The research aims to investigate the differences in visio-spatial skills (VSS) between athletes and non-athletes, as well as variations across sports, presenting conflicting findings. Therefore, the objective of this study was to determine if there exist significant differences in visio-spatial intelligence skills between rugby players and netball players, and whether such disparities are present when comparing both groups to non-athletes. Methods: Participants underwent an optometric assessment, followed by an evaluation of VSS using six established tests: the Hart Near Far Rock, saccadic eye movement, evasion, accumulator, flash memory, and ball wall toss tests. Results: The results revealed that rugby players significantly outperformed netball players in speed of recognition, peripheral awareness, and hand-eye coordination (p=.000). Moreover, both rugby players and netball players performed significantly better than non-athletes in five of the six tests (p=.000), with the exception being the visual memory test (p=.809). Conclusion: This discrepancy in performance suggests that certain VSS are superior in athletes compared to non-athletes, highlighting potential implications for theories of vision, test selection, and the development of sport-specific VSS testing batteries. Furthermore, the use of a hand-eye coordination-specific VSS test battery effectively differentiated between different sports. However, this pattern was not consistent across all VSS tests, indicating that further research should explore the training methods employed by both sports, as these factors may contribute to the observed differences.Keywords: visio-spatial intelligence (VSI), rugby vision, netball vision, visual skills, sport vision.
Procedia PDF Downloads 522572 Glycation of Serum Albumin: Cause Remarkable Alteration in Protein Structure and Generation of Early Glycation End Products
Authors: Ishrat Jahan Saifi, Sheelu Shafiq Siddiqi, M. R. Ajmal
Abstract:
Glycation of protein is very important as well as a harmful process, which may lead to develop DM in human body. Human Serum Albumin (HSA) is the most abundant protein in blood and it is highly prone to glycation by the reducing sugars. 2-¬deoxy d-¬Ribose (dRib) is a highly reactive reducing sugar which is produced in cells as a product of the enzyme thymidine phosphorylase. It is generated during the degradation of DNA in human body. It may cause glycation in HSA rapidly and is involved in the development of DM. In present study, we did in¬vitro glycation of HSA with different concentrations of 2-¬deoxy d-¬ribose and found that dRib glycated HSA rapidly within 4h incubation at 37◦C. UV¬ Spectroscopy, Fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR) and Circular Dichroism (CD) technique have been done to determine the structural changes in HSA upon glycation. Results of this study suggested that dRib is the potential glycating agent and it causes alteration in protein structure and biophysical properties which may lead to development and progression of Diabetes mellitus.Keywords: 2-deoxy D-ribose, human serum albumin, glycation, diabetes mellitus
Procedia PDF Downloads 2102571 miCoRe: Colorectal Cancer miRNAs Database
Authors: Rahul Agarwal, Ashutosh Singh
Abstract:
Colorectal cancer (CRC) also refers as bowel cancer or colon cancer. It involves the development of abnormal growth of cells in colon or rectum part of the body. This work leads to the development of a miRNA database in colorectal cancer. We named this database- miCoRe. This database comprises of all validated colon-rectal cancer miRNAs information from various published literature with an effectual knowledge based information retrieval system. miRNAs have been collected from various published literature reports. MySQL is used for main-framework of miCoRe while the front-end was developed in PHP script. The aim of developing miCoRe is to create a comprehensive central repository of colorectal carcinoma miRNAs with all germane information of miRNAs and their target genes. The current version of miCoRe consists of 238 miRNAs which are known to be implicated in malignancy of CRC. Alongside with miRNA information, miCoRe also contains the information related to the target genes of these miRNA. miCoRe furnishes the information about the mechanism of incidence and progression of the disease, which would further help the researchers to look for colorectal specific miRNAs therapies and CRC specific targeted drug designing. Moreover, it will also help in development of biomarkers for the better and early detection of CRC and will help in better clinical management of the disease.Keywords: colorectal cancer, database, miCoRe, miRNAs
Procedia PDF Downloads 278