Search results for: star formation rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10921

Search results for: star formation rate

8191 Dinoflagellate Thecal Plates as a Green Cellulose Source

Authors: Alvin Chun Man Kwok, Wai Sun Chan, Wei Yuan, Joseph Tin Yum Wong

Abstract:

Cellulose, the most abundant biopolymer, is the major constituent of plant and dinoflagellate cell walls. Thecate dinoflagellates, in particular, are renowned for their remarkable capacity to synthesize intricate cellulosic thecal plates (CTPs). Unlike the extracellular two-dimensional structure of plant cell walls, these CTPs are three-dimensional and reside within the cellular structure itself. The deposition of CTPs occurs with remarkable precision, and their arrangement serves as crucial taxonomic markers. It is noteworthy that these plates possess the hardness of wood, despite the absence of lignin. Partial and prolonged hydrolysis of CTPs results in the formation of uniform long bundles and lowdimensional, modular crystalline whiskers. This observation aligns with the consistent nanomechanical properties, suggesting a CTPboard structure. The unique composition and structural characteristics of CTPs distinguish them from other cellulose-based materials in the natural world. Spectroscopic studies using Raman and FTIR methods indicate a clear low crystallinity index, with the OH shift becoming more distinct following SDS treatment. Birefringence imaging confirms the highly organized structure of CTPs, demonstrating varying degrees of anisotropy in different regions, including both seaward and cytosolic passages. The knockdown of a cellulose synthase enzyme in dinoflagellates resulted in severe malformation of CTPs and hindered the life-cycle transition. Unlike certain other microalgal groups, these unique circum-spherical depositions of CTPs were not pre-fabricated and transported "to site," but synthesized within alveolar sacs at the specific site. Our research is particularly focused on unraveling the mechanisms underlying the biodeposition of CTPs and exploring their potential biotechnological applications. Understanding the processes involved in CTP formation can pave the way for harnessing their unique properties for various practical applications. Dinoflagellates play a crucial role as major agents of algal blooms and are also known for producing anti-greenhouse sulfur compounds such as DMS/DMSP, highlighting the significance of CTPs as a carbon-neutral source of cellulose. Grant acknowledgement: Research in the laboratory are supported by GRF16104523 from Research Grant Council to JTYW.

Keywords: cellulosic thecal plates, dinoflagellates, cellulose, cell wall

Procedia PDF Downloads 72
8190 Sulfate Radicals Applied to the Elimination of Selected Pollutants in Water Matrices

Authors: F. Javier Benitez, Juan L. Acero, Francisco J. Real, Elena Rodriguez

Abstract:

Five selected pollutants which are frequently present in waters and wastewaters have been degraded by the advanced oxidation process constituted by UV radiation activated with the additional presence of persulfate (UV/PS). These pollutants were 1H-benzotriazole (BZ), N,N-diethyl-m-toluamide or DEET (DT), chlorophene (CP), 3-methylindole (ML), and nortriptyline hydrochloride (NH).While UV radiation alone almost not degraded these substances, the addition of PS generated the very reactive and oxidizing sulfate radical SO₄⁻. The kinetic study provided the second order rate constants for the reaction between this radical and each pollutant. An increasing dose of PS led to an increase in the degradation rate, being the highest results obtained at near neutral pH. Several water matrices were tested, and the presence of bicarbonate showed different effects: a decrease in the elimination of DT, BZ, and NH; and an increase in the oxidation of CP and ML. The additional presence of humic acids (AH) decreased this degradation, because of several effects: light screening and radical scavenging. The presence of several natural substances in waters (both types, inorganic and organic matter) usually diminishes the oxidation rates of organic pollutants, but this combination UV/PS process seems to be an efficient solution for the removal of the selected contaminants when are present in contaminated waters.

Keywords: water purification, UV activated persulfate, kinetic study, sulfate radicals

Procedia PDF Downloads 121
8189 Thermal Radiation Effect on Mixed Convection Boundary Layer Flow over a Vertical Plate with Varying Density and Volumetric Expansion Coefficient

Authors: Sadia Siddiqa, Z. Khan, M. A. Hossain

Abstract:

In this article, the effect of thermal radiation on mixed convection boundary layer flow of a viscous fluid along a highly heated vertical flat plate is considered with varying density and volumetric expansion coefficient. The density of the fluid is assumed to vary exponentially with temperature, however; volumetric expansion coefficient depends linearly on temperature. Boundary layer equations are transformed into convenient form by introducing primitive variable formulations. Solutions of transformed system of equations are obtained numerically through implicit finite difference method along with Gaussian elimination technique. Results are discussed in view of various parameters, like thermal radiation parameter, volumetric expansion parameter and density variation parameter on the wall shear stress and heat transfer rate. It is concluded from the present investigation that increase in volumetric expansion parameter decreases wall shear stress and enhances heat transfer rate.

Keywords: thermal radiation, mixed convection, variable density, variable volumetric expansion coefficient

Procedia PDF Downloads 354
8188 Performance Analysis of PAPR Reduction in OFDM Systems based on Partial Transmit Sequence (PTS) Technique

Authors: Alcardo Alex Barakabitze, Tan Xiaoheng

Abstract:

Orthogonal Frequency Division Multiplexing (OFDM) is a special case of Multi-Carrier Modulation (MCM) technique which transmits a stream of data over a number of lower data rate subcarriers. OFDM splits the total transmission bandwidth into a number of orthogonal and non-overlapping subcarriers and transmit the collection of bits called symbols in parallel using these subcarriers. This paper explores the Peak to Average Power Reduction (PAPR) using the Partial Transmit Sequence technique. We provide the distribution analysis and the basics of OFDM signals and then show how the PAPR increases as the number of subcarriers increases. We provide the performance analysis of CCDF and PAPR expressed in decibels through MATLAB simulations. The simulation results show that, in PTS technique, the performance of PAPR reduction in OFDM systems improves significantly as the number of sub-blocks increases. However, by keeping the same number of sub-blocks variation, oversampling factor and the number of OFDM blocks’ iteration for generating the CCDF, the OFDM systems with 128 subcarriers have an improved performance in PAPR reduction compared to OFDM systems with 256, 512 or >512 subcarriers.

Keywords: OFDM, peak to average power reduction (PAPR), bit error rate (BER), subcarriers, wireless communications

Procedia PDF Downloads 499
8187 Treatment of Septic Tank Effluent Using Moving Bed Biological Reactor

Authors: Fares Almomani, Majeda Khraisheh, Rahul Bhosale, Anand Kumar, Ujjal Gosh

Abstract:

Septic tanks (STs) are very commonly used wastewater collection systems in the world especially in rural areas. In this study, the use of moving bed biological reactors (MBBR) for the treatment of septic tanks effluents (STE) was studied. The study was included treating septic tank effluent from one house hold using MBBRs. Significant ammonia removal rate was observed in all the reactors throughout the 180 days of operation suggesting that the MBBRs were successful in reducing the concentration of ammonia from septic tank effluent. The average ammonia removal rate at 25◦C for the reactor operated at hydraulic retention time of 5.7 hr (R1) was 0.540 kg-N/m3and for the reactor operated at hydraulic retention time of 13.3hr (R2) was 0.279 kg-N/m3. Ammonia removal rates were decreased to 0.3208 kg-N/m3 for R1 and 0.212 kg-N/m3 for R3 as the temperature of reactor was decreased to 8 ◦C. A strong correlation exists between theta model and the rates of ammonia removal for the reactors operated in continuous flow. The average ϴ values for the continuous flow reactors during the temperature change from 8°C to 20 °C were found to be 1.053±0.051. MBBR technology can be successfully used as a polishing treatment for septic tank effluent.

Keywords: septic tanks, wastewater treatment, morphology, moving biological reactors, nitrification

Procedia PDF Downloads 327
8186 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: design of experiment, Taguchi design, optimization, analysis of variance, machining parameters, horizontal boring tool

Procedia PDF Downloads 424
8185 Counter-Current Extraction of Fish Oil and Toxic Elements from Fish Waste Using Supercritical Carbon Dioxide

Authors: Parvaneh Hajeb, Shahram Shakibazadeh, Md. Zaidul Islam Sarker

Abstract:

High-quality fish oil for human consumption requires low levels of toxic elements. The aim of this study was to develop a method to extract oil from fish wastes with the least toxic elements contamination. Supercritical fluid extraction (SFE) was applied to detoxify fish oils from toxic elements. The SFE unit used consisted of an intelligent HPLC pump equipped with a cooling jacket to deliver CO2. The freeze-dried fish waste sample was extracted by heating in a column oven. Under supercritical conditions, the oil dissolved in CO2 was separated from the supercritical phase using pressure reduction. The SFE parameters (pressure, temperature, CO2 flow rate, and extraction time) were optimized using response surface methodology (RSM) to extract the highest levels of toxic elements. The results showed that toxic elements in fish oil can be reduced using supercritical CO2 at optimum pressure 40 MPa, temperature 61 ºC, CO2 flow rate 3.8 MPa, and extraction time 4.25 hr. There were significant reductions in the mercury (98.2%), cadmium (98.9%), arsenic (96%), and lead contents (99.2%) of the fish oil. The fish oil extracted using this method contained elements at levels that were much lower than the accepted limits of 0.1 μg/g. The reduction of toxic elements using the SFE method was more efficient than that of the conventional methods due to the high selectivity of supercritical CO2 for non-polar compounds.

Keywords: food safety, toxic elements, fish oil, supercritical carbon dioxide

Procedia PDF Downloads 408
8184 Nanoenergetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators

Authors: Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim

Abstract:

In this study, we systematically investigated the effect of nanoscale energetic materials in formulations of aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ~0.3 m/s. However, the addition of Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ~5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ~0.6 L/s, which was significantly increased to ~3.9 L/s by adding Al NPs to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were highly effective in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ~140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ~50 ms for airbag inflation.

Keywords: nanoenergetic materials, aluminum nanoparticles, copper oxide nanoparticles, gas generators

Procedia PDF Downloads 356
8183 Tribological Behavior of Hybrid Nanolubricants for Internal Combustion Engines

Authors: José M. Liñeira Del Río, Ramón Rial, Khodor Nasser, María J.G. Guimarey

Abstract:

The need to develop new lubricants that offer better anti-friction and anti-wear performance in internal combustion vehicles is one of the great challenges of lubrication in the automotive field. The addition of nanoparticles has emerged as a possible solution and, combined with the lubricating power of ionic liquids, may become one of the alternatives to reduce friction losses and wear of the contact surfaces in the conditions to which tribo-pairs are subjected, especially in the contact of the piston rings and the cylinder liner surface. In this study, the improvement in SAE 10W-40 engine oil tribological performance after the addition of magnesium oxide (MgO) nanoadditives and two different phosphonium-based ionic liquids (ILs) was investigated. The nanoparticle characterization was performed by means of transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The tribological properties, friction coefficients and wear parameters of the formulated oil modified with 0.01 wt.% MgO and 1 wt.% ILs compared with the neat 10W-40 oil were performed and analyzed using a ball-on-three-pins tribometer and a 3D optical profilometer, respectively. Further analysis on the worn surface was carried out by Raman spectroscopy and SEM microscopy, illustrating the formation of the protective IL and MgO tribo-films as hybrid additives. In friction tests with sliding steel-steel tribo-pairs, IL3-based hybrid nanolubricant decreased the friction coefficient and wear volume by 7% and 59%, respectively, in comparison with the neat SAE 10W-40, while the one based on IL1 only achieved a reduction of these parameters by 6% and 39%, respectively. Thus, the tribological characterization also revealed that the MgO and IL3 addition has a positive synergy over the commercial lubricant, adequately meeting the requirements for their use in internal combustion engines. In summary, this study has shown that the addition of ionic liquids to MgO nanoparticles can improve the stability and lubrication behavior of MgO nanolubricant and encourages more investigations on using nanoparticle additives with green solvents such as ionic liquids to protect the environment as well as prolong the lifetime of machinery. The improvement in the lubricant properties was attributed to the following wear mechanisms: the formation of a protective tribo-film and the ability of nanoparticles to fill out valleys between asperities, thereby effectively smoothing out the shearing surfaces.

Keywords: lubricant, nanoparticles, phosphonium-based ionic liquids, tribology

Procedia PDF Downloads 73
8182 Quantitative Evaluation of Diabetic Foot Wound Healing Using Hydrogel Nanosilver Based Dressing vs. Traditional Dressing: A Prospective Randomized Control Study

Authors: Ehsan A. Yahia, Ayman E. El-Sharkawey, Magda M. Bayoumi

Abstract:

Background: Wound dressings perform a crucial role in cutaneous wound management due to their ability to protect wounds and promote dermal and epidermal tissue regeneration. Aim: To evaluate the effectiveness of using hydrogel/nano silver-based dressing vs. traditional dressing on diabetic foot wound healing. Methods: Sixty patients with type-2 diabetes hospitalized for diabetic foot wound treatment were recruited from selected Surgical departments. A prospective randomized control study was carried. Results: The results showed that the percentage of a reduction rate of the ulcer by the third week of the treatment in the hydrogel/nano silver-based dressing group was higher (15.11%) than in the traditional wound dressing group (33.44%). Moreover, the mean ulcer size "sq mm" in the hydrogel/nano silver-based dressing group recognized a faster healing rate (15.11±7.89) and considerably lesser in comparison to the traditional in the third week (21.65±8.4). Conclusion: The hydrogel/nanosilver-based dressing showed better results than traditional dressing in managing diabetic ulcer foot.

Keywords: diabetes, wound care, diabetic foot, wound dressing, hydrogel nanosilver

Procedia PDF Downloads 100
8181 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation

Procedia PDF Downloads 164
8180 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 129
8179 Synthesis of Nanoparticle Mordenite Zeolite for Dimethyl Ether Carbonylation

Authors: Zhang Haitao

Abstract:

The different size of nanoparticle mordenite zeolites were prepared by adding different soft template during hydrothermal process for carbonylation of dimethyl ether (DME) to methyl acetate (MA). The catalysts were characterized by X-ray diffraction, Ar adsorption-desorption, high-resolution transmission electron microscopy, NH3-temperature programmed desorption, scanning electron microscopy and Thermogravimetric. The characterization results confirmed that mordenite zeolites with small nanoparticle showed more strong acid sites which was the active site for carbonylation thus promoting conversion of DME and MA selectivity. Furthermore, the nanoparticle mordenite had increased the mass transfer efficiency which could suppress the formation of coke.

Keywords: nanoparticle mordenite, carbonylation, dimethyl ether, methyl acetate

Procedia PDF Downloads 120
8178 Quasi-Static Analysis of End Plate Beam-to-Column Connections

Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones

Abstract:

This paper presents a method for modelling and analysing end plate beam-to-column connections to obtain the quasi-static behaviour using non-linear dynamic explicit integration. In addition to its importance to study the static behaviour of a structural member, quasi-static behaviour is largely needed to be compared with the dynamic behaviour of such members in order to investigate the dynamic effect by proposing dynamic increase factors (DIFs). The beam-to-column bolted connections contain various contact surfaces at which the implicit procedure may have difficulties converging, resulting in a large number of iterations. Contrary, explicit procedure could deal effectively with complex contacts without converging problems. Hence, finite element modelling using ABAQUS/explicit is used in this study to address the dynamic effect may be produced using explicit procedure. Also, the effect of loading rate and mass scaling are discussed to investigate their effect on the time of analysis. The results show that the explicit procedure is valuable to model the end plate beam-to-column connections in terms of failure mode, load-displacement relationships. Also, it is concluded that loading rate and mass scaling should be carefully selected to avoid the dynamic effect in the solution.

Keywords: quasi-static, end plate, finite elements, connections

Procedia PDF Downloads 290
8177 Sono- and Photocatalytic Degradation of Indigocarmine in Water Using ZnO

Authors: V. Veena, Suguna Yesodharan, E. P. Yesodharan

Abstract:

Two Advanced Oxidation Processes (AOP) i.e., sono- and photo-catalysis mediated by semiconductor oxide catalyst, ZnO has been found effective for the removal of trace amounts of the toxic dye pollutant Indigocarmine (IC) from water. The effect of various reaction parameters such as concentration of the dye, catalyst dosage, temperature, pH, dissolved oxygen etc. as well as the addition of oxidisers and presence of salts in water on the rate of degradation has been evaluated and optimised. The degradation follows variable kinetics depending on the concentration of the substrate, the order of reaction varying from 1 to 0 with increase in concentration. The reaction proceeds through a number of intermediates and many of them have been identified using GCMS technique. The intermediates do not affect the rate of degradation significantly. The influence of anions such as chloride, sulphate, fluoride, carbonate, bicarbonate, phosphate etc. on the degradation of IC is not consistent and does not follow any predictable pattern. Phosphates and fluorides inhibit the degradation while chloride, sulphate, carbonate and bicarbonate enhance. Adsorption studies of the dye in the absence as well as presence of these anions show that there may not be any direct correlation between the adsorption of the dye on the catalyst and the degradation. Oxidants such as hydrogen peroxide and persulphate enhance the degradation though the combined effect and it is less than the cumulative effect of individual components. COD measurements show that the degradation proceeds to complete mineralisation. The results will be presented and probable mechanism for the degradation will be discussed.

Keywords: AOP, COD, indigocarmine, photocatalysis, sonocatalysis

Procedia PDF Downloads 320
8176 Exercise in Extreme Conditions: Leg Cooling and Fat/Carbohydrate Utilization

Authors: Anastasios Rodis

Abstract:

Background: Case studies of walkers, climbers, and campers exposed to cold and wet conditions without limb water/windproof protection revealed experiences of muscle weakness and fatigue. It is reasonable to assume that a part of the fatigue could occur due to an alteration in substrate utilization, since reduction of performance in extreme cold conditions, may partially be explained by higher anaerobic glycolysis, reflecting higher carbohydrate oxidation and an increase accumulation rate of blood lactate. The aim of this study was to assess the effects of pre-exercise lower limb cooling on substrate utilization rate during sub-maximal exercise. Method: Six male university students (mean (SD): age, 21.3 (1.0) yr; maximal oxygen uptake (V0₂ max), 49.6 (3.6) ml.min⁻¹; and percentage of body fat, 13.6 (2.5) % were examined in random order after either 30min cold water (12°C) immersion utilized as the cooling strategy up to the gluteal fold, or under control conditions (no precooling), with tests separated by minimum of 7 days. Exercise consisted of 60min cycling at 50% V0₂ max, in a thermoneutral environment of 20°C. Subjects were also required to record a diet diary over the 24hrs prior to the each trial. Means (SD) for the three macronutrients during the 1 day prior to each trial (expressed as a percentage of total energy) 52 (3) % carbohydrate, 31 (4) % fat, and 17 (± 2) % protein. Results: The following responses to lower limb cooling relative to control trial during exercise were: 1) Carbohydrate (CHO) oxidation, and blood lactate (Bₗₐc) concentration were significantly higher (P < 0.05); 2) rectal temperature (Tᵣₑc) was significantly higher (P < 0.05), but skin temperature was significantly lower (P < 0.05); no significant differences were found in blood glucose (Bg), heart rate (HR) and oxygen consumption (V0₂). Discussion: These data suggested that lower limb cooling prior to submaximal exercise will shift metabolic processes from Fat oxidation to CHO oxidation. This shift from Fat to CHO oxidation will probably have important implications in the surviving scenario, since people facing accidental localized cooling of their limbs either through wading/falling in cold water or snow even if they do not perform high intensity activity, they have to rely on CHO availability.

Keywords: exercise in wet conditions, leg cooling, outdoors exercise, substrate utilization

Procedia PDF Downloads 427
8175 Microwave-Assisted Synthesis of a Class of Pyridine and Purine Thioglycoside Analogs

Authors: Mamdouh Abu-Zaied, K. Mohamed, Galal A. Nawwar

Abstract:

Microwave-assisted synthesis of a new class of pyridine or purine thioglycoside analogs from readily available starting materials has been described. The key step of this protocol is the formation of sodium pyridine 4-thiolate 4 and pyrazolo[1,5-a]pyrimidine-7-thiolate 5 derivatives via condensation of 1 with cyanoacetanilide derivative 2 or 5-aminopyrazole derivative 3 respectively under microwave irradiation, followed by coupling with halo sugars to give the corresponding pyridine and purine thioglycoside analogs. The obtained compounds were evaluated in vitro against lung (A549), colon (HCT116), liver (HEPG2), and MCF-7(breast) cancer cell lines. Some of them recorded promising activities.

Keywords: antitumor, cyclic sugars, pyrazoles, pyridines, pyrimidines, purines, thioglycosides

Procedia PDF Downloads 228
8174 Health Belief Model to Predict Sharps Injuries among Health Care Workers at First Level Care Facilities in Rural Pakistan

Authors: Mohammad Tahir Yousafzai, Amna Rehana Siddiqui, Naveed Zafar Janjua

Abstract:

We assessed the frequency and predictors of sharp injuries (SIs) among health care workers (HCWs) at first level care facilities (FLCF) in rural Pakistan. HCWs working at public clinic (PC), privately owned licensed practitioners’ clinic (LPC) and non-licensed practitioners’ clinic (NLC) were interviewed on universal precautions (UPs) and constructs of health belief model (HBM) to assess their association with SIs through negative-binomial regression. From 365 clinics, 485 HCWs were interviewed. Overall annual rate of Sis was 192/100 HCWs/year; 78/100 HCWs among licensed prescribers, 191/100 HCWs among non-licensed prescribers, 248/100 HCWs among qualified assistants, and 321/100 HCWs among non-qualified assistants. Increasing knowledge score about bloodborne pathogens (BBPs) transmission (rate-ratio (RR): 0.93; 95%CI: 0.89–0.96), fewer years of work experience, being a non-licensed prescriber (RR: 2.02; 95%CI: 1.36–2.98) licensed (RR: 2.86; 9%CI: 1.81–4.51) or non-licensed assistant (RR: 2.78; 95%CI: 1.72–4.47) compared to a licensed prescriber, perceived barriers (RR: 1.06;95%CI: 1.03–1.08), and compliance with UPs scores (RR: 0.93; 95%CI: 0.87–0.97) were significant predictors of SIs. Improved knowledge about BBPs, compliance with UPs and reduced barriers to follow UPs could reduce SIs to HCWs.

Keywords: health belief model, sharp injuries, needle stick injuries, healthcare workers

Procedia PDF Downloads 294
8173 Numerical Analysis of Prefabricated Horizontal Drain Induced Consolidation Using ABAQUS

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

This paper deals with the numerical analysis of Prefabricated Horizontal Drain (PHD) induced consolidation of clayey deposits, using ABAQUS. PHDs are much like Prefabricated Vertical Drains (PVDs) installed in horizontal layers, used mainly for enhancing the consolidation of clayey fill embankments, and dredged mud deposits. The efficiency of the system depends mainly on the spacing and layout of the drain. Hence, two spacing related parameters are defined, namely WH (width to horizontal spacing ratio) and VH (vertical to horizontal spacing ratio), and the finite element models are developed based on plane strain unit cell conditions under various combinations of these parameters. The analysis results, in terms of degree of consolidation (U), are compared with the established theories. Based on the analysis, a set of equations are proposed to analyse the PHD induced consolidation. The proposed method is found to be reasonably accurate. Further, the effect of PHDs at different spacing ratios, in accelerating consolidation of a clayey embankment fill is analysed in terms of pore pressure dissipation rate, and settlement. The PHD is found to accelerate the rate of pore pressure dissipation by more than 50%, thus reducing the time for final settlement significantly.

Keywords: ABAQUS, consolidation, plane strain, prefabricated horizontal drain

Procedia PDF Downloads 344
8172 A Further Insight to Foaming in Anaerobic Digester

Authors: Ifeyinwa Rita Kanu, Thomas Aspray, Adebayo J. Adeloye

Abstract:

As a result of the ambiguity and complexity surrounding anaerobic digester foaming, efforts have been made by various researchers to understand the process of anaerobic digester foaming so as to proffer a solution that can be universally applied rather than site specific. All attempts ranging from experimental analysis to comparative review of other process has been futile at explaining explicitly the conditions and process of foaming in anaerobic digester. Studying the available knowledge on foam formation and relating it to anaerobic digester process and operating condition, this study presents a succinct and enhanced understanding of foaming in anaerobic digesters as well as introducing a simple and novel method to identify the onset of anaerobic digester foaming based on analysis of historical data from a field scale system.

Keywords: anaerobic digester, foaming, biogas, surfactant, wastewater

Procedia PDF Downloads 433
8171 Neonatal Sepsis in Dogs Attend in Veterinary Hospital of the Sao Paulo State University, Botucatu, Brazil – Incidence, Clinical Aspects and Mortality

Authors: Maria Lucia G. Lourenco, Keylla H. N. P. Pereira, Vivane Y. Hibaru, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado

Abstract:

Neonatal sepsis is a systemic response to the acute generalized infection caused by one or more bacterial agents, representing the main infectious cause of neonatal mortality in dogs during the first three weeks of life. This study aims to describe the incidence of sepsis in neonate dogs, as well as the main clinical signs and mortality rates. The study included 735 neonates admitted to the Sao Paulo State University (UNESP) Veterinary Hospital, Botucatu, Sao Paulo, Brazil, between January 2018 and November 2019. Seven hundred thirty-five neonates, 14% (98/703) presented neonatal sepsis. The main sources of infection for the neonates were intrauterine (72.5%, 71/98), lactogenic (13.2%, 13/98), umbilical (5.1%, 5/98) and unidentified sources (9.2%, 9/98). The main non-specific clinical signs observed in the newborns were weakness, depression, impaired or absent reflexes, hypothermia, hypoglycemia, dehydration, reduced muscle tonus and diarrhea. The newborns also manifested clinical signs of severe infection, such as hyperemia in the abdominal and anal regions, omphalitis, hematuria, abdomen and extremities with purplish-blue coloration necrosing injuries in the pads, bradycardia, dyspnea, epistaxis, hypotension and evolution to septic shock. Infections acquired during intrauterine life led to the onset of the clinical signs at the time of birth, with fast evolution during the first hours of life. On the other hand, infections acquired via milk or umbilical cord presented clinical signs later. The total mortality rate was 5.4% (38/703) and the mortality rate among the neonates with sepsis was 38.7% (38/98). The early mortality rate (0 to 2 days) accounted for 86.9% (33/38) and the late mortality rate (3 to 30 days) for 13.1% (5/38) of the deaths among the newborns with sepsis. The main bacterial agents observed were Staphylococcus spp., Streptococcus spp., Proteus spp. Mannheimia spp. and Escherichia coli. Neonatal sepsis evolves quickly and may lead to high mortality in a litter. The prognosis is usually favorable if the diagnosis is reached early and the antibiotic therapy instituted as soon as possible, even before the results of blood cultures and antibiograms. The therapeutic recommendations should meet the special physiological conditions of a neonate in terms of metabolism and excretion of medication. Therefore, it is of utmost importance that the veterinarian is knowledgeable regarding neonatology to provide effective intervention and improve the survival rates of these patients.

Keywords: Neonatal infection , bacteria, puppies, newborn

Procedia PDF Downloads 93
8170 Effects of Spectrotemporal Modulation of Music Profiles on Coherence of Cardiovascular Rhythms

Authors: I-Hui Hsieh, Yu-Hsuan Hu

Abstract:

The powerful effect of music is often associated with changes in physiological responses such as heart rate and respiration. Previous studies demonstrate that Mayer waves of blood pressure, the spontaneous rhythm occurring at 0.1 Hz, corresponds to a progressive crescendo of the musical phrase. However, music contain dynamic changes in temporal and spectral features. As such, it remains unclear which aspects of musical structures optimally affect synchronization of cardiovascular rhythms. This study investigates the independent contribution of spectral pattern, temporal pattern, and dissonance level on synchronization of cardiovascular rhythms. The regularity of acoustical patterns occurring at a periodic rhythm of 0.1 Hz is hypothesized to elicit the strongest coherence of cardiovascular rhythms. Music excerpts taken from twelve pieces of Western classical repertoire were modulated to contain varying degrees of pattern regularity of the acoustic envelope structure. Three levels of dissonance were manipulated by varying the harmonic structure of the accompanying chords. Electrocardiogram and photoplethysmography signals were recorded for 5 minutes of baseline and simultaneously while participants listen to music excerpts randomly presented over headphones in a sitting position. Participants were asked to indicate the pleasantness of each music excerpt by adjusting via a slider presented on screen. Analysis of the Fourier spectral power of blood pressure around 0.1 Hz showed a significant difference between music excerpts characterized by spectral and temporal pattern regularity compared to the same content in random pattern. Phase coherence between heart rate and blood pressure increased significantly during listening to spectrally-regular phrases compared to its matched control phrases. The degree of dissonance of the accompanying chord sequence correlated with level of coherence between heart rate and blood pressure. Results suggest that low-level auditory features of music can entrain coherence of autonomic physiological variables. These findings have potential implications for using music as a clinical and therapeutic intervention for regulating cardiovascular functions.

Keywords: cardiovascular rhythms, coherence, dissonance, pattern regularity

Procedia PDF Downloads 139
8169 Parabolic Impact Law of High Frequency Exchanges on Price Formation in Commodities Market

Authors: L. Maiza, A. Cantagrel, M. Forestier, G. Laucoin, T. Regali

Abstract:

Evaluation of High Frequency Trading (HFT) impact on financial markets is very important for traders who use market analysis to detect winning transaction opportunity. Analysis of HFT data on tobacco commodity market is discussed here and interesting linear relationship has been shown between trading frequency and difference between averaged trading prices above and below considered trading frequency. This may open new perspectives on markets data understanding and could provide possible interpretation of Adam Smith invisible hand.

Keywords: financial market, high frequency trading, analysis, impacts, Adam Smith invisible hand

Procedia PDF Downloads 344
8168 Effect of Celebrity Endorsements and Social Media Influencers on Brand Loyalty: A Comparative Study

Authors: Dhruv Saini, Megha Sharma, Sharad Gupta

Abstract:

This research is showing the use of celebrity endorsement and social media influencers and how they help in enhancing the brand loyalty of the consumers. The study aims at keeping brand image of the brand as the link between the two. However, choosing the right celebrity or social media influencer is not an easy task and it is very essential for a brand to select the right ambassador for advertising their products and for selling the product to the ultimate consumer. The purpose of the study is to create a relationship of Celebrity endorsement with brand image and with brand loyalty and creating a relationship of Social media influencers with brand image and with brand loyalty and then making a comparison between the two by measuring the effects of both simultaneously. And then by analyzing which among the two has a greater impact on brand loyalty of the consumers. The study mainly focuses on four major variables namely Celebrity endorsement, Social media influencers, Brand image and Brand loyalty. The study also focuses on interdependence and relationships that these variables have with each other and how they are linked with each other. The study also aims at looking which among Celebrity endorsement and Social media influencer has a greater impact on increasing or enhancing the loyalty for a brand. Earlier celebrity endorsers had a major impact on brand loyalty of the consumers but with time social media influencers are also playing a very vital role in impacting the brand loyalty of the consumers and are giving a fight to the celebrity endorsers as well. Also, Brand image also has a very vital role to play in enhancing the brand loyalty of a brand in the minds of the consumers as a well-known and a better perception of a brand leads to retention of more and more consumers. Also, both Celebrity endorsement and Social media influencers are two-way swords as both have a number of positives and a number of negatives as well, so these are to be compared keeping in mind their adverse effects. Examination of the current market situation has shown that the recommendations of celebrities when properly integrated by comparing product strengths. Advertisers agree that celebrity authorization does not guarantee sales but it can create buzz and make the consumer feel better by-product, which is also what customers should expect as a real star by delivering the promise. On the other hand, depending on the results of the studies, there should be a variety of conclusions planned. Some of the influential people on social media had a positive impact on the product portrait. One of the conclusions is that the product image had a positive impact on consumers. Moreover, the results of the following study states that the most influential influencers consumers in their intended purpose of the purchase, but instead produced a positive result indirectly with Brand image which would further lead to brand loyalty .

Keywords: brand image, brand loyalty, celebrity endorsement, social media influencer

Procedia PDF Downloads 175
8167 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles

Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz

Abstract:

Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.

Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts

Procedia PDF Downloads 141
8166 Geochemical Characteristics of Aromatic Hydrocarbons in the Crude Oils from the Chepaizi Area, Junggar Basin, China

Authors: Luofu Liu, Fei Xiao Jr., Fei Xiao

Abstract:

Through the analysis technology of gas chromatography-mass spectrometry (GC-MS), the composition and distribution characteristics of aromatic hydrocarbons in the Chepaizi area of the Junggar Basin were analyzed in detail. Based on that, the biological input, maturity of crude oils and sedimentary environment of the corresponding source rocks were determined and the origin types of crude oils were divided. The results show that there are three types of crude oils in the study area including Type I, Type II and Type III oils. The crude oils from the 1st member of the Neogene Shawan Formation are the Type I oils; the crude oils from the 2nd member of the Neogene Shawan Formation are the Type II oils; the crude oils from the Cretaceous Qingshuihe and Jurassic Badaowan Formations are the Type III oils. For the Type I oils, they show a single model in the late retention time of the chromatogram of total aromatic hydrocarbons. The content of triaromatic steroid series is high, and the content of dibenzofuran is low. Maturity parameters related to alkyl naphthalene, methylphenanthrene and alkyl dibenzothiophene all indicate low maturity for the Type I oils. For the Type II oils, they have also a single model in the early retention time of the chromatogram of total aromatic hydrocarbons. The content of naphthalene and phenanthrene series is high, and the content of dibenzofuran is medium. The content of polycyclic aromatic hydrocarbon representing the terrestrial organic matter is high. The aromatic maturity parameters indicate high maturity for the Type II oils. For the Type III oils, they have a bi-model in the chromatogram of total aromatic hydrocarbons. The contents of naphthalene series, phenanthrene series, and dibenzofuran series are high. The aromatic maturity parameters indicate medium maturity for the Type III oils. The correlation results of triaromatic steroid series fingerprint show that the Type I and Type III oils have similar source and are both from the Permian Wuerhe source rocks. Because of the strong biodegradation and mixing from other source, the Type I oils are very different from the Type III oils in aromatic hydrocarbon characteristics. The Type II oils have the typical characteristics of terrestrial organic matter input under oxidative environment, and are the coal oil mainly generated by the mature Jurassic coal measure source rocks. However, the overprinting effect from the low maturity Cretaceous source rocks changed the original distribution characteristics of aromatic hydrocarbons to some degree.

Keywords: oil source, geochemistry, aromatic hydrocarbons, crude oils, chepaizi area, Junggar Basin

Procedia PDF Downloads 343
8165 Considering Effect of Wind Turbines in the Distribution System

Authors: Majed Ahmadi

Abstract:

In recent years, the high penetration of different types of renewable energy sources (RESs) has affected most of the available strategies. The main motivations behind the high penetration of RESs are clean energy, modular system and easy installation. Among different types of RESs, wind turbine (WT) is an interesting choice referring to the availability of wind in almost any area. The new technologies of WT can provide energy from residential applications to wide grid connected applications. Regarding the WT, advantages such as reducing the dependence on fossil fuels and enhancing the independence and flexibility of large power grid are the most prominent. Nevertheless, the high volatile nature of wind speed injects much uncertainty in the grid that if not managed optimally can put the analyses far from the reality.the aim of this project is scrutiny and to offer proper ways for renewing distribution networks with envisage the effects of wind power plants and uncertainties related to distribution systems including wind power generating plants output rate and consumers consuming rate and also decrease the incidents of the whole network losses, amount of pollution, voltage refraction and cost extent.to solve this problem we use dual point estimate method.And algorithm used in this paper is reformed bat algorithm, which will be under exact research furthermore the results.

Keywords: order renewal, wind turbines, bat algorithm, outspread production, uncertainty

Procedia PDF Downloads 266
8164 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method

Authors: S. A. Tabatabaei, S. Aarabi

Abstract:

Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element package

Keywords: viscoelasticity, finite element method, repeated loading, HMA

Procedia PDF Downloads 385
8163 New Recombinant Netrin-a Protein of Lucilia Sericata Larvae by Bac to Bac Expression Vector System in Sf9 Insect Cell

Authors: Hamzeh Alipour, Masoumeh Bagheri, Abbasali Raz, Javad Dadgar Pakdel, Kourosh Azizi, Aboozar Soltani, Mohammad Djaefar Moemenbellah-Fard

Abstract:

Background: Maggot debridement therapy is an appropriate, effective, and controlled method using sterilized larvae of Luciliasericata (L.sericata) to treat wounds. Netrin-A is an enzyme in the Laminins family which secreted from salivary gland of L.sericata with a central role in neural regeneration and angiogenesis. This study aimed to production of new recombinant Netrin-A protein of Luciliasericata larvae by baculovirus expression vector system (BEVS) in SF9. Material and methods: In the first step, gene structure was subjected to the in silico studies, which were include determination of Antibacterial activity, Prion formation risk, homology modeling, Molecular docking analysis, and Optimization of recombinant protein. In the second step, the Netrin-A gene was cloned and amplified in pTG19 vector. After digestion with BamH1 and EcoR1 restriction enzymes, it was cloned in pFastBac HTA vector. It was then transformed into DH10Bac competent cells, and the recombinant Bacmid was subsequently transfected into insect Sf9 cells. The expressed recombinant Netrin-A was thus purified in the Ni-NTA agarose. This protein evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay method. Results: The Bacmid vector structure with Netrin-A was successfully constructed and then expressed as Netrin-A protein in the Sf9 cell lane. The molecular weight of this protein was 52 kDa with 404 amino acids. In the in silico studies, fortunately, we predicted that recombinant LSNetrin-A have Antibacterial activity and without any prion formation risk.This molecule hasa high binding affinity to the Neogenin and a lower affinity to the DCC-specific receptors. Signal peptide located between amino acids 24 and 25. The concentration of Netrin-A recombinant protein was calculated to be 48.8 μg/ml. it was confirmed that the characterized gene in our previous study codes L. sericata Netrin-A enzyme. Conclusions: Successful generation of the recombinant Netrin-A, a secreted protein in L.sericata salivary glands, and because Luciliasericata larvae are used in larval therapy. Therefore, the findings of the present study could be useful to researchers in future studies on wound healing.

Keywords: blowfly, BEVS, gene, immature insect, recombinant protein, Sf9

Procedia PDF Downloads 78
8162 Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation

Authors: Antoine Dumont, Weiji Hong, Zheng-Hong Lu

Abstract:

Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs.

Keywords: material physics, perovskite, light emitting diode, quantum dots, high vacuum deposition, thin film processing

Procedia PDF Downloads 152