Search results for: liquid organic fertilizer
1664 Geochemical and Mineralogical Characteristics of Soils in Areas Affected by the Fires of August 2021 at the Ilia Prefecture Greece
Authors: Dionisios Panagiotaras, Pavlos Avramidis, Dimitrios Papoulis, Dionysios Koulougliotis, Dionisis C. Christodoulopoulos, Dimitra Lekka, Despoina Nifora, Denisa Drouvari, Alexandra Skalioti
Abstract:
This study delineates the geochemical and mineralogical characteristics of soils collected from woodland and forest areas affected by the fires of August 2021 at the Ilia prefecture, Greece. The mineralogical composition of the samples consists of quartz, calcite, albite, oligoclase, anorthite (feldspars), smectite, kaolinite and illite (clays). Quartz ranges from 38.21% to 57.49% with an average of 48.43%, calcite ranges from 2.55% to 25.09% with an average of 13.92%, feldspars ranges from 7.76% to 25.87% with an average of 17.02% and clays ranges from 4.39% to 43.43% with an average of 20.63%. Geochemical analyses of the soil samples applied for total organic carbon (TOC), total nitrogen (TN), total phosphorous (TP), Cu, Zn, Mn and Fe. Statistical analysis of the data shows a positive correlation between clays and Zn, Mn, Fe. TOC and TN show a strong positive correlation, while Fe shows a strong negative correlation with calcite.Keywords: soils, geochemistry, mineralogy, woodland, forest
Procedia PDF Downloads 951663 Olive Leaf Extract as Natural Corrosion Inhibitor for Pure Copper in 0.5 M NaCl Solution: A Study by Voltammetry around OCP
Authors: Chahla Rahal, Philippe Refait
Abstract:
Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.Keywords: Olive leaf extract, Oleuropein, hydroxytyrosol, elenolic acid , Copper, Corrosion, HPLC/DAD, Polarisation, EIS
Procedia PDF Downloads 2581662 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum
Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu
Abstract:
Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. The dissolution of this mineral in the diammonium hydrogen phosphate solutions has not been studied so far. Investigation of the dissolution and dissolution kinetics gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. In this study, parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures. Reaction rate expressions of dissolution of gypsum at the low temperatures and the high temperatures controlled by chemical reaction are as follows, respectively. = k1.e-5159.5/T.t = k2.e-5346.8/T.t Where k1 and k2 are constants depending on the diammonium hydrogen phosphate solution concentration, the solid/liquid ratio, the stirring speed and the particle size.Keywords: diammonium hydrogen phosphate, dissolution kinetics, gypsum, kinetics.
Procedia PDF Downloads 3881661 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)
Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed.
Abstract:
High-Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20-60 and 6-18 µg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 µg/ml and for 6S were 0.3672 and 1.2238 µg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.Keywords: ginger, 6-gingerol, HPLC, 6-shogaol
Procedia PDF Downloads 4441660 WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis
Authors: Arpan Kumar Nayak, Debabrata Pradhan
Abstract:
A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection.Keywords: gas sensing, mixed oxides, nanoplates, ammonia, ethanol, acetone
Procedia PDF Downloads 2401659 Synthesis of a Serie of Metallic Complexes Derived from bis(4-Amino-5-Mercapto-1,2,4-Triazol-3-yl)butane with First Raw Transition Metals
Authors: I. Belbachir, T. Benabdallah, N. Belhadj
Abstract:
The present research work describes the synthesis, through a multi-step strategy, as well as the structural characterization of a polydentate organic ligand, namely the bis(4-amino-5-mercapto-1,2,4-triazole-3-yl)butane (BAMT). The bis-triazolic ligand was characterized by different spectroscopic studies, in order to enlighten its coordination mode, in the neutral and deprotonated forms, towards cobalt(II), nickel(II) and copper(II) sulfates, in both solution and solid state. The stoichiometry of the complexes [neutral BAMT-metal] and [deprotonated BAMT-metal] was first established in a solution of DMF with each of the three metallic cations and their complexation constants calculated, allowing us to compare the stability of the various prepared complexes. The various complexes were finally isolated in the solid state and the coordination mode of neutral and deprotonated BAMT explored towards each of the three metallic sulfates. The establishment of some ligand field parameters (Dq, B, β…) by electronic spectroscopy finally allowed to compare the coordination modes of BAMT towards each of the three metals and to highlight the influence of the deprotonation on the complexing properties of the bis-triazolic ligand.Keywords: 1, 2, 4-triazol, bis-1, 2, 4-triazol, metallic complexes, coordination in solution and solid state
Procedia PDF Downloads 1801658 Assisted Supercritical Carbon Dioxide Extraction of Tocotrienols from Palm Fatty Acid Distillate
Authors: Najwa Othman, Norhidayah Suleiman, Gun Hean Chong
Abstract:
Palm fatty acid distillate (PFAD) is a by-product of palm oil refineries which contains valuable compounds such as phytosterols, squalene, polycosanol, co-enzyme Q10 and vitamin E (tocopherols and tocotrienols). Approximately 0.7-1.0% of vitamin E accumulates in PFAD, and it functions as antioxidants and anti-inflammatory. The objective of this research is to evaluate the effect of manipulated variables in supercritical carbon dioxide towards the recovery of tocotrienols in PFAD. The vitamin E concentrate isolated varies depending on the pre-treatment of sample and extraction techniques. In this research, tocotrienols in PFAD was concentrated by removing the extraneous matters, especially free fatty acid (FFA) and acylglycerols. Pre-treatment method such as enzymatic hydrolysis by using lipase from Candida rugosa as an enzyme was used to remove FFA and improve recovery of vitamin E. After that, treated PFAD was extracted by using supercritical fluid extraction in co-current glass beads packed column (22 cm x 75 cm i.d) at different temperatures (40-60°C) and pressures (100-300 bar) for 5 hours. After the extraction, the sample was analyzed by using high-pressure liquid chromatography (HPLC) system to quantify the tocotrienols. The results indicated that a combined pressure (200 bar) and temperature (60°C) was predicted to provide highest tocotrienols yield and the extraction yield obtained was 106.45%.Keywords: enzymatic hydrolysis, palm fatty acid distillate, supercritical fluid extraction, tocotrienols
Procedia PDF Downloads 1351657 Linkage between Trace Element Distribution and Growth Ring Formation in Japanese Red Coral (Paracorallium japonicum)
Authors: Luan Trong Nguyen, M. Azizur Rahman, Yusuke Tamenori, Toshihiro Yoshimura, Nozomu Iwasaki, Hiroshi Hasegawa
Abstract:
This study investigated the distribution of magnesium (Mg), phosphorus (P), sulfur (S) and strontium (Sr) using micro X-ray fluorescence (µ-XRF) along the annual growth rings in the skeleton of Japanese red coral Paracorallium japonicum. The Mg, P and S distribution in µ-XRF mapping images correspond to the dark and light bands along the annual growth rings observed in microscopic images of the coral skeleton. The µ-XRF mapping data showed a positive correlation (r = 0.6) between P and S distribution in the coral skeleton. A contrasting distribution pattern of S and Mg along the axial skeleton of P. japonicum indicates a weak negative correlation (r = -0.2) between these two trace elements. The distribution pattern of S, P and Mg reveals linkage between their distributions and the formation of dark/light bands along the annual growth rings in the axial skeleton of P. japonicum. Sulfur and P were distributed in the organic matrix rich dark bands, while Mg was distributed in the light bands of the annual growth rings.Keywords: µ-XRF, trace element, precious coral, Paracorallium japonicum
Procedia PDF Downloads 4431656 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network
Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.Keywords: anti-splash device, P/V valve, sloshing, artificial neural network
Procedia PDF Downloads 5901655 Kinetics of Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds
Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto
Abstract:
Sulfur-oxidizing bacteria were isolated and then grown on salak fruit seeds forming a biofilm on the surface. Their performances in sulfide removal were experimentally observed. In doing so, the salak fruit seeds containing biofilm were then used as packing material in a cylinder. Biogas obtained from biological treatment, which contains 27.95 ppm of hydrogen sulfide was flown through the packed bed. The hydrogen sulfide from the biogas was absorbed in the biofilm and then degraded by the microbes in the biofilm. The hydrogen sulfide concentrations at a various axial position and various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. Since the biofilm is very thin, the sulfide concentration in the Biofilm at a certain axial position is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The values of the parameters were also obtained by curve-fitting. The accuracy of the model proposed was tested by comparing the calculation results using the model with the experimental data obtained. It turned out that the model proposed can describe the removal of sulfide liquid using bio-filter in the packed bed. The biofilter could remove 89,83 % of the hydrogen sulfide in the feed at 2.5 hr of operation and biogas flow rate of 30 L/hr.Keywords: sulfur-oxidizing bacteria, salak fruit seeds, biofilm, packing material, biogas
Procedia PDF Downloads 2221654 Characterization of Penicillin V Acid and Its Related Compounds by HPLC
Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul
Abstract:
Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.Keywords: characterization, HPLC, Penicillin V acid, related substances
Procedia PDF Downloads 2781653 Removal of Basic Yellow 28 Dye from Aqueous Solutions Using Plastic Wastes
Authors: Nadjib Dahdouh, Samira Amokrane, Elhadj Mekatel, Djamel Nibou
Abstract:
The removal of Basic Yellow 28 (BY28) from aqueous solutions by plastic wastes PMMA was investigated. The characteristics of plastic wastes PMMA were determined by SEM, FTIR and chemical composition analysis. The effects of solution pH, initial Basic Yellow 28 (BY28) concentration C, solid/liquid ratio R, and temperature T were studied in batch experiments. The Freundlich and the Langmuir models have been applied to the adsorption process, and it was found that the equilibrium followed well Langmuir adsorption isotherm. A comparison of kinetic models applied to the adsorption of BY28 on the PMMA was evaluated for the pseudo-first-order and the pseudo-second-order kinetic models. It was found that used models were correlated with the experimental data. Intraparticle diffusion model was also used in these experiments. The thermodynamic parameters namely the enthalpy ∆H°, entropy ∆S° and free energy ∆G° of adsorption of BY28 on PMMA were determined. From the obtained results, the negative values of Gibbs free energy ∆G° indicated the spontaneity of the adsorption of BY28 by PMMA. The negative values of ∆H° revealed the exothermic nature of the process and the negative values of ∆S° suggest the stability of BY28 on the surface of SW PMMA.Keywords: removal, Waste PMMA, BY28 dye, equilibrium, kinetic study, thermodynamic study
Procedia PDF Downloads 1531652 Toxicity and Biodegradability of Veterinary Antibiotic Tiamulin
Authors: Gabriela Kalcikova, Igor Bosevski, Ula Rozman, Andreja Zgajnar Gotvajn
Abstract:
Antibiotics are extensively used in human medicine and also in animal husbandry to prevent or control infections. Recently, a lot of attention has been put on veterinary antibiotics, because their global consumption is increasing and it is expected to be 106.600 tons in 2030. Most of veterinary antibiotics are introduced into the environment via animal manure, which is used as fertilizer. One of such veterinary antibiotics is tiamulin. It is used the form of fumarate for treatment of pig and poultry. It is used against prophylaxis of dysentery, pneumonia and mycroplasmal infections, but its environmental impact is practically unknown. Tiamulin has been found very persistent in animal manure and thus it is expected that can be, during rainfalls, transported into the aquatic environment and affect various organisms. For assessment of its environmental impact, it is necessary to evaluate its biodegradability and toxicity to various organisms from different levels of a food chain. Therefore, the aim of our study was to evaluate ready biodegradability and toxicity of tiamulin fumarate to various organisms. Bioassay used included luminescent bacterium Vibrio fischeri heterotrophic and nitrifying microorganisms of activated sludge, water flea Daphnia magna and duckweed Lemna minor. For each species, EC₅₀ values were calculated. Biodegradability test was used for determination of ready biodegradability and it provides information about biodegradability of tiamulin under the most common environmental conditions. Results of our study showed that tiamulin differently affects selected organisms. The most sensitive organisms were water fleas with 48hEC₅₀ = 14.2 ± 4.8 mg/L and duckweed with 168hEC₅₀ = 22.6 ± 0.8 mg/L. Higher concentrations of tiamulin (from 10 mg/L) significantly affected photosynthetic pigments content in duckweed and concentrations above 80 mg/L cause visible chlorosis. It is in agreement with previous studies showing significant effect of tiamulin on green algae and cyanobacteria. Tiamuline has a low effect on microorganisms. The lower toxicity was observed for heterotrophic microorganisms (30minEC₅₀ = 1656 ± 296 mg/L), than Vibrio fisheri (30minEC₅₀ = 492 ± 21) and the most sensitive organisms were nitrifying microorganisms (30minEC₅₀ = 183 ± 127 mg/L). The reason is most probably the mode of action of tiamulin being effective to gram-positive bacteria while gram-negative (e.g., Vibrio fisheri) are more tolerant to tiamulin. Biodegradation of tiamulin was very slow with a long lag-phase being 20 days. The maximal degradation reached 40 ± 2 % in 43 days of the test and tiamulin as other antibiotics (e.g. ciprofloxacin) are not easily biodegradable. Tiamulin is widely used antibiotic in veterinary medicine and thus present in the environment. According to our results, tiamulin can have negative effect on water fleas and duckweeds, but the concentrations are several magnitudes higher than that found in any environmental compartment. Tiamulin is low toxic to tested microorganisms, but it is very low biodegradable and thus possibly persistent in the environment.Keywords: antibiotics, biodegradability, tiamulin, toxicity
Procedia PDF Downloads 1861651 Aryne Mediated, Transition-Metal Free Arylations of Quinolines for Medicinal and Materials Applications
Authors: Rakesh Kumar, Shashi Janeoo, Ankit Dhiman, Siddharth Chopra
Abstract:
Arynes are versatile reactive intermediates that offer broad opportunities in green organic synthesis. Arynes are potential aryl group surrogates for the transition metal-free environment friendly arylation reactions. Regioselective arylations of quinolines were achieved by the reactions of quinoline N-oxides with aryne intermediates generated in situ from the Kobayashi precursors. Various 2-substituted quinolines provided 3-arylated-2-substituted quinolines under ambient conditions. Acridine N-oxides also reacted well and provided unusual 4-arylacridines. Various fluorine containing 2,3-diarylquinaolines prepared using this approach were evaluated for antibacterial activity and two compounds inhibited the drug-resistant strains of S-aureus with a good selectivity index. Further, the 2,3-diarylquinolines as the potential optoelectronic materials were prepared by the aryne chemistry approach and their optical and electronic properties for such applications are under study. The aryne intermediates provide an effective Green Chemistry tool to achieve versatile arylated heteroarenes for diverse applications.Keywords: arynes, arylation, quinolines, acridines.
Procedia PDF Downloads 921650 Investigating Anti-bacterial and Anti-Covid-19 Virus Properties and Mode of Action of Mg(Oh)₂ and Copper-Infused Mg(Oh)₂ Nanoparticles on Coated Polypropylene Surfaces
Authors: Saleh Alkarri, Melinda Frame, Dimple Sharma, John Cairney, Lee Maddan, Jin H. Kim, Jonathan O. Rayner, Teresa M. Bergholz, Muhammad Rabnawaz
Abstract:
Reported herein is an investigation of anti-bacterial and anti-virus properties, mode of action of Mg(OH)₂ and copper-infused Mg(OH)₂ nanoplatelets (NPs) on melt-compounded and thermally embossed polypropylene (PP) surfaces. The anti-viral activity for the NPs was studied in aqueous liquid suspensions against SARS-CoV-2, and the mode of action was investigated on neat NPs and PP samples that were thermally embossed with NPs. Anti-bacterial studies for melt-compounded NPs in PP confirmed approximately 1 log reduction of E. coli populations in 24 h, while for thermally embossed NPs, an 8 log reduction of E. coli populations was observed. In addition, the NPs exhibit anti-viral activity against SARS-CoV-2. Fluorescence microscopy revealed that reactive oxygen species (ROS) is the main mode of action through which Mg(OH)₂ and Cu-Infused Mg(OH)₂act against microbes. Plastics with anti-microbial surfaces from where biocides are non-leachable are highly desirable. This work provides a general fabrication strategy for developing anti-microbial plastic surfaces.Keywords: anti-microbial activity, E. coli K-12 MG1655, anti-viral activity, SARS-CoV-2, copper-infused magnesium hydroxide, non-leachable, ROS, compounding, surface embossing, dyes
Procedia PDF Downloads 661649 Growth of SWNTs from Alloy Catalyst Nanoparticles
Authors: S. Forel, F. Bouanis, L. Catala, I. Florea, V. Huc, F. Fossard, A. Loiseau, C. Cojocaru
Abstract:
Single wall carbon nanotubes are seen as excellent candidate for application on nanoelectronic devices because of their remarkable electronic and mechanical properties. These unique properties are highly dependent on their chiral structures and the diameter. Therefore, structure controlled growth of SWNTs, especially directly on final device’s substrate surface, are highly desired for the fabrication of SWNT-based electronics. In this work, we present a new approach to control the diameter of SWNTs and eventually their chirality. Because of their potential to control the SWNT’s chirality, bi-metalics nanoparticles are used to prepare alloy nanoclusters with specific structure. The catalyst nanoparticles are pre-formed following a previously described process. Briefly, the oxide surface is first covered with a SAM (self-assembled monolayer) of a pyridine-functionalized silane. Then, bi-metallic (Fe-Ru, Co-Ru and Ni-Ru) complexes are assembled by coordination bonds on the pre-formed organic SAM. The resultant alloy nanoclusters were then used to catalyze SWNTs growth on SiO2/Si substrates via CH4/H2 double hot-filament chemical vapor deposition (d-HFCVD). The microscopy and spectroscopy analysis demonstrate the high quality of SWNTs that were furthermore integrated into high-quality SWNT-FET.Keywords: nanotube, CVD, device, transistor
Procedia PDF Downloads 3171648 Production of Premium Quality Cinnamon Bark Powder Using Cryogenic Grinding
Authors: Monika R. Bhoi, R. F. Sutar, Bhaumik B. Patel
Abstract:
The objective of this research paper is to obtain the premium quality of cinnamon bark powder through cryogenic grinding technology. The effect of grinding temperature (0, -20, -40, -60, -80 and -100˚C), feed rate (8, 9 and 10 kg/h), and sieve size (0.8, 1.0 and 1.5 mm) were evaluated with respect to grinding time, volatile oil content, particle size, energy consumption, and liquid nitrogen consumption. Cryogenic grinding process parameters were optimized to obtain premium quality cinnamon bark powder was carried out using three factorial completely randomized design. The optimization revealed that grinding of cinnamon bark at -80⁰C temperature using 0.8 mm sieve size and 10 kg/h feed rate resulted in premium quality cinnamon bark powder containing volatile oil 3.01%. In addition, volatile oil retention in cryogenically ground powder was 88.23%, whereas control (ambient grinding) had 33.11%. Storage study of premium quality cryogenically ground powder was carried out under accelerated storage conditions (38˚C & 90% R.H). Accelerated storage of cryoground powder was found to be advantageous over the conventional ground for extended storage of the ground cinnamon powder with retention of its nutritional quality. Hence, grinding of spices at optimally low cryogenic temperature is a promising technology for the production of its premium quality powder economically.Keywords: cinnamon bark, cryogenic grinding, feed rate, volatile oil
Procedia PDF Downloads 1691647 Hypoglycemic Effect of Flavonoids from the Leaves of Olea europaea L. in Normal and Alloxan Induced Diabetic Rats
Authors: N. Benhabyles, K. Arab, O. Bouchenak, A. Baz
Abstract:
The hypoglycemic and antihyperglycemic effects of flavonoids rich extract obtained from leaves of Olea europaea L. was analyzed in normal and alloxan induced diabetic rats. The extraction was performed by confrontation with organic solvents method, which yielded four extracts: Di ethyl Ether, Ethyl Acetate, Butanolic, and Aqueous extract. A single oral dose of 100 mg/kg of the different extract was evaluated for hypoglycemic activity in a glucose tolerance test in normal rats and 200 mg/kg, 400 mg/kg, 600 mg/kg of AE for anti-hyperglycemic activity in alloxan-induced (125 mg/kg) diabetic rats. Dosage of 100 mg/kg of the extract significantly decreased (p<0.05) blood glucose levels in the glucose tolerance test after 120 min. However, a better activity is obtained with the AE. For the anti-hyperglycemic study, the results showed a substantial decrease in blood glucose during the 2 h of treatment for all groups treated with different doses of flavonoids. From the results it can be concluded that flavonoids of O. europaea can be a potential candidate in treating the hyperglycemic conditions.Keywords: alloxan, antihyperglycemic effect, diabetes mellitus, flavonoids, hypoglycemic effect, Olea europaea L.
Procedia PDF Downloads 3731646 Comparative Analysis of Enzyme Activities Concerned in Decomposition of Toluene
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
In recent years, pollutions of the environment by toxic substances become a serious problem. While there are many methods of environmental clean-up, the methods by microorganisms are considered to be reasonable and safety for environment. Compost is known that it catabolize the meladorous substancess in its production process, however the mechanism of its catabolizing system is not known yet. In the catabolization process, organic matters turn into inorganic by the released enzymes from lots of microorganisms which live in compost. In other words, the cooperative of activated enzymes in the compost decomposes malodorous substances. Thus, clarifying the interaction among enzymes is important for revealing the catabolizing system of meladorous substance in compost. In this study, we utilized statistical method to infer the interaction among enzymes. We developed a method which combined partial correlation with cross correlation to estimate the relevance between enzymes especially from time series data of few variables. Because of using cross correlation, we can estimate not only the associative structure but also the reaction pathway. We applied the developed method to the enzyme measured data and estimated an interaction among the enzymes in decomposition mechanism of toluene.Keywords: enzyme activities, comparative analysis, compost, toluene
Procedia PDF Downloads 2731645 Determination of the Oxidative Potential of Organic Materials: Method Development
Authors: Jui Afrin, Akhtarul Islam
Abstract:
In this paper, the solution of glucose, yeast and glucose yeast mixture are being used as sample solution for determining the chemical oxygen demand (COD). In general COD determination method used to determine the different rang of oxidative potential. But in this work has shown to determine the definite oxidative potential for different concentration for known COD value and wanted to see the difference between experimental value and the theoretical value for evaluating the method drawbacks. In this study, made the values of oxidative potential like 400 mg/L, 500 mg/L, 600 mg/L, 700 mg/L and 800mg/L for various sample solutions and determined the oxidative potential according to our developed method. Plotting the experimental COD values vs. sample solutions of various concentrations in mg/L to draw the curve. From these curves see that the curves for glucose solution is not linear; its deviate from linearity for the lower concentration and the reason for this deviation is unknown. If these drawback can be removed this method can be effectively used to determine Oxidative Potential of Industrial wastewater (such as: Leather industry wastewater, Municipal wastewater, Food industry wastewater, Textile wastewater, Pharmaceuticals waste water) that’s why more experiment and study required.Keywords: bod (biological oxygen demand), cod (chemical oxygen demand), oxidative potential, titration, waste water, development
Procedia PDF Downloads 2291644 MBR-RO System Operation in Quantitative and Qualitative Promotion of Waste Water Cleaning: Case Study of Shokohieyh Qoms’ Waste Water Cleaning
Authors: A. A. Hassani, M. Nasri Nasrabadi
Abstract:
According to population growth and increasing water needs of industrial and agricultural sections and lack of existing water sources, also increases of wastewater and new wastewater treatment plant construction’s high costs, it is inevitable to reuse wastewater with the approach of increasing wastewater treatment capacity and output sewage quality. In this regard, the first sewage reuse plan in industrial uses was designed with the approach of qualitative and quantitative improvement due to the increased organic load of the output sewage of Qom Shokohieh city’s’ in wastewater treatment plant. This research investigated qualitative factors COD, BOD, TSS, TDS, and input and output heavy metal of MBR-RO system and ability of increase wastewater acceptance capacity by existing in wastewater treatment plant. For this purpose, experimental results of seven-month navigation system have been used from 07/01/2013 to 02/01/2014. Existing data analysis showed that MBR system is able to remove 93.2% COD, 94.4% BOD, 13.8% TDS, 98% heavy metals and RO system is able to remove 98.9% TDS. This study showed that MBR-RO integration system is able to increase the capacity of refinery by 30%.Keywords: industrial wastewater, wastewater reuse, MBR, RO
Procedia PDF Downloads 2891643 Monitoring and Evaluation of the Reverse Osmosis Reject Wastewater from the Sulaibiya Wastewater Treatment Plant in Kuwait
Authors: Mishari Khajah, Mohd. Elmuntasir Ahmed, Abdullah Al-Matouq, Farah Al-Ajeel, Fatemah Dashti, Ahmed Shishter
Abstract:
The overall aim of this study was to monitor and evaluate the effluent quality of a reverse osmosis (RO) reject wastewater from the biggest wastewater treatment plant in the world that is using RO and ultrafiltration membranes in their processes to reclaim water for indirect potable water reuse from municipal wastewaters. The RO reject wastewater or brine included various contaminants that could harm the human health and the environment such as trace organics, organic matters, heavy metals, nutrients and pathogens. Unfortunately, there are no legally binding regulatory guidelines for brine management in Kuwait as many countries around the world. This study monitors and evaluate the RO reject wastewater (brine) generated from the Sulaibiya Wastewater Treatment Plant. Samples were collected and analyzed about 37 parameters for one-year period, twice a month, and compare it to Kuwait Environment Public Authority, KEPA. Results showed that the heavy metals parameters were above KEPA standards, which needs to be treated.Keywords: domestic wastewater, management, potable water, RO reject wastewater, Sulaibiya wastewater treatment plant
Procedia PDF Downloads 931642 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms
Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli
Abstract:
Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning
Procedia PDF Downloads 731641 Studies of Heavy Metal Ions Removal Efficiency in the Presence of Anionic Surfactant Using Ion Exchangers
Authors: Anna Wolowicz, Katarzyna Staszak, Zbigniew Hubicki
Abstract:
Nowadays heavy metal ions as well as surfactants are widely used throughout the world due to their useful properties. The consequence of such widespread use is their significant production. On the other hand, the increasing demand for surfactants and heavy metal ions results in production of large amounts of wastewaters which are discharged to the environment from mining, metal plating, pharmaceutical, cosmetic, fertilizer, paper, pesticide and electronic industries, pigments producing, petroleum refining and from autocatalyst, fibers, food, polymer industries etc. Heavy metal ions are non-biodegradable in the environment, cable of accumulation in living organisms and organs, toxic and carcinogenic. On the other hand, not only heavy metal ions but also surfactants affect the purity of water and soils. Some of surfactants are also toxic, harmful and dangerous because they are able to penetrate into surface waters causing foaming, blocked diffusion of oxygen from the atmosphere and act as emulsifiers of hydrophobic substances and increase solubility of many the dangerous pollutants. Among surfactants the anionic ones dominate and their share in the global production of surfactants is around 50 ÷ 60%. Due to the negative impact of heavy metals and surfactants on aquatic ecosystems and living organisms, removal and monitoring of their concentration in the environment is extremely important. Surfactants and heavy metal ions removal can be achieved by different biological and physicochemical methods. The adsorption as well as the ion-exchange methods play here a significant role. The aim of this study was heavy metal ions removal from aqueous solutions using different types of ion exchangers in the presence of anionic surfactants. Preliminary studies of copper(II), nickel(II), zinc(II) and cobalt(II) removal from acidic solutions using ion exchangers (Lewatit MonoPlus TP 220, Lewatit MonoPlus SR 7, Purolite A 400 TL, Purolite A 830, Purolite S 984, Dowex PSR 2, Dowex PSR3, Lewatit AF-5) allowed to select the most effective ones for the above mentioned sorbates and then to checking their removal efficiency in the presence of anionic surfactants. As it was found out Lewatit MonoPlus TP 220 of the chelating type, show the highest sorption capacities for copper(II) ions in comparison with the other ion exchangers under discussion, e.g. 9.98 mg/g (0.1 M HCl); 9.12 mg/g (6 M HCl). Moreover, cobalt(II) removal efficiency was the highest in 0.1 M HCl using also Lewatit MonoPlus TP 220 (6.9 mg/g) similar to zinc(II) (9.1 mg/g) and nickiel(II) (6.2 mg/g). As the anionic surfactant sodium dodecyl sulphate (SDS) was used and surfactant parameters such as viscosity (η), density (ρ) and critical micelle concentration (CMC) were obtained: η = 1.13 ± 0,01 mPa·s; ρ = 999.76 mg/cm3; CMC = 2.26 g/cm3. The studies of copper(II) removal from acidic solutions in the presence of SDS of different concentration show negligible effects on copper(II) removal efficiency. The sorption capacity of Cu(II) from 0.1 M acidic solution of 500 mg/L initial concentration was equal to 46.8 mg/g whereas in the presence of SDS 45.3 mg/g (0.1 mg SDS/L), 47.1 mg/g (0.5 mg SDS/L), 46.6 mg/g (1 mg SDS/L).Keywords: anionic surfactant, heavy metal ions, ion exchanger, removal
Procedia PDF Downloads 1431640 Elaboration of Polymethylene Blue on Conducting Glassy Substrate and Study of Its Optical, Electrical and Photoelectrochemical Characterization
Authors: Abdi Djamila, Haffar Hichem
Abstract:
The poly methylene bleu (PMB) has been successfully electro deposited on fluorine doped tin oxide (FTO) conducting glass as substrate. Its optical, electrical and photoelectrochemical characterizations have been carried out in order to show the performances of such polymer. The deposited film shows a good electric conductivity which is well confirmed by the low gap value determinated optically by UV–vis spectroscopy. Like all polymers the PMB presents an absorption difference in the visible range function of the polarization potential, it is expressed by the strong conjugation at oxidized state but is weakened with leucoform formation at reduced state. The electrochemical analysis of the films permit to show the cyclic voltamperogram with the anodic oxidation and cathodic reduction states of the polymer and to locate the corresponding energy levels HOMO and LUMO of this later. The electrochemical impedance spectroscopy permit to see the conductive character of such film and to calculate important parameters as Rtc and CPE. The study of the photoelectro activity of our polymer shows that under exposure to intermittent light source this later exhibit important photocurrents which enables it to be used in photo organic ells.Keywords: polymethylene blue, electropolymerization, homo-lumo, photocurrents
Procedia PDF Downloads 2711639 Solid-State Luminescence of Fluorenone Grafted onto Cellulose Aldehyde Backbone Using Different Organic Amine Spacers
Authors: Isam M. Arafa, Mazin Y. Shatnawi, Yaser A. Yousef, Batool Zaid Al-Momani
Abstract:
The present work describes the preparation, characterization, and luminescence of a series of fluorenone (FL) based luminophores grafted onto modified cellulose microfibers. The FL is condensed onto cellulose aldehyde using three diamine spacers (H₂N-NH₂, H₂N(CH₂)₂NH₂ and H₂N(CH₂)₃NH₂) to afford Cell=Spacer=FL. The obtained products were characterized by spectroscopic (FT-IR, UV–Vis), thermal gravimetric analysis (TGA), and microscopic (Optical, SEM) techniques. The UV-Vis spectra of the FL=N(CH₂)ₓNH₂ (x = 0, 2, 3) moieties show that they are transparent in the 375- 800 nm region while they exhibit intense absorption band below 350 nm attributed to n-π* and π-π* transitions. The solid-state photoluminescence (PLs-s) of the cold-pressed pellets of the FL=N(CH₂)ₓNH₂ and Cell=Spacer=FL placed in a quartz cuvette show strong emission in the 500-550 nm region upon irradiation with Xe lamp light (λex = 320 nm). The PLs-s green emission of the grafted Cell=Spacer=FL was evaluated relative to that of the FL-based precursor. These grafted conjugated products have the potential to be used as analyte sensors for typical nitroaromatics/aromatic amines and be further extended to immunoassay studies for aromatic amino acids such as phenylalanine and histidine.Keywords: luminescence, cellulose, fluorenone, grafting, solid state
Procedia PDF Downloads 721638 Catalytic Decomposition of High Energy Materials Using Nanoparticles of Copper Chromite
Authors: M. Sneha Reddy, M. Arun Kumar, V. Kameswara Rao
Abstract:
Chromites are binary transition metal oxides with a general formula of ACr₂O₄, where A = Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, and Cu²⁺. Chromites have a normal-type spinel structure with interesting applications in the areas of applied physics, material sciences, and geophysics. They have attracted great consideration because of their unique physicochemical properties and tremendous technological applications in nanodevices, sensor elements, and high-temperature ceramics with useful optical properties. Copper chromite is one of the most efficient spinel oxides, having pronounced commercial application as a catalyst in various chemical reactions like oxidation, hydrogenation, alkylation, dehydrogenation, decomposition of organic compounds, and hydrogen production. Apart from its usage in chemical industries, CuCr₂O₄ finds its major application as a burn rate modifier in solid propellant processing for space launch vehicles globally. Herein we synthesized the nanoparticles of copper chromite using the co-precipitation method. The synthesized nanoparticles were characterized by XRD, TEM, SEM, BET, and TG-DTA. The synthesized nanoparticles of copper chromites were used as a catalyst for the thermal decomposition of various high-energy materials.Keywords: copper chromite, coprecipitation method, high energy materials, catalytic thermal decomposition
Procedia PDF Downloads 771637 Intertidal Fauna of Kuwait's Coral Islands and Failaka Island
Authors: Manal Alkandari, Valeriy Skryabin, James Bishop
Abstract:
Intertidal transects of four of Kuwait’s eight islands were sampled qualitatively and quantitative fauna. In total, 11 transects were sampled during spring tide lows (0 chart datum) as follows: Kubber, two transects; Qaurh, two transects; Umm Al-Maradem, three transects; and Failaka, four trasects. Qualitative and quantitative samples were collected at high, mid 1, mid 2, and low tides. In total, 270 invertebrate taxa and 15 vertebrate (fishes) taxa were identified. Failaka Island with 224 taxa was the most diverse. Second was Umm Al-Maradim with 84 taxa, followed by Kubbar with 47, and finally Qaruh with 38. Polychaetes were the most diverse group accounting for 31% of the taxa; decapods accounted for 17 %; gastropods,14 %; bivalves, 12 %; and amphipods 11%. Fishes and echinoderms contributed on 5 and 3.5 %, respectively. Three Families of polychaetes are reported for the first time in the Arabian Gulf: Protodrilidae, Nerillidae, and Saccocirridae. Island sediments consisted mostly of sand, but a few transects contained up to 40% gravel. Total organic carbon was less than 1% at all transects, but total petroleum hydrocarbons (TPH) ranged up to 100 ppm on Qaru. This is expected because of natural seeps in the area constantly supplying the intertidal zone with oil globules. TPH on Umm Al-Maradim was less than 10 ppm, except at high tide on one transect where concentrations reached 40 ppm. In general, TPHs were less than 10 ppm.Keywords: intertidal, Kuwaits waters, marine, invertebrates, fish
Procedia PDF Downloads 4991636 Effectiveness of the Flavonoids Isolated from Thymus inodorus by Different Solvents against Some Pathogenis Microorganisms
Authors: N. Behidj, K. Benyounes, T. Dahmane, A. Allem
Abstract:
The aim of this study was to investigate the antimicrobial activity of flavonoids isolated from the aerial part of a medicinal plant which is Thymus inodorusby the middle agar diffusion method on following microorganisms. We have Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, AspergillusNiger, Aspergillus fumigatus and Candida albicans. During this study, flavonoids extracted by stripping with steam are performed. The yields of flavonoids is 7.242% for the aqueous extract and 28.86% for butanol extract, 29.875% for the extract of ethyl acetate and 22.9% for the extract of di - ethyl. The evaluation of the antibacterial effect shows that the diameter of the zone of inhibition varies from one microorganism to another. The operation values obtained show that the bacterial strain P fluoresces, and 3 yeasts and molds; A. Niger, A. fumigatus and C. albicansare the most resistant. But it is noted that, S. aureus is shown more sensitive to crude extracts, the stock solution and the various dilutions. Finally for the minimum inhibitory concentration is estimated only with the crude extract of Thymus inodorus flavonoid.Indeed, these extracts inhibit the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria to Gram -, it is limited to a concentration of 0.5%.Keywords: antimicrobial activity, organic extracts, aqueous extracts, Thymus numidicus
Procedia PDF Downloads 1851635 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses
Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi
Abstract:
Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.Keywords: fire detector, rack, response characteristic, warehouse
Procedia PDF Downloads 746