Search results for: context aware business process management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28272

Search results for: context aware business process management

912 Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles

Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş

Abstract:

Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.

Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin

Procedia PDF Downloads 284
911 The Active Social Live of #Lovewins: Understanding the Discourse of Homosexual Love and Rights in Thailand

Authors: Tinnaphop Sinsomboonthong

Abstract:

The hashtag, #LoveWins, has been widely used for celebrating the victory of the LGBTQ movement since June 2015 when the US Supreme Court enacted the rights of same-sex marriage. Nowadays, the hashtag is generally used among active social media users in many countries, including Thailand. Amidst the political conflict between advocates of the junta-backed legislation related to same-sex marriage laws, known as ‘Thailand’s Civil Partnership Draft Bills,’ and its detractors, the hashtag becomes crucial for Thailand’s 2019 national election season and shortly afterward as it was one of the most crucial parts of a political campaign to rebrand many political parties’ image, create an LGBT-friendly atmosphere and neutralize the bi-polarized politics of the law. The use of the hashtag is, therefore, not just an online entertainment but a politico-discursive tool, used by many actors for many purposes. Behind the confrontation between supporters and opposers of the law, the hashtag is used by both sides to highlight the Western-centric normativity of homosexual love, closely associated with Eurocentric modernity and heteronormativity. As an online ethnographical study, this paper aims to analyze how #LoveWins is used among Thai social media users in late 2018 to mid-2019 and how it is signified by Thai social media users during the Drafted-Bills period and the 2019 national election. A number of preliminary surveys of data on Twitter were conducted in December 2018 and, more intensely, in January 2019. Later, the data survey was officially conducted twice during February and April 2019, while the data collection was done during May-June 2019. Only public posts on Twitter that include the hashtag, #LoveWins, or any hashtags quoting ‘love’ and ‘wins’ are the main targets of this research. As a result of this, the use of the hashtag can be categorized into three levels, including banal decoration, homosexual love celebration, and colonial discourse on homosexual love. Particularly in the third type of the use of the hashtag, discourse analysis is applied to reveal that this hashtag is closely associated with the discourse of development and modernity as most of the descriptive posts demonstrate aspirations to become more ‘developed and modernized’ like many Western countries and Taiwan, the LGBT capital in Asia. Thus, calls for the ‘right to homosexual love’ and the ‘right to same-sex marriage’ in Thailand are shaped and formulated within the discursive linkage between modernity, development, and love. Also, the use of #LoveWins can be considered as a de-queering process of love as only particular types of gender identity, sexual orientation, and relationships that reflect Eurocentric modernity and heteronormativity are acceptable and advocated. Due to this, more inclusive queer loves should be supported rather than a mere essentialist-traditionalist homosexual love. Homonormativity must be deconstructed, and love must no longer be reserved for only one particular type of relationship that is standardized from/by the West. It must become more inclusive.

Keywords: #LoveWins, homosexual love, LGBT rights, same-sex marriage

Procedia PDF Downloads 138
910 Biocompatibility assessment of different origin Barrier Membranes for Guided Bone Regeneration

Authors: Antonio Munar-Frau, Sascha Klismoch, Manfred Schmolz, Federico Hernandez-Alfaro, Jordi Caballe-Serrano

Abstract:

Introduction: Biocompatibility of biomaterials has been proposed as one of the main criteria for treatment success. For guided bone regeneration (GBR), barrier membranes present a conflict given the number of origins and modifications of these materials. The biologic response to biomaterials is orchestrated by a series of events leading to the integration or rejection of the biomaterial, posing questions such as if a longer occlusive property may trigger an inflammatory reaction. Whole blood cultures are a solution to study the immune response to drugs or biomaterials during the first 24-48 hours. The aim of this study is to determine the early immune response of different origins and chemical modifications of barrier membranes. Materials & Methods: 5 different widely used barrier membranes were included in this study: Acellular dermal matrix (AlloDerm, LifeCell®), Porcine Peritoneum (BioGide, Geistlich Pharma®), Porcine Pericardium (Jason, Botiss Biomaterials GmbH®), Porcine Cross-linked collagen (Ossix Plus, Datum Dental®) and d-PTFE (Cytoplast TXT, Osteogenics Biomedical®). Blood samples were extracted from 3 different healthy donors and incubated with the different samples of barrier membranes for 24 hours. After the incubation time, serum samples were obtained and analyzed by means of biocompatibility assays taking into account 42 markers. Results: In an early stage of the inflammatory response, the Acellular dermal matrix, porcine peritoneum and porcine cross-linked collagen expressed similar patterns of cytokine expression with a great manifestation of ENA 78. Porcine pericardium and d-PTFE presented similar cytokine activation, especially for MMP-3 and MMP-9, although other cytokines were highlighted with lower expression. For the later immune response, Porcine peritoneum and acellular dermal matrix MCP-1 and IL-15 were evident. Porcine pericardium, porcine cross-linked collagen and d-PTFE presented a high expression of IL-16 and lower manifestation of other cytokines. Different behaviors depending on an earlier or later stage of the inflammation process were observed. Barrier membrane inflammatory expression does not only differ depending on the origin, variables such as treatment of the collagen and polymers may also have a great impact on the cytokine expression of the studied barrier membranes during inflammation. Conclusions: Surface treatment and modifications might affect the biocompatibility of the membranes, as different cytokine expressions were evidently depending on the origin of the biomaterial. This study is only a brushstroke regarding the biocompatibility of materials, as it is one of the pioneer studies for ex vivo barrier membranes assays. Studies regarding surface modification are needed in order to clarify mystifications of barrier membrane science.

Keywords: biomaterials, bone regeneration, biocompatibility, inflammation

Procedia PDF Downloads 158
909 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique

Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti

Abstract:

Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.

Keywords: cordierite, infiltration technique, porous ceramics, sol-gel

Procedia PDF Downloads 270
908 Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir

Authors: Worawanna Panyakotkaew, Falan Srisuriyachai

Abstract:

Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically.

Keywords: cyclic steam injection, heterogeneity, reservoir simulation, thermal recovery

Procedia PDF Downloads 457
907 Potential Cross-Protection Roles of Chitooligosaccharide in Alleviating Cd Toxicity in Edible Rape (Brassica rapa L.)

Authors: Haiying Zong, Yi Yuan, Pengcheng Li

Abstract:

Cadmium (Cd), one of the toxic heavy metals, has high solubility and mobility in agricultural soils and is readily taken up by roots and transported to the vegetative and reproductive organs which can cause deleterious effects on crop yield and quality. Excess Cd in plants can interfere with many metabolic processes, such as photosynthesis, transpiration, respiration or nutrients homeostasis. Generally, the main methods to reduce Cd accumulation in plants are to decrease the concentration of Cd in the soil solution through reduction of Cd influx into the soil system, site selection, and management practices. However, these approaches can be very costly and consume a lot of energy Therefore, it is critical to develop effective approaches to reduce the Cd concentration in plants. It is proved that chitooligosaccharide (COS) can enhance the plant's tolerance to abiotic stress including drought stress, salinity stress, and toxic metal stress. However, so far little information is known about whether foliar application with COS modulates Cd-induced toxicity in plants. The metal detoxification processes of plants treated with COS also remain unclear. In this study, edible rape (Brassica rapa L.), one of the most widely consumed leafy vegetables, was selected as an experimental mode plant. The effect of foliar application with COS on reducing Cd accumulation in edible rape was investigated. Moreover, Cd subcellular distribution pattern in response to Cd stress in the rape plant sprayed with COS was further tested in order to explore the potential detoxification mechanisms in plants. The results demonstrated that spraying COS at different concentrations (25, 50,100 and 200 mg L-1) possess diverse functions including growth-promoting,chlorophyll contents-enhancing, malondialdehyde (MDA) level-decreasing in leaves, Cd2+ concentration-decreasingin shoots and roots of edible rape under Cd stress. In addition, it was found that COS can also dramatically improve superoxide dismutase (SOD) activity, catalase (CAT) activity and peroxidase (POX) activity of edible rape leaves. The relievingeffect of COS was related to theconcentration and COS with 50-100 mg L-1 displayed the best activity. Furtherly, theexperiments results exhibitedthat COS could decrease the proportion of Cd in the organelle fraction of leaves by 40.1% while enhance the proportion of Cd in the soluble fraction by 13.2% at the concentration of 50 mg L-1. The above results showed that COS may have thepotential to improve plant resistance to Cd via promoting antioxidant enzyme activities and altering Cd subcellular distribution. All the results described here open up a new way to study the protection role of COS in alleviating Cd tolerance and lay the foundation for future research about the detoxification mechanism at subcellular level.

Keywords: chitooligosaccharide, cadmium, edible rape (Brassica rapa L.), subcellular distribution

Procedia PDF Downloads 294
906 Incidence and Risk Factors of Traumatic Lumbar Puncture in Newborns in a Tertiary Care Hospital

Authors: Heena Dabas, Anju Paul, Suman Chaurasia, Ramesh Agarwal, M. Jeeva Sankar, Anurag Bajpai, Manju Saksena

Abstract:

Background: Traumatic lumbar puncture (LP) is a common occurrence and causes substantial diagnostic ambiguity. There is paucity of data regarding its epidemiology. Objective: To assess the incidence and risk factors of traumatic LP in newborns. Design/Methods: In a prospective cohort study, all inborn neonates admitted in NICU and planned to undergo LP for a clinical indication of sepsis were included. Neonates with diagnosed intraventricular hemorrhage (IVH) of grade III and IV were excluded. The LP was done by operator - often a fellow or resident assisted by bedside nurse. The unit has policy of not routinely using any sedation/analgesia during the procedure. LP is done by 26 G and 0.5-inch-long hypodermic needle inserted in third or fourth lumbar space while the infant is in lateral position. The infants were monitored clinically and by continuous measurement of vital parameters using multipara monitor during the procedure. The occurrence of traumatic tap along with CSF parameters and other operator and assistant characteristics were recorded at the time of procedure. Traumatic tap was defined as presence of visible blood or more than 500 red blood cells on microscopic examination. Microscopic trauma was defined when CSF is not having visible blood but numerous RBCs. The institutional ethics committee approved the study protocol. A written informed consent from the parents and the health care providers involved was obtained. Neonates were followed up till discharge/death and final diagnosis was assigned along with treating team. Results: A total of 362 (21%) neonates out of 1726 born at the hospital were admitted during the study period (July 2016 to January, 2017). Among these neonates, 97 (26.7%) were suspected of sepsis. A total of 54 neonates were enrolled who met the eligibility criteria and parents consented to participate in the study. The mean (SD) birthweight was 1536 (732) grams and gestational age 32.0 (4.0) weeks. All LPs were indicated for late onset sepsis at the median (IQR) age of 12 (5-39) days. The traumatic LP occurred in 19 neonates (35.1%; 95% C.I 22.6% to 49.3%). Frank blood was observed in 7 (36.8%) and in the remaining, 12(63.1%) CSF was detected to have microscopic trauma. The preliminary risk factor analysis including birth weight, gestational age and operator/assistant and other characteristics did not demonstrate clinically relevant predictors. Conclusion: A significant number of neonates requiring lumbar puncture in our study had high incidence of traumatic tap. We were not able to identify modifiable risk factors. There is a need to understand the reasons and further reduce this issue for improving management in NICUs.

Keywords: incidence, newborn, traumatic, lumbar puncture

Procedia PDF Downloads 294
905 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation

Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras

Abstract:

The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.

Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure

Procedia PDF Downloads 229
904 Alternate Approaches to Quality Measurement: An Exploratory Study in Differentiation of “Quality” Characteristics in Services and Supports

Authors: Caitlin Bailey, Marian Frattarola Saulino, Beth Steinberg

Abstract:

Today, virtually all programs offered to people with intellectual and developmental disabilities tout themselves as person-centered, community-based and inclusive, yet there is a vast range in type and quality of services that use these similar descriptors. The issue is exacerbated by the fields’ measurement practices around quality, inclusion, independent living, choice and person-centered outcomes. For instance, community inclusion for people with disabilities is often measured by the number of times person steps into his or her community. These measurement approaches set standards for quality too low so that agencies supporting group home residents to go bowling every week can report the same outcomes as an agency that supports one person to join a book club that includes people based on their literary interests rather than disability labels. Ultimately, lack of delineation in measurement contributes to the confusion between face value “quality” and true quality services and supports for many people with disabilities and their families. This exploratory study adopts alternative approaches to quality measurement including co-production methods and systems theoretical framework in order to identify the factors that 1) lead to high-quality supports and, 2) differentiate high-quality services. Project researchers have partnered with community practitioners who are all committed to providing quality services and supports but vary in the degree to which they are actually able to provide them. The study includes two parts; first, an online survey distributed to more than 500 agencies that have demonstrated commitment to providing high-quality services; and second, four in-depth case studies with agencies in three United States and Israel providing a variety of supports to children and adults with disabilities. Results from both the survey and in-depth case studies were thematically analyzed and coded. Results show that there are specific factors that differentiate service quality; however meaningful quality measurement practices also require that researchers explore the contextual factors that contribute to quality. These not only include direct services and interactions, but also characteristics of service users, their environments as well as organizations providing services, such as management and funding structures, culture and leadership. Findings from this study challenge researchers, policy makers and practitioners to examine existing quality service standards and measurements and to adopt alternate methodologies and solutions to differentiate and scale up evidence-based quality practices so that all people with disabilities have access to services that support them to live, work, and enjoy where and with whom they choose.

Keywords: co-production, inclusion, independent living, quality measurement, quality supports

Procedia PDF Downloads 399
903 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize

Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu

Abstract:

The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.

Keywords: maize weevil, resistant, parameters, mechanisms, preference

Procedia PDF Downloads 306
902 Slope Stability Assessment in Metasedimentary Deposit of an Opencast Mine: The Case of the Dikuluwe-Mashamba (DIMA) Mine in the DR Congo

Authors: Dina Kon Mushid, Sage Ngoie, Tshimbalanga Madiba, Kabutakapua Kakanda

Abstract:

Slope stability assessment is still the biggest challenge in mining activities and civil engineering structures. The slope in an opencast mine frequently reaches multiple weak layers that lead to the instability of the pit. Faults and soft layers throughout the rock would increase weathering and erosion rates. Therefore, it is essential to investigate the stability of the complex strata to figure out how stable they are. In the Dikuluwe-Mashamba (DIMA) area, the lithology of the stratum is a set of metamorphic rocks whose parent rocks are sedimentary rocks with a low degree of metamorphism. Thus, due to the composition and metamorphism of the parent rock, the rock formation is different in hardness and softness, which means that when the content of dolomitic and siliceous is high, the rock is hard. It is softer when the content of argillaceous and sandy is high. Therefore, from the vertical direction, it appears as a weak and hard layer, and from the horizontal direction, it seems like a smooth and hard layer in the same rock layer. From the structural point of view, the main structures in the mining area are the Dikuluwe dipping syncline and the Mashamba dipping anticline, and the occurrence of rock formations varies greatly. During the folding process of the rock formation, the stress will concentrate on the soft layer, causing the weak layer to be broken. At the same time, the phenomenon of interlayer dislocation occurs. This article aimed to evaluate the stability of metasedimentary rocks of the Dikuluwe-Mashamba (DIMA) open-pit mine using limit equilibrium and stereographic methods Based on the presence of statistical structural planes, the stereographic projection was used to study the slope's stability and examine the discontinuity orientation data to identify failure zones along the mine. The results revealed that the slope angle is too steep, and it is easy to induce landslides. The numerical method's sensitivity analysis showed that the slope angle and groundwater significantly impact the slope safety factor. The increase in the groundwater level substantially reduces the stability of the slope. Among the factors affecting the variation in the rate of the safety factor, the bulk density of soil is greater than that of rock mass, the cohesion of soil mass is smaller than that of rock mass, and the friction angle in the rock mass is much larger than that in the soil mass. The analysis showed that the rock mass structure types are mostly scattered and fragmented; the stratum changes considerably, and the variation of rock and soil mechanics parameters is significant.

Keywords: slope stability, weak layer, safety factor, limit equilibrium method, stereography method

Procedia PDF Downloads 258
901 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals

Authors: N. Renuka, R. Ramesh Babu, N. Vijayan

Abstract:

Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.

Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer

Procedia PDF Downloads 252
900 Spatial Distribution of Land Use in the North Canal of Beijing Subsidiary Center and Its Impact on the Water Quality

Authors: Alisa Salimova, Jiane Zuo, Christopher Homer

Abstract:

The objective of this study is to analyse the North Canal riparian zone land use with the help of remote sensing analysis in ArcGis using 30 cloudless Landsat8 open-source satellite images from May to August of 2013 and 2017. Land cover, urban construction, heat island effect, vegetation cover, and water system change were chosen as the main parameters and further analysed to evaluate its impact on the North Canal water quality. The methodology involved the following steps: firstly, 30 cloudless satellite images were collected from the Landsat TM image open-source database. The visual interpretation method was used to determine different land types in a catchment area. After primary and secondary classification, 28 land cover types in total were classified. Visual interpretation method was used with the help ArcGIS for the grassland monitoring, US Landsat TM remote sensing image processing with a resolution of 30 meters was used to analyse the vegetation cover. The water system was analysed using the visual interpretation method on the GIS software platform to decode the target area, water use and coverage. Monthly measurements of water temperature, pH, BOD, COD, ammonia nitrogen, total nitrogen and total phosphorus in 2013 and 2017 were taken from three locations of the North Canal in Tongzhou district. These parameters were used for water quality index calculation and compared to land-use changes. The results of this research were promising. The vegetation coverage of North Canal riparian zone in 2017 was higher than the vegetation coverage in 2013. The surface brightness temperature value was positively correlated with the vegetation coverage density and the distance from the surface of the water bodies. This indicates that the vegetation coverage and water system have a great effect on temperature regulation and urban heat island effect. Surface temperature in 2017 was higher than in 2013, indicating a global warming effect. The water volume in the river area has been partially reduced, indicating the potential water scarcity risk in North Canal watershed. Between 2013 and 2017, urban residential, industrial and mining storage land areas significantly increased compared to other land use types; however, water quality has significantly improved in 2017 compared to 2013. This observation indicates that the Tongzhou Water Restoration Plan showed positive results and water management of Tongzhou district had been improved.

Keywords: North Canal, land use, riparian vegetation, river ecology, remote sensing

Procedia PDF Downloads 109
899 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation

Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma

Abstract:

Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.

Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling

Procedia PDF Downloads 141
898 Analysis on the Converged Method of Korean Scientific and Mathematical Fields and Liberal Arts Programme: Focusing on the Intervention Patterns in Liberal Arts

Authors: Jinhui Bak, Bumjin Kim

Abstract:

The purpose of this study is to analyze how the scientific and mathematical fields (STEM) and liberal arts (A) work together in the STEAM program. In the future STEAM programs that have been designed and developed, the humanities will act not just as a 'tool' for science technology and mathematics, but as a 'core' content to have an equivalent status. STEAM was first introduced to the Republic of Korea in 2011 when the Ministry of Education emphasized fostering creative convergence talent. Many programs have since been developed under the name STEAM, but with the majority of programs focusing on technology education, arts and humanities are considered secondary. As a result, arts is most likely to be accepted as an option that can be excluded from the teachers who run the STEAM program. If what we ultimately pursue through STEAM education is in fostering STEAM literacy, we should no longer turn arts into a tooling area for STEM. Based on this consciousness, this study analyzed over 160 STEAM programs in middle and high schools, which were produced and distributed by the Ministry of Education and the Korea Science and Technology Foundation from 2012 to 2017. The framework of analyses referenced two criteria presented in the related prior studies: normative convergence and technological convergence. In addition, we divide Arts into fine arts and liberal arts and focused on Korean Language Course which is in liberal arts and analyzed what kind of curriculum standards were selected, and what kind of process the Korean language department participated in teaching and learning. In this study, to ensure the reliability of the analysis results, we have chosen to cross-check the individual analysis results of the two researchers and only if they are consistent. We also conducted a reliability check on the analysis results of three middle and high school teachers involved in the STEAM education program. Analyzing 10 programs selected randomly from the analyzed programs, Cronbach's α .853 showed a reliable level. The results of this study are summarized as follows. First, the convergence ratio of the liberal arts was lowest in the department of moral at 14.58%. Second, the normative convergence is 28.19%, which is lower than that of the technological convergence. Third, the language and achievement criteria selected for the program were limited to functional areas such as listening, talking, reading and writing. This means that the convergence of Korean language departments is made only by the necessary tools to communicate opinions or promote scientific products. In this study, we intend to compare these results with the STEAM programs in the United States and abroad to explore what elements or key concepts are required for the achievement criteria for Korean language and curriculum. This is meaningful in that the humanities field (A), including Korean, provides basic data that can be fused into 'equivalent qualifications' with science (S), technical engineering (TE) and mathematics (M).

Keywords: Korean STEAM Programme, liberal arts, STEAM curriculum, STEAM Literacy, STEM

Procedia PDF Downloads 156
897 Analysis of the Blastocysts Chromosomal Set Obtained after the Use of Donor Oocyte Cytoplasmic Transfer Technology

Authors: Julia Gontar, Natalia Buderatskaya, Igor Ilyin, Olga Parnitskaya, Sergey Lavrynenko, Eduard Kapustin, Ekaterina Ilyina, Yana Lakhno

Abstract:

Introduction: It is well known that oocytes obtained from older reproductive women have accumulated mitochondrial DNA mutations, which negatively affects the morphology of a developing embryo and may lead to the birth of a child with mitochondrial disease. Special techniques have been developed to allow a donor oocyte cytoplasmic transfer with the parents’ biological nuclear DNA retention. At the same time, it is important to understand whether the procedure affects the future embryonic chromosome sets as the nuclear DNA is the transfer subject in this new complex procedure. Material and Methods: From July 2015 to July 2016, the investigation was carried out in the Medical Centre IGR. 34 donor oocytes (group A) were used for the manipulation with the aim of donating cytoplasm: 21 oocytes were used for zygotes pronuclear transfer and oocytes 13 – for the spindle transfer. The mean age of the oocyte donors was 28.4±2.9 years. The procedure was performed using Nikon Ti Eclipse inverted microscope equipped with the micromanipulators Narishige system (Japan), Saturn 3 laser console (UK), Oosight imaging systems (USA). For the preimplantation genetic screening (PGS) blastocyst biopsy was performed, trophectoderm samples were diagnosed using fluorescent in situ hybridization on chromosomes 9, 13, 15, 16, 17, 18, 21, 22, X, Y. For comparison of morphological characteristics and euploidy, was chosen a group of embryos (group B) with the amount of 121 blastocysts obtained from 213 oocytes, which were gotten from the donor programs of assisted reproductive technologies (ART). Group B was not subjected to donor oocyte cytoplasmic transfer procedure and studied on the above mentioned chromosomes. Statistical analysis was carried out using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: After the donor cytoplasm transfer process the amount of the third day developing embryos was 27 (79.4%). In this stage, the group B consisted of 189 (88.7%) developing embryos, and there was no statistically significant difference (SSD) between the two groups (p>0.05). After a comparative analysis of the morphological characteristics of the embryos on the fifth day, we also found no SSD among the studied groups (p>0.05): from 34 oocytes exposed to manipulation, 14 (41.2%) blastocysts was obtained, while the group B blastocyst yield was 56.8% (n=121) from 213 oocytes. The following results were obtained after PGS performing: in group A euploidy in studied chromosomes were 28.6%(n=4) blastocysts, whereas in group B this rate was 40.5%(n=49), 28.6%(n=4) and 21.5%(n=26) of mosaic embryos and 42.8%(n=6) and 38.0%(n=46) aneuploid blastocysts respectively were identified. None of these specified parameters had an SSD (p>0.05). But attention was drawn by the blastocysts in group A with identified mosaicism, which was chaotic without any cell having euploid chromosomal set, in contrast to the mosaic embryos in group B where identified chaotic mosaicism was only 2.5%(n=3). Conclusions: According to the obtained results, there is no direct procedural effect on the chromosome in embryos obtained following donor oocyte cytoplasmic transfer. Thus, the technology introduction will enhance the infertility treating effectiveness as well as avoiding having a child with mitochondrial disease.

Keywords: donor oocyte cytoplasmic transfer, embryos’ chromosome set, oocyte spindle transfer, pronuclear transfer

Procedia PDF Downloads 327
896 Addressing Supply Chain Data Risk with Data Security Assurance

Authors: Anna Fowler

Abstract:

When considering assets that may need protection, the mind begins to contemplate homes, cars, and investment funds. In most cases, the protection of those assets can be covered through security systems and insurance. Data is not the first thought that comes to mind that would need protection, even though data is at the core of most supply chain operations. It includes trade secrets, management of personal identifiable information (PII), and consumer data that can be used to enhance the overall experience. Data is considered a critical element of success for supply chains and should be one of the most critical areas to protect. In the supply chain industry, there are two major misconceptions about protecting data: (i) We do not manage or store confidential/personally identifiable information (PII). (ii) Reliance on Third-Party vendor security. These misconceptions can significantly derail organizational efforts to adequately protect data across environments. These statistics can be exciting yet overwhelming at the same time. The first misconception, “We do not manage or store confidential/personally identifiable information (PII)” is dangerous as it implies the organization does not have proper data literacy. Enterprise employees will zero in on the aspect of PII while neglecting trade secret theft and the complete breakdown of information sharing. To circumvent the first bullet point, the second bullet point forges an ideology that “Reliance on Third-Party vendor security” will absolve the company from security risk. Instead, third-party risk has grown over the last two years and is one of the major causes of data security breaches. It is important to understand that a holistic approach should be considered when protecting data which should not involve purchasing a Data Loss Prevention (DLP) tool. A tool is not a solution. To protect supply chain data, start by providing data literacy training to all employees and negotiating the security component of contracts with vendors to highlight data literacy training for individuals/teams that may access company data. It is also important to understand the origin of the data and its movement to include risk identification. Ensure processes effectively incorporate data security principles. Evaluate and select DLP solutions to address specific concerns/use cases in conjunction with data visibility. These approaches are part of a broader solutions framework called Data Security Assurance (DSA). The DSA Framework looks at all of the processes across the supply chain, including their corresponding architecture and workflows, employee data literacy, governance and controls, integration between third and fourth-party vendors, DLP as a solution concept, and policies related to data residency. Within cloud environments, this framework is crucial for the supply chain industry to avoid regulatory implications and third/fourth party risk.

Keywords: security by design, data security architecture, cybersecurity framework, data security assurance

Procedia PDF Downloads 88
895 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis

Authors: Liliia N. Butymova, Vladimir Ya Modorskii

Abstract:

To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.

Keywords: aeroelasticity, labyrinth packings, oscillation phase shift, vibration

Procedia PDF Downloads 295
894 Hospital Wastewater Treatment by Ultrafiltration Membrane System

Authors: Selin Top, Raul Marcos, M. Sinan Bilgili

Abstract:

Although there have been several studies related to collection, temporary storage, handling and disposal of solid wastes generated by hospitals, there are only a few studies related to liquid wastes generated by hospitals or hospital wastewaters. There is an important amount of water consumptions in hospitals. While minimum domestic water consumption per person is 100 L/day, water consumption per bed in hospitals is generally ranged between 400-1200 L. This high amount of consumption causes high amount of wastewater. The quantity of wastewater produced in a hospital depends on different factors: bed numbers, hospital age, accessibility to water, general services present inside the structure (kitchen, laundry, laboratory, diagnosis, radiology, and air conditioning), number and type of wards and units, institution management policies and awareness in managing the structure in safeguarding the environment, climate and cultural and geographic factors. In our country, characterization of hospital wastewaters conducted by classical parameters in a very few studies. However, as mentioned above, this type of wastewaters may contain different compounds than domestic wastewaters. Hospital Wastewater (HWW) is wastewater generated from all activities of the hospital, medical and non medical. Nowadays, hospitals are considered as one of the biggest sources of wastewater along with urban sources, agricultural effluents and industrial sources. As a health-care waste, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components due to using disinfectants, pharmaceuticals, radionuclides and solvents making not suitable the connection of hospital wastewater to the municipal sewage network. These characteristics may represent a serious health hazard and children, adults and animals all have the potential to come into contact with this water. Therefore, the treatment of hospital wastewater is an important current interest point to focus on. This paper aims to approach on the investigation of hospital wastewater treatment by membrane systems. This study aim is to determined hospital wastewater’s characterization and also evaluates the efficiency of hospital wastewater treatment by high pressure filtration systems such as ultrafiltration (UF). Hospital wastewater samples were taken directly from sewage system from Şişli Etfal Training and Research Hospital, located in the district of Şişli, in the European part of Istanbul. The hospital is a 784 bed tertiary care center with a daily outpatient department of 3850 patients. Ultrafiltration membrane is used as an experimental treatment and the influence of the pressure exerted on the membranes was examined, ranging from 1 to 3 bar. The permeate flux across the membrane was observed to define the flooding membrane points. The global COD and BOD5 removal efficiencies were 54% and 75% respectively for ultrafiltration, all the SST removal efficiencies were above 90% and a successful removal of the pathological bacteria measured was achieved.

Keywords: hospital wastewater, membrane, ultrafiltration, treatment

Procedia PDF Downloads 302
893 Control of Asthma in Children with Asthma during the Containment Period following the Covid-19 Pandemic

Authors: Meryam Labyad, Karima Fakiri, Widad Lahmini, Ghizlane Draiss, Mohamed Bouskraoui, Nadia Ouzennou

Abstract:

Background: Asthma is the most common chronic disease in children, affecting nearly 235 million people worldwide (OMS). In Morocco, asthma is much more common in children than in adults; the prevalence rate in children between 13 and 14 years of age is 20%.1 This pathology is marked by high morbidity, a significant impact on the quality of life and development of children 2 This requires a rigorous management strategy in order to achieve clinical control and reduce any risk to the patient 3 A search for aggravating factors is mandatory if a child has difficulty maintaining good asthma control. The objective of the present study is to describe asthma control during this confinement period in children aged 4 to 11 years followed by a pneumo-paediatric consultation. For children whose asthma is not controlled, a search for associations with promoting factors and adherence to treatment is also among the objectives of the study. Knowing the level of asthma control and influencing factors is a therapeutic priority in order to reduce hospitalizations and emergency care use. Objective: To assess asthma control and determine the factors influencing asthma levels in children with asthma during confinement following the COVID 19 pandemic. Method: Prospective cross-sectional study by questionnaire and structured interview among 66 asthmatic children followed in pediatric pneumology consultation at the CHU MED VI of Marrakech from 13/06/2020 to 13/07/2020, asthma control was assessed by the Childhood Asthma Control Test (C-ACT). Results: 66 children and their parents were included (mean age is 7.5 years), asthma was associated with allergic rhinitis (13.5% of cases), conjunctivitis (9% of cases), eczema (12% of cases), occurrence of infection (10.5% of cases). The period of confinement was marked by a decrease in the number of asthma attacks translated by a decrease in the number of emergency room visits (7.5%) of these asthmatic children, control was well controlled in 71% of the children, this control was significantly associated with good adherence to treatment (p<0.001), no infection (p<0.001) and no conjunctivitis (p=002) or rhinitis (p<0.001). This improvement in asthma control during confinement can be explained by the measures taken in the Kingdom to prevent the spread of COVID 19 (school closures, reduction in industrial activity, fewer means of transport, etc.), leading to a decrease in children's exposure to triggers, which justifies the decrease in the number of children having had an infection, allergic rhinitis or conjunctivitis during this period. In addition, the close monitoring of parents resulted in better therapeutic adherence (42.4% were fully observant). Confinement was positively perceived by 68% of the parents; this perception is significantly associated with the level of asthma control (p<0.001). Conclusion: Maintaining good control can be achieved through improved therapeutic adherence and avoidance of triggers, both of which were achieved during the containment period following the VIDOC pandemic 19.

Keywords: Asthma, control , COVID-19 , children

Procedia PDF Downloads 184
892 Precursor Synthesis of Carbon Materials with Different Aggregates Morphologies

Authors: Nikolai A. Khlebnikov, Vladimir N. Krasilnikov, Evgenii V. Polyakov, Anastasia A. Maltceva

Abstract:

Carbon materials with advanced surfaces are widely used both in modern industry and in environmental protection. The physical-chemical nature of these materials is determined by the morphology of primary atomic and molecular carbon structures, which are the basis for synthesizing the following materials: zero-dimensional (fullerenes), one-dimensional (fiber, tubes), two-dimensional (graphene) carbon nanostructures, three-dimensional (multi-layer graphene, graphite, foams) with unique physical-chemical and functional properties. Experience shows that the microscopic morphological level is the basis for the creation of the next mesoscopic morphological level. The dependence of the morphology on the chemical way and process prehistory (crystallization, colloids formation, liquid crystal state and other) is the peculiarity of the last called level. These factors determine the consumer properties of carbon materials, such as specific surface area, porosity, chemical resistance in corrosive environments, catalytic and adsorption activities. Based on the developed ideology of thin precursor synthesis, the authors discuss one of the approaches of the porosity control of carbon-containing materials with a given aggregates morphology. The low-temperature thermolysis of precursors in a gas environment of a given composition is the basis of the above-mentioned idea. The processes of carbothermic precursor synthesis of two different compounds: tungsten carbide WC:nC and zinc oxide ZnO:nC containing an impurity phase in the form of free carbon were selected as subjects of the research. In the first case, the transition metal (tungsten) forming carbides was the object of the synthesis. In the second case, there was selected zinc that does not form carbides. The synthesis of both kinds of transition metals compounds was conducted by the method of precursor carbothermic synthesis from the organic solution. ZnO:nC composites were obtained by thermolysis of succinate Zn(OO(CH2)2OO), formate glycolate Zn(HCOO)(OCH2CH2O)1/2, glycerolate Zn(OCH2CHOCH2OH), and tartrate Zn(OOCCH(OH)CH(OH)COO). WC:nC composite was synthesized from ammonium paratungstate and glycerol. In all cases, carbon structures that are specific for diamond- like carbon forms appeared on the surface of WC and ZnO particles after the heat treatment. Tungsten carbide and zinc oxide were removed from the composites by selective chemical dissolution preserving the amorphous carbon phase. This work presents the results of investigating WC:nC and ZnO:nC composites and carbon nanopowders with tubular, tape, plate and onion morphologies of aggregates that are separated by chemical dissolution of WC and ZnO from the composites by the following methods: SEM, TEM, XPA, Raman spectroscopy, and BET. The connection between the carbon morphology under the conditions of synthesis and chemical nature of the precursor and the possibility of regulation of the morphology with the specific surface area up to 1700-2000 m2/g of carbon-structured materials are discussed.

Keywords: carbon morphology, composite materials, precursor synthesis, tungsten carbide, zinc oxide

Procedia PDF Downloads 333
891 Healthcare Fire Disasters: Readiness, Response and Resilience Strategies: A Real-Time Experience of a Healthcare Organization of North India

Authors: Raman Sharma, Ashok Kumar, Vipin Koushal

Abstract:

Healthcare facilities are always seen as places of haven and protection for managing the external incidents, but the situation becomes more difficult and challenging when such facilities themselves are affected from internal hazards. Such internal hazards are arguably more disruptive than external incidents affecting vulnerable ones, as patients are always dependent on supportive measures and are neither in a position to respond to such crisis situation nor do they know how to respond. The situation becomes more arduous and exigent to manage if, in case critical care areas like Intensive Care Units (ICUs) and Operating Rooms (OR) are convoluted. And, due to these complexities of patients’ in-housed there, it becomes difficult to move such critically ill patients on immediate basis. Healthcare organisations use different types of electrical equipment, inflammable liquids, and medical gases often at a single point of use, hence, any sort of error can spark the fire. Even though healthcare facilities face many fire hazards, damage caused by smoke rather than flames is often more severe. Besides burns, smoke inhalation is primary cause of fatality in fire-related incidents. The greatest cause of illness and mortality in fire victims, particularly in enclosed places, appears to be the inhalation of fire smoke, which contains a complex mixture of gases in addition to carbon monoxide. Therefore, healthcare organizations are required to have a well-planned disaster mitigation strategy, proactive and well prepared manpower to cater all types of exigencies resulting from internal as well as external hazards. This case report delineates a true OR fire incident in Emergency Operation Theatre (OT) of a tertiary care multispecialty hospital and details the real life evidence of the challenges encountered by OR staff in preserving both life and property. No adverse event was reported during or after this fire commotion, yet, this case report aimed to congregate the lessons identified of the incident in a sequential and logical manner. Also, timely smoke evacuation and preventing the spread of smoke to adjoining patient care areas by opting appropriate measures, viz. compartmentation, pressurisation, dilution, ventilation, buoyancy, and airflow, helped to reduce smoke-related fatalities. Henceforth, precautionary measures may be implemented to mitigate such incidents. Careful coordination, continuous training, and fire drill exercises can improve the overall outcomes and minimize the possibility of these potentially fatal problems, thereby making a safer healthcare environment for every worker and patient.

Keywords: healthcare, fires, smoke, management, strategies

Procedia PDF Downloads 65
890 Transcription Skills and Written Composition in Chinese

Authors: Pui-sze Yeung, Connie Suk-han Ho, David Wai-ock Chan, Kevin Kien-hoa Chung

Abstract:

Background: Recent findings have shown that transcription skills play a unique and significant role in Chinese word reading and spelling (i.e. word dictation), and written composition development. The interrelationships among component skills of transcription, word reading, word spelling, and written composition in Chinese have rarely been examined in the literature. Is the contribution of component skills of transcription to Chinese written composition mediated by word level skills (i.e., word reading and spelling)? Methods: The participants in the study were 249 Chinese children in Grade 1, Grade 3, and Grade 5 in Hong Kong. They were administered measures of general reasoning ability, orthographic knowledge, stroke sequence knowledge, word spelling, handwriting fluency, word reading, and Chinese narrative writing. Orthographic knowledge- orthographic knowledge was assessed by a task modeled after the lexical decision subtest of the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD). Stroke sequence knowledge: The participants’ performance in producing legitimate stroke sequences was measured by a stroke sequence knowledge task. Handwriting fluency- Handwriting fluency was assessed by a task modeled after the Chinese Handwriting Speed Test. Word spelling: The stimuli of the word spelling task consist of fourteen two-character Chinese words. Word reading: The stimuli of the word reading task consist of 120 two-character Chinese words. Written composition: A narrative writing task was used to assess the participants’ text writing skills. Results: Analysis of covariance results showed that there were significant between-grade differences in the performance of word reading, word spelling, handwriting fluency, and written composition. Preliminary hierarchical multiple regression analysis results showed that orthographic knowledge, word spelling, and handwriting fluency were unique predictors of Chinese written composition even after controlling for age, IQ, and word reading. The interaction effects between grade and each of these three skills (orthographic knowledge, word spelling, and handwriting fluency) were not significant. Path analysis results showed that orthographic knowledge contributed to written composition both directly and indirectly through word spelling, while handwriting fluency contributed to written composition directly and indirectly through both word reading and spelling. Stroke sequence knowledge only contributed to written composition indirectly through word spelling. Conclusions: Preliminary hierarchical regression results were consistent with previous findings about the significant role of transcription skills in Chinese word reading, spelling and written composition development. The fact that orthographic knowledge contributed both directly and indirectly to written composition through word reading and spelling may reflect the impact of the script-sound-meaning convergence of Chinese characters on the composing process. The significant contribution of word spelling and handwriting fluency to Chinese written composition across elementary grades highlighted the difficulty in attaining automaticity of transcription skills in Chinese, which limits the working memory resources available for other composing processes.

Keywords: orthographic knowledge, transcription skills, word reading, writing

Procedia PDF Downloads 422
889 Evidence-Based Health System Strengthening in Urban India: Drawing Insights from Rapid Assessment Study

Authors: Anisur Rahman, Sabyasachi Behera, Pawan Pathak, Benazir Patil, Rajesh Khanna

Abstract:

Background: Nearly half of India’s population is expected to reside in urban areas by 2030. The extent to which India's health system can provide for this large and growing city-based population will determine the country's success in achieving universal health coverage and improved national health indices. National Urban Health Mission (NUHM) strive for improving access to primary health care in urban areas. Implementation of NUHM solicits sensitive, effective and sustainable strategies to strengthen the service delivery mechanisms. The Challenge Initiative for Healthy Cities (TCIHC) is working with the Government of India and three provincial states to develop effective service delivery mechanisms for reproductive, maternal, newborn and child health (RMNCH) through a health systems approach for the urban poor. Method: A rapid assessment study was conceptualized and executed to generate evidence in order to address the challenges impeding in functioning of urban health facilities to deliver effective, efficient and equitable health care services in 7 cities spread across two project States viz. Madhya Pradesh and Odisha. Results: The findings of the assessment reflect: 1. The overall ecosystem pertaining to planning and management of public health interventions is not conducive. 2. The challenges regarding population dynamics like migration keeps on influencing the demand-supply-enabling environment triangle for both public and private service providers. 3. Lack of norms for planning and benchmark for service delivery further impedes urban health system as a whole. 4. Operationalization of primary level services have enough potential to meet the demand of slum dwellers at large. 5. Lack of policy driven strategies on how to integrate the NUHM with other thematic areas of Maternal, Newborn & Child Health (MNCH) and Family Planning (FP). 5. The inappropriate capacity building and acute shortage of Human Resources has huge implication on service provisioning and adherence to the service delivery protocols. Conclusion: The findings from rapid assessment are aimed to inform pertinent stakeholders to develop a multiyear city health action plan to strengthen the health systems in order to improve the efficacy of service delivery mechanism in urban settings.

Keywords: city health plan, health system, rapid assessment, urban mission

Procedia PDF Downloads 168
888 Religiosity and Involvement in Purchasing Convenience Foods: Using Two-Step Cluster Analysis to Identify Heterogenous Muslim Consumers in the UK

Authors: Aisha Ijaz

Abstract:

The paper focuses on the impact of Muslim religiosity on convenience food purchases and involvement experienced in a non-Muslim culture. There is a scarcity of research on the purchasing patterns of Muslim diaspora communities residing in risk societies, particularly in contexts where there is an increasing inclination toward industrialized food items alongside a renewed interest in the concept of natural foods. The United Kingdom serves as an appropriate setting for this study due to the increasing Muslim population in the country, paralleled by the expanding Halal Food Market. A multi-dimensional framework is proposed, testing for five forms of involvement, specifically Purchase Decision Involvement, Product Involvement, Behavioural Involvement, Intrinsic Risk and Extrinsic Risk. Quantitative cross-sectional consumer data were collected through a face-to-face survey contact method with 141 Muslims during the summer of 2020 in Liverpool located in the Northwest of England. proportion formula was utilitsed, and the population of interest was stratified by gender and age before recruitment took place through local mosques and community centers. Six input variables were used (intrinsic religiosity and involvement dimensions), dividing the sample into 4 clusters using the Two-Step Cluster Analysis procedure in SPSS. Nuanced variances were observed in the type of involvement experienced by religiosity group, which influences behaviour when purchasing convenience food. Four distinct market segments were identified: highly religious ego-involving (39.7%), less religious active (26.2%), highly religious unaware (16.3%), less religious concerned (17.7%). These segments differ significantly with respects to their involvement, behavioural variables (place of purchase and information sources used), socio-cultural (acculturation and social class), and individual characteristics. Choosing the appropriate convenience food is centrally related to the value system of highly religious ego-involving first-generation Muslims, which explains their preference for shopping at ethnic food stores. Less religious active consumers are older and highly alert in information processing to make the optimal food choice, relying heavily on product label sources. Highly religious unaware Muslims are less dietary acculturated to the UK diet and tend to rely on digital and expert advice sources. The less-religious concerned segment, who are typified by younger age and third generation, are engaged with the purchase process because they are worried about making unsuitable food choices. Research implications are outlined and potential avenues for further explorations are identified.

Keywords: consumer behaviour, consumption, convenience food, religion, muslims, UK

Procedia PDF Downloads 55
887 The Resource-Base View of Organization and Innovation: Recognition of Significant Relationship in an Organization

Authors: Francis Deinmodei W. Poazi, Jasmine O. Tamunosiki-Amadi, Maurice Fems

Abstract:

In recent times the resource-based view (RBV) of strategic management has recorded a sizeable attention yet there has not been a considerable scholarly and managerial discourse, debate and attention. As a result, this paper gives special bit of critical reasoning as well as top-notch analyses and relationship between RBV and organizational innovation. The study examines those salient aspects of RBV that basically have the will power in ensuring the organization's capacity to go for innovative capability. In achieving such fit and standpoint, the paper joins other relevant academic discourse and empirical evidence. To this end, a reasonable amount of contributions in setting the ground running for future empirical researches would have been provided. More so, the study is guided and built on the following strength and significance: Firstly, RBV sees resources as heterogeneity which forms a strong point of strength and allows organisations to gain competitive advantage. In order words, competitive advantage can be achieved or delivered to the organization when resources are distinctively utilized in a valuable manner more than the envisaged competitors of the organization. Secondly, RBV is significantly influential in determining the real resources that are available in the organization with a view to locate capabilities within in order to attract more profitability into the organization when applied. Thus, there will be more sustainable growth and success in the ever competitive and emerging market. Thus, to have succinct description of the basic methodologies, the study adopts both qualitative as well as quantitative approach with a view to have a broad samples of opinion in establishing and identifying key and strategic organizational resources to enable managers of resources to gain a competitive advantage as well as generating a sustainable increase and growth in profit. Furthermore, a comparative approach and analysis was used to examine the performance of RBV within the organization. Thus, the following are some of the findings of the study: it is clear that there is a nexus between RBV and growth of competitively viable organizations. More so, in most parts, organizations have heterogeneous resources domiciled in their organizations but not all organizations as it was specifically and intelligently adopting the tenets of RBV to strengthen heterogeneity of resources which allows organisations to gain competitive advantage. Other findings of this study reveal that of managerial perception of RBV with respect to application and transformation of resources to achieve a profitable end. It is against this backdrop, the importance of RBV cannot be overemphasized; the study is strongly convinced and think that RBV view is one focal and distinct approach that is focused on internal to outside strategy which engenders sourcing or generating resources internally as well as having the quest to apply such internally sourced resources diligently to increase or gain competitive advantage.

Keywords: resource-based view, innovation, organisation, recognition significant relationship and theoretical perspective

Procedia PDF Downloads 306
886 Sea Surface Trend over the Arabian Sea and Its Influence on the South West Monsoon Rainfall Variability over Sri Lanka

Authors: Sherly Shelton, Zhaohui Lin

Abstract:

In recent decades, the inter-annual variability of summer precipitation over the India and Sri Lanka has intensified significantly with an increased frequency of both abnormally dry and wet summers. Therefore prediction of the inter-annual variability of summer precipitation is crucial and urgent for water management and local agriculture scheduling. However, none of the hypotheses put forward so far could understand the relationship to monsoon variability and related factors that affect to the South West Monsoon (SWM) variability in Sri Lanka. This study focused to identify the spatial and temporal variability of SWM rainfall events from June to September (JJAS) over Sri Lanka and associated trend. The monthly rainfall records covering 1980-2013 over the Sri Lanka are used for 19 stations to investigate long-term trends in SWM rainfall over Sri Lanka. The linear trends of atmospheric variables are calculated to understand the drivers behind the changers described based on the observed precipitation, sea surface temperature and atmospheric reanalysis products data for 34 years (1980–2013). Empirical orthogonal function (EOF) analysis was applied to understand the spatial and temporal behaviour of seasonal SWM rainfall variability and also investigate whether the trend pattern is the dominant mode that explains SWM rainfall variability. The spatial and stations based precipitation over the country showed statistically insignificant decreasing trends except few stations. The first two EOFs of seasonal (JJAS) mean of rainfall explained 52% and 23 % of the total variance and first PC showed positive loadings of the SWM rainfall for the whole landmass while strongest positive lording can be seen in western/ southwestern part of the Sri Lanka. There is a negative correlation (r ≤ -0.3) between SMRI and SST in the Arabian Sea and Central Indian Ocean which indicate that lower temperature in the Arabian Sea and Central Indian Ocean are associated with greater rainfall over the country. This study also shows that consistently warming throughout the Indian Ocean. The result shows that the perceptible water over the county is decreasing with the time which the influence to the reduction of precipitation over the area by weakening drawn draft. In addition, evaporation is getting weaker over the Arabian Sea, Bay of Bengal and Sri Lankan landmass which leads to reduction of moisture availability required for the SWM rainfall over Sri Lanka. At the same time, weakening of the SST gradients between Arabian Sea and Bay of Bengal can deteriorate the monsoon circulation, untimely which diminish SWM over Sri Lanka. The decreasing trends of moisture, moisture transport, zonal wind, moisture divergence with weakening evaporation over Arabian Sea, during the past decade having an aggravating influence on decreasing trends of monsoon rainfall over the Sri Lanka.

Keywords: Arabian Sea, moisture flux convergence, South West Monsoon, Sri Lanka, sea surface temperature

Procedia PDF Downloads 130
885 A Robust Stretchable Bio Micro-Electromechanical Systems Technology for High-Strain in vitro Cellular Studies

Authors: Tiffany Baetens, Sophie Halliez, Luc Buée, Emiliano Pallecchi, Vincent Thomy, Steve Arscott

Abstract:

We demonstrate here a viable stretchable bio-microelectromechanical systems (BioMEMS) technology for use with biological studies concerned with the effect of high mechanical strains on living cells. An example of this is traumatic brain injury (TBI) where neurons are damaged with physical force to the brain during, e.g., accidents and sports. Robust, miniaturized integrated systems are needed by biologists to be able to study the effect of TBI on neuron cells in vitro. The major challenges in this area are (i) to develop micro, and nanofabrication processes which are based on stretchable substrates and to (ii) create systems which are robust and performant at very high mechanical strain values—sometimes as high as 100%. At the time of writing, such processes and systems were rapidly evolving subject of research and development. The BioMEMS which we present here is composed of an elastomer substrate (low Young’s modulus ~1 MPa) onto which is patterned robust electrodes and insulators. The patterning of the thin films is achieved using standard photolithography techniques directly on the elastomer substrate—thus making the process generic and applicable to many materials’ in based systems. The chosen elastomer used is commercial ‘Sylgard 184’ polydimethylsiloxane (PDMS). It is spin-coated onto a silicon wafer. Multistep ultra-violet based photolithography involving commercial photoresists are then used to pattern robust thin film metallic electrodes (chromium/gold) and insulating layers (parylene) on the top of the PDMS substrate. The thin film metals are deposited using thermal evaporation and shaped using lift-off techniques The BioMEMS has been characterized mechanically using an in-house strain-applicator tool. The system is composed of 12 electrodes with one reference electrode transversally-orientated to the uniaxial longitudinal straining of the system. The electrical resistance of the electrodes is observed to remain very stable with applied strain—with a resistivity approaching that of evaporated gold—up to an interline strain of ~50%. The mechanical characterization revealed some interesting original properties of such stretchable BioMEMS. For example, a Poisson effect induced electrical ‘self-healing’ of cracking was identified. Biocompatibility of the commercial photoresist has been studied and is conclusive. We will present the results of the BioMEMS, which has also characterized living cells with a commercial Multi Electrode Array (MEA) characterization tool (Multi Channel Systems, USA). The BioMEMS enables the cells to be strained up to 50% and then characterized electrically and optically.

Keywords: BioMEMS, elastomer, electrical impedance measurements of living cells, high mechanical strain, microfabrication, stretchable systems, thin films, traumatic brain injury

Procedia PDF Downloads 144
884 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 122
883 Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops

Authors: Vivek Rangarajan, Kim G. Klarke

Abstract:

With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy.

Keywords: antifungal efficacy, biocontrol, lipopeptide production, perishable crops

Procedia PDF Downloads 403