Search results for: network externality
2045 Governance Framework for an Emerging Trust Ecosystem with a Blockchain-Based Supply Chain
Authors: Ismael Ávila, José Reynaldo F. Filho, Vasco Varanda Picchi
Abstract:
The ever-growing consumer awareness of food provenance in Brazil is driving the creation of a trusted ecosystem around the animal protein supply chain. The traceability and accountability requirements of such an ecosystem demand a blockchain layer to strengthen the weak links in that chain. For that, direct involvement of the companies in the blockchain transactions, including as validator nodes of the network, implies formalizing a partnership with the consortium behind the ecosystem. Yet, their compliance standards usually require that a formal governance structure is in place before they agree with any membership terms. In light of such a strategic role of blockchain governance, the paper discusses a framework for tailoring a governance model for a blockchain-based solution aimed at the meat supply chain and evaluates principles and attributes in terms of their relevance to the development of a robust trust ecosystem.Keywords: blockchain, governance, trust ecosystem, supply chain, traceability
Procedia PDF Downloads 1202044 Contraceptive Uptake among Women in Low Socio-Economic Areas in Kenya: Quantitative Analysis of Secondary Data
Authors: J. Waita, S. Wamuhu, J. Makoyo, M. Rachel, T. Ngangari, W. Christine, M. Zipporah
Abstract:
Contraceptive use is one of the key global strategies to alleviate maternal mortality. Global efforts through advocating for contraceptive uptake and service provision has led improved contraceptive prevalence. In Kenya maternal mortality rate has remained a challenged despites efforts by government and non-governmental organizations. Objective: To describe the uptake of contraceptives among women in Tunza Clinics, Kenya. Design and Methods: Ps Kenya through health care marketing fund is implementing a family planning program among its 350 Tunza fractional franchise facilities. Through private partnership, private owned facilities in low socio-economic areas are recruited and trained on contraceptive technology update. The providers are supported through facilitative supervision through a mobile based application Health Network Quality Improvement System (HNQIS) and interpersonal communication through 150 community based volunteers. The data analyzed in this paper was collected between January to July 2017 to show the uptake of modern Contraceptives among women in the Tunza franchise, method mix, age and distribution among the age bracket. Further analysis compares two different service delivery strategies; outreach and walk ins. Supportive supervision HNQIS scores was analyzed. Results: During the time period, a total of 132121 family planning clients were attended in 350 facilities. The average age of clients was 29.6 years. The average number of clients attended in the facilities per month was 18874. 73.7 %( n=132121) of the clients attended in the Tunza facilities were aged above 25 years while 22.1% 20-24 years and 4.2% 15-19 years. On contraceptive method mix, intra uterine device insertions clients contributed to 7.5%, implant insertions 15.3%, pills 11.2%, injections 62.7% while condoms and emergency pills had 2.7% and 0.6% respectively. Analysis of service delivery strategy indicated more than 79% of the clients were walk ins while 21% were attended to during outreaches. Uptake of long term contraceptive methods during outreaches was 73% of the clients while short term modern methods were 27%. Health Network Quality Improvement system assessment scores indicated 51% of the facilities scored over 90%, 25% scoring 80-89% while 21% scored below 80%. Conclusion: Preference for short term methods by women is possibly associated to cost as they are cheaper and easy to administer. When the cost of intra uterine device Implants is meant affordable during outreaches, the uptake is observed to increase. Making intra uterine device and implants affordable to women is a key strategy in increasing contraceptive prevalence hence averting maternal mortality.Keywords: contraceptives, contraceptive uptake, low socio economic, supportive supervision
Procedia PDF Downloads 1682043 Internet Based Teleoperation of the Quad Rotor with Force Feedback Using Smith Predictor
Authors: K. Senthil Kumar, A. Vasumalaikannan
Abstract:
In this paper, teleoperation of the quadrotor using Internet with Force feedback is addressed. Teleoperation with Force feedback is the ability to remotely control a robot, where contact (obstacle) or environment (wind gust etc) information (force feedback) is communicated from the quadrotor to the master joystick and thus giving the operator a sense of telepresence. The stability and performance of such a teleoperator is highly dependent on the amount of time delay present in the control loop. This problem is further complicated given the fact that for network based communication the time delay is itself time varying and highly non deterministic. In this paper, a novel method using Neural based Smith Predictor at the master side the stability is achieved. The performance of the system even during worst case scenario is within acceptable.Keywords: teleoperation, quadrotor, neural smith predictor, time delay
Procedia PDF Downloads 6162042 A New Method for Fault Detection
Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed
Abstract:
Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.Keywords: Byzantine faults, distributed systems, fault detection, network protocols, node-disjoint paths
Procedia PDF Downloads 4482041 Social and Economic Aspects of Unlikely but Still Possible Welfare to Work Transitions from Long-Term Unemployed
Authors: Andreas Hirseland, Lukas Kerschbaumer
Abstract:
In Germany, during the past years there constantly are about one million long term unemployed who did not benefit from the prospering labor market while most short term unemployed did. Instead, they are continuously dependent on welfare and sometimes precarious short-term employment, experiencing work poverty. Long term unemployment thus turns into a main obstacle to regular employment, especially if accompanied by other impediments such as low level education (school/vocational), poor health (especially chronical illness), advanced age (older than fifty), immigrant status, motherhood or engagement in care for other relatives. Almost two thirds of all welfare recipients have multiple impediments which hinder a successful transition from welfare back to sustainable and sufficient employment. Hiring them is often considered as an investment too risky for employers. Therefore formal application schemes based on formal qualification certificates and vocational biographies might reduce employers’ risks but at the same time are not helpful for long-term unemployed and welfare recipients. The panel survey ‘Labor market and social security’ (PASS; ~15,000 respondents in ~10,000 households), carried out by the Institute of Employment Research (the research institute of the German Federal Labor Agency), shows that their chance to get back to work tends to fall to nil. Only 66 cases of such unlikely transitions could be observed. In a sequential explanatory mixed-method study, the very scarce ‘success stories’ of unlikely transitions from long term unemployment to work were explored by qualitative inquiry – in-depth interviews with a focus on biography accompanied by qualitative network techniques in order to get a more detailed insight of relevant actors involved in the processes which promote the transition from being a welfare recipient to work. There is strong evidence that sustainable transitions are influenced by biographical resources like habits of network use, a set of informal skills and particularly a resilient way of dealing with obstacles, combined with contextual factors rather than by job-placement procedures promoted by Job-Centers according to activation rules or by following formal paths of application. On the employer’s side small and medium-sized enterprises are often found to give job opportunities to a wider variety of applicants, often based on a slow but steadily increasing relationship leading to employment. According to these results it is possible to show and discuss some limitations of (German) activation policies targeting welfare dependency and long-term unemployment. Based on these findings, indications for more supportive small scale measures in the field of labor-market policies are suggested to help long-term unemployed with multiple impediments to overcome their situation.Keywords: against-all-odds, economic sociology, long-term unemployment, mixed-methods
Procedia PDF Downloads 2382040 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators
Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy
Abstract:
Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network
Procedia PDF Downloads 6372039 Effective Scheduling of Hybrid Reconfigurable Microgrids Considering High Penetration of Renewable Sources
Authors: Abdollah Kavousi Fard
Abstract:
This paper addresses the optimal scheduling of hybrid reconfigurable microgrids considering hybrid electric vehicle charging demands. A stochastic framework based on unscented transform to model the high uncertainties of renewable energy sources including wind turbine and photovoltaic panels, as well as the hybrid electric vehicles’ charging demand. In order to get to the optimal scheduling, the network reconfiguration is employed as an effective tool for changing the power supply path and avoiding possible congestions. The simulation results are analyzed and discussed in three different scenarios including coordinated, uncoordinated and smart charging demand of hybrid electric vehicles. A typical grid-connected microgrid is employed to show the satisfying performance of the proposed method.Keywords: microgrid, renewable energy sources, reconfiguration, optimization
Procedia PDF Downloads 2722038 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 1452037 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach
Authors: Vijay Kr. Yadav, Nilam Rathi
Abstract:
Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy
Procedia PDF Downloads 2572036 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1362035 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 4882034 A Multilevel Authentication Protocol: MAP in VANET for Human Safety
Authors: N. Meddeb, A. M. Makhlouf, M. A. Ben Ayed
Abstract:
Due to the real-time requirement of message in Vehicular Ad hoc NETworks (VANET), it is necessary to authenticate vehicles to achieve security, efficiency, and conditional privacy-preserving. Privacy is of utmost relevance in VANETs. For this reason, we have proposed a new protocol called ‘Multilevel Authentication Protocol’ (MAP) that considers different vehicle categories. The proposed protocol is based on our Multilevel Authentication protocol for Vehicular networks (MAVnet). But the MAP leads to human safety, where the priority is given to the ambulance vehicles. For evaluation, we used the Java language to develop a demo application and deployed it on the Network Security Simulation (Nessi2). Compared with existing authentication protocols, MAP markedly enhance the communication overhead and decreases the delay of exchanging messages while preserving conditional privacy.Keywords: Vehicular Ad hoc NETworks (VANET), vehicle categories, safety, databases, privacy, authentication, throughput, delay
Procedia PDF Downloads 2962033 Optimization and Operation of Charging and Discharging Stations for Hybrid Cars and their Effects on the Electricity Distribution Network
Authors: Ali Heydarimoghim
Abstract:
In this paper, the optimal placement of charging and discharging stations is done to determine the location and capacity of the stations, reducing the cost of electric vehicle owners' losses, reducing the cost of distribution system losses, and reducing the costs associated with the stations. Also, observing the permissible limits of the bus voltage and the capacity of the stations and their distance are considered as constraints of the problem. Given the traffic situation in different areas of a city, we estimate the amount of energy required to charge and the amount of energy provided to discharge electric vehicles in each area. We then introduce the electricity distribution system of the city in question. Following are the scenarios for introducing the problem and introducing the objective and constraint functions. Finally, the simulation results for different scenarios are compared.Keywords: charging & discharging stations, hybrid vehicles, optimization, replacement
Procedia PDF Downloads 1382032 Synthesis of a Hybrid Material (PVA/SiO₂/TiO₂) by Sol-Gel Method
Authors: Gueridi Bachir, Dadache Derradji, Rouabah Farid
Abstract:
This work is focused on the preparation and characterization of poly (vinyl alcohol)/silica gel/Nano-TiO₂, and the study of titanium dioxide (TiO₂) nanoparticles 1% on the properties of poly (vinyl alcohol) (PVA)/silica films. Fourier transform infrared (FT-IR), water contact angle, ultraviolet-visible spectrometry (UV-VIS)) were used to characterize the hybrid films obtained. The PVA/SiO₂/Nano-TiO₂ films were successfully synthesized. Owing to the FT-IR Analysis, the chemical bonds have clearly shown that the PVA backbone is linked to the (SiO₂-TiO₂) network. UV-VIS tests indicated that the hybrid films' UV shielding properties were drastically enhanced as a result of the addition of TiO₂. The water contact angle results revealed that TiO₂ nanoparticles used as a doping compound possess an important influence on the hydrophilicity of PVA/SiO₂ as thin films.Keywords: sol-gel method, hybrid materials, PVA/SIO₂/TiO₂, spectroscopical characterization
Procedia PDF Downloads 122031 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence
Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei
Abstract:
With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.Keywords: reasoning, Bayesian networks, cyber-attack attribution, Kill Chain, threat intelligence
Procedia PDF Downloads 4502030 Analytical Study of Data Mining Techniques for Software Quality Assurance
Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar
Abstract:
Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.Keywords: data mining, defect prediction, missing requirements, software quality
Procedia PDF Downloads 4682029 Analyzing the Characteristics and Shifting Patterns of Creative Hubs in Bandung
Authors: Fajar Ajie Setiawan, Ratu Azima Mayangsari, Bunga Aprilia
Abstract:
The emergence of creative hubs around the world, including in Bandung, was primarily driven by the needs of collaborative-innovative spaces for creative industry activities such as the Maker Movement and the Coworking Movement. These activities pose challenges for identification and formulation of sets of indicators for modeling creative hubs in Bandung to help stakeholders in formulating strategies. This study intends to identify their characteristics. This research was conducted using a qualitative approach comparing three concepts of creative hub categorization and integrating them into a single instrument to analyze 12 selected creative hubs. Our results showed three new functions of creative hubs in Bandung: (1) cultural, (2) retail business, and (3) community network. Results also suggest that creative hubs in Bandung are commonly established for networking and community activities. Another result shows that there was a shifting pattern of creative hubs before the 2000s and after the 2000s, which also creates a hybrid group of creative hubs.Keywords: creative industry, creative hubs, Ngariung, Bandung
Procedia PDF Downloads 1772028 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 4782027 The Structure of Invariant Manifolds after a Supercritical Hamiltonian Hopf Bifurcation
Authors: Matthaios Katsanikas
Abstract:
We study the structure of the invariant manifolds of complex unstable periodic orbits of a family of periodic orbits, in a 3D autonomous Hamiltonian system of galactic type, after a transition of this family from stability to complex instability (Hamiltonian Hopf bifurcation). We consider the case of a supercritical Hamiltonian Hopf bifurcation. The invariant manifolds of complex unstable periodic orbits have two kinds of structures. The first kind is represented by a disk confined structure on the 4D space of section. The second kind is represented by a complicated central tube structure that is associated with an extended network of tube structures, strips and flat structures of sheet type on the 4D space of section.Keywords: dynamical systems, galactic dynamics, chaos, phase space
Procedia PDF Downloads 1392026 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays
Authors: Sabri Arik
Abstract:
In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis
Procedia PDF Downloads 5282025 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya
Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia
Abstract:
Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service
Procedia PDF Downloads 1602024 Comparative Analysis of Universal Filtered Multi Carrier and Filtered Orthogonal Frequency Division Multiplexing Systems for Wireless Communications
Authors: Raja Rajeswari K
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM), a multi Carrier transmission technique that has been used in implementing the majority of wireless applications like Wireless Network Protocol Standards (like IEEE 802.11a, IEEE 802.11n), in telecommunications (like LTE, LTE-Advanced) and also in Digital Audio & Video Broadcast standards. The latest research and development in the area of orthogonal frequency division multiplexing, Universal Filtered Multi Carrier (UFMC) & Filtered OFDM (F-OFDM) has attracted lots of attention for wideband wireless communications. In this paper UFMC & F-OFDM system are implemented and comparative analysis are carried out in terms of M-ary QAM modulation scheme over Dolph-chebyshev filter & rectangular window filter and to estimate Bit Error Rate (BER) over Rayleigh fading channel.Keywords: UFMC, F-OFDM, BER, M-ary QAM
Procedia PDF Downloads 1692023 Intelligent Adaptive Learning in a Changing Environment
Authors: G. Valentis, Q. Berthelot
Abstract:
Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.Keywords: reinforcement learning, neural network, autonomous systems, adaptive learning, changing environment
Procedia PDF Downloads 4242022 Predicting Mobile Payment System Adoption in Nigeria: An Empirical Analysis
Authors: Aminu Hamza
Abstract:
This study examines the factors that play vital role in the adoption of mobile payment system among consumers in Nigeria. Technology Acceptance Model (TAM) was used with two additional variables to form the conceptual model. The study was conducted in three Universities in Kano state, Nigeria. Convenience sampling method was used with a total valid 202 respondents which involved the students of Bayero University Kano (BUK), Northwest University, and Kano University of Science and Technology (KUST) Wudil, Kano, Nigeria. Results of the regression analysis revealed that Perceived ease of use (PEOU) and Perceived usefulness (PU) have significant and positive correlation with the behavioral intention to adopt mobile payment system. The findings of this study would be useful to the policy makers Central Bank of Nigeria (CBN), mobile network operators and providers of the services.Keywords: mobile payment system, Nigeria, technology adoption, technology acceptance model
Procedia PDF Downloads 3052021 Analysis of Electricity Demand at Household Level Using Leap Model in Balochistan, Pakistan
Authors: Sheikh Saeed Ahmad
Abstract:
Electricity is vital for any state’s development that needs policy for planning the power network extension. This study is about simulation modeling for electricity in Balochistan province. Baseline data of electricity consumption was used of year 2004 and projected with the help of LEAP model up to subsequent 30 years. Three scenarios were created to run software. One scenario was baseline and other two were alternative or green scenarios i.e. solar and wind energy scenarios. Present study revealed that Balochistan has much greater potential for solar and wind energy for electricity production. By adopting these alternative energy forms, Balochistan can save energy in future nearly 23 and 48% by incorporating solar and wind power respectively. Thus, the study suggests to government planners, an aspect of integrating renewable sources in power system for ensuring sustainable development and growth.Keywords: demand and supply, LEAP, solar energy, wind energy, households
Procedia PDF Downloads 4272020 Recovering Trust in Institutions through Networked Governance: An Analytical Approach via the Study of the Provincial Government of Gipuzkoa
Authors: Xabier Barandiaran, Igone Guerra
Abstract:
The economic and financial crisis that hit European countries in 2008 revealed the inability of governments to respond unilaterally to the so-called “wicked” problems that affect our societies. Closely linked to this, the increasing disaffection of citizens towards politics has resulted in growing distrust of the citizenry not only in the institutions in general but also in the political system, in particular. Precisely, these two factors provoked the action of the local government of Gipuzkoa (Basque Country) to move from old ways of “doing politics” to a new way of “thinking politics” based on a collaborative approach, in which innovative modes of public decision making are prominent. In this context, in 2015, the initiative Etorkizuna Eraikiz (Building the Future), a contemporary form of networked governance, was launched by the Provincial Government. The paper focuses on the Etorkizuna Eraikiz initiative, a sound commitment from a local government to build jointly with the citizens the future of the territory. This paper will present preliminary results obtained from three different experiences of co-creation developed within Etorkizuna Eraikiz in which the formulation of networked governance is a mandatory pre-requisite. These experiences show how the network building approach among the different agents of the territory as well as the co-creation of public policies is the cornerstone of this challenging mission. Through the analysis of the information and documentation gathered during the four years of Etorkizuna-Eraikiz, and, specifically by delving into the strategy promoted by the initiative, some emerging analytical conclusions resulting from the promotion of this collaborative culture will be presented. For example, some preliminary results have shown a significant positive relationship between shared leadership and the formulation of the public good. In the period 2016-2018, a total of 73 projects were launched and funding by the Provincial Government of Gipuzkoa within the Etorkizuna Eraikiz initiative, that indicates greater engagement of the citizenry in the process of policy-making and therefore improving, somehow, the quality of the public policies. These statements have been supported by the last survey about the perspectives of the citizens toward politics and policies. Some of the more prominent results show us that there is still a high level of distrust in Politics (78,9% of respondents) but a greater trust in institutions such the Political Government of Gipuzkoa (40,8% of respondents declared as “good” the performance of this provincial institution). Regarding the Etorkizuna Eraikiz Initiative, it is being more readily recognized by citizens over this period of time (25,4% of the respondents in June 2018 agreed to know about the initiative giving it a mark of 5,89 ) and thus build trust and a sense of ownership. Although, there is a clear requirement for further research on the linkages between collaborative governance and level of trust, the paper, based on these findings, will provide some managerial and theoretical implications for collaborative governance in the territory.Keywords: network governance, collaborative governance, public sector innovation, citizen participation, trust
Procedia PDF Downloads 1222019 Poly(Methyl Methacrylate)/Graphene Microparticles Having a Core/Shell Structure Prepared with Carboxylated Graphene as a Pickering Stabilizer
Authors: Gansukh Erdenedelger, Doljinsuren Sukhbaatar, Trung Dung Dao, Byeong-Kyu Lee, Han Mo Jeong
Abstract:
Two kinds of carboxylated thermally reduced graphenes (C-TRGs) having different lateral sizes are examined as a Pickering stabilizer in the suspension polymerization of methyl methacrylate. The size and the shape of the prepared composite particles are irregular due to agglomeration, more evidently when the larger C-TRG is used. In addition, C-TRG is distributed not only on the surface but also inside the composite particles. It indicates that the C-TRG alone is not a stable Pickering agent. However, a very small dosage of acrylic acid remedies all these issues, because acrylic acid interacts with C-TRG and synergizes the stabilizing effect. The compression molded composite of the core/shell poly(methyl methacrylate)/C-TRG particles exhibits a very low percolation threshold of electrical conductivity of 0.03 vol%. It demonstrates that the C-TRG shells of the composite particles effectively form a segregated conductive network throughout the composite.Keywords: pickering, graphene, polymerization, PMMA
Procedia PDF Downloads 2972018 Deficient Multisensory Integration with Concomitant Resting-State Connectivity in Adult Attention Deficit/Hyperactivity Disorder (ADHD)
Authors: Marcel Schulze, Behrem Aslan, Silke Lux, Alexandra Philipsen
Abstract:
Objective: Patients with Attention Deficit/Hyperactivity Disorder (ADHD) often report that they are being flooded by sensory impressions. Studies investigating sensory processing show hypersensitivity for sensory inputs across the senses in children and adults with ADHD. Especially the auditory modality is affected by deficient acoustical inhibition and modulation of signals. While studying unimodal signal-processing is relevant and well-suited in a controlled laboratory environment, everyday life situations occur multimodal. A complex interplay of the senses is necessary to form a unified percept. In order to achieve this, the unimodal sensory modalities are bound together in a process called multisensory integration (MI). In the current study we investigate MI in an adult ADHD sample using the McGurk-effect – a well-known illusion where incongruent speech like phonemes lead in case of successful integration to a new perceived phoneme via late top-down attentional allocation . In ADHD neuronal dysregulation at rest e.g., aberrant within or between network functional connectivity may also account for difficulties in integrating across the senses. Therefore, the current study includes resting-state functional connectivity to investigate a possible relation of deficient network connectivity and the ability of stimulus integration. Method: Twenty-five ADHD patients (6 females, age: 30.08 (SD:9,3) years) and twenty-four healthy controls (9 females; age: 26.88 (SD: 6.3) years) were recruited. MI was examined using the McGurk effect, where - in case of successful MI - incongruent speech-like phonemes between visual and auditory modality are leading to a perception of a new phoneme. Mann-Whitney-U test was applied to assess statistical differences between groups. Echo-planar imaging-resting-state functional MRI was acquired on a 3.0 Tesla Siemens Magnetom MR scanner. A seed-to-voxel analysis was realized using the CONN toolbox. Results: Susceptibility to McGurk was significantly lowered for ADHD patients (ADHDMdn:5.83%, ControlsMdn:44.2%, U= 160.5, p=0.022, r=-0.34). When ADHD patients integrated phonemes, reaction times were significantly longer (ADHDMdn:1260ms, ControlsMdn:582ms, U=41.0, p<.000, r= -0.56). In functional connectivity medio temporal gyrus (seed) was negatively associated with primary auditory cortex, inferior frontal gyrus, precentral gyrus, and fusiform gyrus. Conclusion: MI seems to be deficient for ADHD patients for stimuli that need top-down attentional allocation. This finding is supported by stronger functional connectivity from unimodal sensory areas to polymodal, MI convergence zones for complex stimuli in ADHD patients.Keywords: attention-deficit hyperactivity disorder, audiovisual integration, McGurk-effect, resting-state functional connectivity
Procedia PDF Downloads 1272017 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations
Authors: Boudemagh Naime
Abstract:
Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling
Procedia PDF Downloads 3642016 Solving Directional Overcurrent Relay Coordination Problem Using Artificial Bees Colony
Authors: M. H. Hussain, I. Musirin, A. F. Abidin, S. R. A. Rahim
Abstract:
This paper presents the implementation of Artificial Bees Colony (ABC) algorithm in solving Directional OverCurrent Relays (DOCRs) coordination problem for near-end faults occurring in fixed network topology. The coordination optimization of DOCRs is formulated as linear programming (LP) problem. The objective function is introduced to minimize the operating time of the associated relay which depends on the time multiplier setting. The proposed technique is to taken as a technique for comparison purpose in order to highlight its superiority. The proposed algorithms have been tested successfully on 8 bus test system. The simulation results demonstrated that the ABC algorithm which has been proved to have good search ability is capable in dealing with constraint optimization problems.Keywords: artificial bees colony, directional overcurrent relay coordination problem, relay settings, time multiplier setting
Procedia PDF Downloads 330