Search results for: low-grade heat source
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7197

Search results for: low-grade heat source

4497 Genome Analyses of Pseudomonas Fluorescens b29b from Coastal Kerala

Authors: Wael Ali Mohammed Hadi

Abstract:

Pseudomonas fluorescens B29B, which has asparaginase enzymatic activity, was isolated from the surface coastal seawater of Trivandrum, India. We report the complete Pseudomonas fluorescens B29B genome sequenced, identified, and annotated from a marine source. We find the genome at most minuscule a 7,331,508 bp single circular chromosome with a GC content of 62.19% and 6883 protein-coding genes. Three hundred forty subsystems were identified, including two predicted asparaginases from the genome analysis of P. fluorescens B29B for further investigation. This genome data will help further industrial biotechnology applications of proteins in general and asparaginase as a target.

Keywords: pseudomonas, marine, asparaginases, Kerala, whole-genome

Procedia PDF Downloads 196
4496 Analysis of DNA from Fired Cartridge Casings

Authors: S. Mawlood, L. Denanny, N. Watson, B. Pickard

Abstract:

DNA analysis has been widely accepted as providing valuable evidence concerning the identity of the source of biological traces. Our work has showed that DNA samples can survive on cartridges even after firing. The study also raised the possibility of determining other information such as the age of the donor. Such information may be invaluable in certain cases where spent cartridges from automatic weapons are left behind at the scene of a crime. In spite of the nature of touch evidence and exposure to high chamber temperatures during shooting, we were still capable to retrieve enough DNA for profile typing. In order to estimate age of contributor, DNA methylation levels were analyzed using EpiTect system for retrieved DNA. However, results were not conclusive, due to low amount of input DNA.

Keywords: DNA profile, DNA Methylation, fired cartridge, touch sample

Procedia PDF Downloads 438
4495 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy

Authors: M. N. Baig, F. N. Khan, M. Junaid

Abstract:

Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.

Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys

Procedia PDF Downloads 205
4494 Three-Level Converters Back-To-Back DC Bus Control for Torque Ripple Reduction of Induction Motor

Authors: T. Abdelkrim, K. Benamrane, B. Bezza, Aeh Benkhelifa, A. Borni

Abstract:

This paper proposes a regulation method of back-to-back connected three-level converters in order to reduce the torque ripple in induction motor. First part is dedicated to the presentation of the feedback control of three-level PWM rectifier. In the second part, three-level NPC voltage source inverter balancing DC bus algorithm is presented. A theoretical analysis with a complete simulation of the system is presented to prove the excellent performance of the proposed technique.

Keywords: back-to-back connection, feedback control, neutral-point balance, three-level converter, torque ripple

Procedia PDF Downloads 480
4493 Comprehensive, Up-to-Date Climate System Change Indicators, Trends and Interactions

Authors: Peter Carter

Abstract:

Comprehensive climate change indicators and trends inform the state of the climate (system) with respect to present and future climate change scenarios and the urgency of mitigation and adaptation. With data records now going back for many decades, indicator trends can complement model projections. They are provided as datasets by several climate monitoring centers, reviewed by state of the climate reports, and documented by the IPCC assessments. Up-to-date indicators are provided here. Rates of change are instructive, as are extremes. The indicators include greenhouse gas (GHG) emissions (natural and synthetic), cumulative CO2 emissions, atmospheric GHG concentrations (including CO2 equivalent), stratospheric ozone, surface ozone, radiative forcing, global average temperature increase, land temperature increase, zonal temperature increases, carbon sinks, soil moisture, sea surface temperature, ocean heat content, ocean acidification, ocean oxygen, glacier mass, Arctic temperature, Arctic sea ice (extent and volume), northern hemisphere snow cover, permafrost indices, Arctic GHG emissions, ice sheet mass, sea level rise, and stratospheric and surface ozone. Global warming is not the most reliable single metric for the climate state. Radiative forcing, atmospheric CO2 equivalent, and ocean heat content are more reliable. Global warming does not provide future commitment, whereas atmospheric CO2 equivalent does. Cumulative carbon is used for estimating carbon budgets. The forcing of aerosols is briefly addressed. Indicator interactions are included. In particular, indicators can provide insight into several crucial global warming amplifying feedback loops, which are explained. All indicators are increasing (adversely), most as fast as ever and some faster. One particularly pressing indicator is rapidly increasing global atmospheric methane. In this respect, methane emissions and sources are covered in more detail. In their application, indicators used in assessing safe planetary boundaries are included. Indicators are considered with respect to recent published papers on possible catastrophic climate change and climate system tipping thresholds. They are climate-change-policy relevant. In particular, relevant policies include the 2015 Paris Agreement on “holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels” and the 1992 UN Framework Convention on Climate change, which has “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”

Keywords: climate change, climate change indicators, climate change trends, climate system change interactions

Procedia PDF Downloads 89
4492 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 138
4491 Design and Analysis of Piping System with Supports Using CAESAR-II

Authors: M. Jamuna Rani, K. Ramanathan

Abstract:

A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.

Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II

Procedia PDF Downloads 347
4490 Effect of Modification on the Properties of Blighia sapida (Ackee) Seed Starch

Authors: Olufunmilola A. Abiodun, Adegbola O. Dauda, Ayobami Ojo, Samson A. Oyeyinka

Abstract:

Blighia sapida (Ackee) seed is a neglected and under-utilised crop. The fruit is cultivated for the aril which is used as meat substitute in soup while the seed is discarded. The seed is toxic due to the presence of hypoglycin which causes vomiting and death. The seed is shining black and bigger than the legume seeds. The seed contains high starch content which could serve as a cheap source of starch hereby reducing wastage of the crop during its season. Native starch had limitation in their use; therefore, modification of starch had been reported to improve the functional properties of starches. Therefore, this work determined the effect of modification on the properties of Blighia sapida seed starch. Blighia sapida seed was dehulled manually, milled and the starch extracted using standard method. The starch was subjected to modification using four methods (acid, alkaline, oxidized and acetylated methods). The morphological structure, form factor, granule size, amylose, swelling power, hypoglycin and pasting properties of the starches were determined. The structure of Blighia sapida using light microscope showed that the seed starch demonstrated an oval, round, elliptical, dome-shaped and also irregular shape. The form factors of the starch ranged from 0.32-0.64. Blighia sapida seed starches were smaller in granule sizes ranging from 2-6 µm. Acid modified starch had the highest amylose content (24.83%) and was significantly different ( < 0.05) from other starches. Blighia sapida seed starches showed a progressive increase in swelling power as temperature increased in native, acidified, alkalized, oxidized and acetylated starches but reduced with increasing temperature in pregelatinized starch. Hypoglycin A ranged from 3.89 to 5.74 mg/100 g with pregelatinized starch having the lowest value and alkalized starch having the highest value. Hypoglycin B ranged from 7.17 to 8.47 mg/100 g. Alkali-treated starch had higher peak viscosity (3973 cP) which was not significantly different (p > 0.05) from the native starch. Alkali-treated starch also was significantly different (p > 0.05) from other starches in holding strength value while acetylated starch had higher breakdown viscosity (1161.50 cP). Native starch was significantly different (p > 0.05) from other starches in final and setback viscosities. Properties of Blighia sapida modified starches showed that it could be used as a source of starch in food and other non-food industries and the toxic compound found in the starch was very low when compared to lethal dosage.

Keywords: Blighia sapida seed, modification, starch, hypoglycin

Procedia PDF Downloads 220
4489 Part Performance Improvement through Design Optimisation of Cooling Channels in the Injection Moulding Process

Authors: M. A. Alhubail, A. I. Alateyah, D. Alenezi, B. Aldousiri

Abstract:

In this study conformal cooling channel (CCC) was employed to dissipate heat of, Polypropylene (PP) parts injected into the Stereolithography (SLA) insert to form tensile and flexural test specimens. The direct metal laser sintering (DMLS) process was used to fabricate a mould with optimised CCC, while optimum parameters of injection moulding were obtained using Optimal-D. The obtained results show that optimisation of the cooling channel layout using a DMLS mould has significantly shortened cycle time without sacrificing the part’s mechanical properties. By applying conformal cooling channels, the cooling time phase was reduced by 20 seconds, and also defected parts were eliminated.

Keywords: optimum parameters, injection moulding, conformal cooling channels, cycle time

Procedia PDF Downloads 212
4488 Evaluation of Mechanical Behavior of Gas Turbine Blade at High Temperature

Authors: Sung-Uk Wee, Chang-Sung Seok, Jae-Mean Koo, Jeong-Min Lee

Abstract:

Gas turbine blade is important part of power plant, so it is necessary to evaluate gas turbine reliability. For better heat efficiency, inlet temperature of gas turbine has been elevated more and more so gas turbine blade is exposed to high-temperature environment. Then, higher inlet temperature affects mechanical behavior of the gas turbine blade, so it is necessary that evaluation of mechanical property of gas turbine blade at high-temperature environment. In this study, tensile test and fatigue test were performed at various high temperature, and fatigue life was predicted by Coffin-Manson equation at each temperature. The experimental results showed that gas turbine blade has a lower elastic modulus and shorter fatigue life at higher temperature.

Keywords: gas turbine blade, tensile test, fatigue life, stress-strain

Procedia PDF Downloads 465
4487 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 622
4486 Extraction of Nutraceutical Bioactive Compounds from the Native Algae Using Solvents with a Deep Natural Eutectic Point and Ultrasonic-assisted Extraction

Authors: Seyedeh Bahar Hashemi, Alireza Rahimi, Mehdi Arjmand

Abstract:

Food is the source of energy and growth through the breakdown of its vital components and plays a vital role in human health and nutrition. Many natural compounds found in plant and animal materials play a special role in biological systems and the origin of many such compounds directly or indirectly is algae. Algae is an enormous source of polysaccharides and have gained much interest in human flourishing. In this study, algae biomass extraction is conducted using deep eutectic-based solvents (NADES) and Ultrasound-assisted extraction (UAE). The aim of this research is to extract bioactive compounds including total carotenoid, antioxidant activity, and polyphenolic contents. For this purpose, the influence of three important extraction parameters namely, biomass-to-solvent ratio, temperature, and time are studied with respect to their impact on the recovery of carotenoids, and phenolics, and on the extracts’ antioxidant activity. Here we employ the Response Surface Methodology for the process optimization. The influence of the independent parameters on each dependent is determined through Analysis of Variance. Our results show that Ultrasound-assisted extraction (UAE) for 50 min is the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts show the highest total phenolic contents (50.00 ± 0.70 mgGAE/gdw) and antioxidant activity [60.00 ± 1.70 mgTE/gdw, 70.00 ± 0.90 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)]. Our results confirm that the combination of UAE and NADES provides an excellent alternative to organic solvents for sustainable and green extraction and has huge potential for use in industrial applications involving the extraction of bioactive compounds from algae. This study is among the first attempts to optimize the effects of ultrasonic-assisted extraction, ultrasonic devices, and deep natural eutectic point and investigate their application in bioactive compounds extraction from algae. We also study the future perspective of ultrasound technology which helps to understand the complex mechanism of ultrasonic-assisted extraction and further guide its application in algae.

Keywords: natural deep eutectic solvents, ultrasound-assisted extraction, algae, antioxidant activity, phenolic compounds, carotenoids

Procedia PDF Downloads 155
4485 Compare Hot Forming and Cold Forming in Rolling Process

Authors: Ali Moarrefzadeh

Abstract:

In metalworking, rolling is a metal forming process in which metal stock is passed through a pair of rolls. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is termed as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is termed as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. This article describes the use of advanced tubing inspection NDT methods for boiler and heat exchanger equipment in the petrochemical industry to supplement major turnaround inspections. The methods presented include remote field eddy current, magnetic flux leakage, internal rotary inspection system and eddy current.

Keywords: hot forming, cold forming, metal, rolling, simulation

Procedia PDF Downloads 515
4484 Phase Stability and Grain Growth Kinetics of Oxide Dispersed CoCrFeMnNi

Authors: Prangya P. Sahoo, B. S. Murty

Abstract:

The present study deals with phase evolution of oxide dispersed CoCrFeMnNi high entropy alloy as a function of amount of added Y2O3 during mechanical alloying and analysis of grain growth kinetics of CoCrFeMnNi high entropy alloy without and with oxide dispersion. Mechanical alloying of CoCrFeMnNi resulted in a single FCC phase. However, evolution of chromium carbide was observed after heat treatment between 1073 and 1473 K. Comparison of grain growth time exponents and activation energy barrier is also reported. Micro structural investigations, using electron microscopy and EBSD techniques, were carried out to confirm the enhanced grain growth resistance which is attributed to the presence oxide dispersoids.

Keywords: grain growth kinetics, mechanical alloying, oxide dispersion, phase evolution

Procedia PDF Downloads 416
4483 Flue Gas Characterisation for Conversion to Chemicals and Fuels

Authors: Adesola O. Orimoloye, Edward Gobina

Abstract:

Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever-present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors.

Keywords: flue gas, carbon dioxide, membrane, catalyst, syngas

Procedia PDF Downloads 510
4482 Study of Polycyclic Aromatic Hydrocarbons Biodegradation by Bacterial Isolated from Contaminated Soils

Authors: Z. Abdessemed, N. Messaâdia, M. Houhamdi

Abstract:

The PAH (Polycyclic Aromatic Hydrocarbons) represent a persistent source of pollution for oil field soils. Their degradation, essentially dominated by the aerobic bacterial and fungal flora, exhibits certain aspects for remediation of these soils microbial oxygenases have, as their substrates, a large range of PAH. The variety and the performance of these enzymes allow the initiation of the biodegradation of any PAH through many different metabolic pathways. These pathways are very important for the recycling of the PAH in the biosphere, where substances supposed indigestible by living organisms are rapidly transformed into simples compounds, directly assimilated by the intermediate metabolism of other microorganisms.

Keywords: polycyclic aromatic hydrocarbons, microbial oxygenases, biodegradation, metabolic pathways

Procedia PDF Downloads 264
4481 Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room

Authors: Homin Kim, Hyungjo Byun, Jinyoung Do, Yongil Lee, Hyunho Shin, Seungbae Lee

Abstract:

Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed.

Keywords: acoustics, CFD, engine room design, mobile hydraulics

Procedia PDF Downloads 309
4480 Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 76
4479 Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties

Authors: Abdelkader Nouri, M’hamed Bouslama, Faouzi Saidi, Hassan Maaref, Michel Gendry

Abstract:

Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape.

Keywords: AFM, InAs QDs, PL, SSMBE

Procedia PDF Downloads 666
4478 Numerical Analysis of Multiplicity and Transition Phenomena in Natural Convection

Authors: Hadi Kafil, Ali Ecder

Abstract:

Heat transfer by natural convection in two-dimensional and three-dimensional axisymmetric enclosure fitted with partially heated vertical walls is investigated numerically. The range of Rayleigh number is varied from 10³ until convective flow becomes unstable. This research focuses on multiplicity and transition phenomena in natural convection and is based on a parametric analysis to study the onset of bifurcations. It is found that, even at low Rayleigh numbers, the flow undergoes a series of turning-point bifurcations which increase the rate of natural convention. On the other hand, by partially heating or cooling the walls, more effective results can be achieved for both heating and cooling applications, such as cooling of electronic devices and heating processes in solidification and crystal growth.

Keywords: natural convection, partial heated, onset of bifurcation, Rayleigh number

Procedia PDF Downloads 351
4477 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: heat sources, Lattice Boltzmann method, solid oxide fuel cell, temperature

Procedia PDF Downloads 297
4476 Investigation on Dry Sliding Wear for Laser Cladding of Stellite 6 Produced on a P91 Steel Substrate

Authors: Alain Kusmoko, Druce Dunne, Huijun Li

Abstract:

Stellite 6 was deposited by laser cladding on a chromium bearing substrate (P91) with energy inputs of 1 kW (P91-1) and 1.8 kW (P91-1.8). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was assessed using a pin-on-plate (reciprocating) wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the P91 steel substrate with the lower heat input (P91-1). Further, the Stellite coating for P91-1 was significantly harder than that obtained for P91-1.8. The wear test results indicated that the weight loss for P91-1 was much lower than for P91-1.8. It is concluded that the lower hardness of the coating for P91-1.8, together with the softer underlying substrate structure, markedly reduced the wear resistance of the Stellite 6 coating.

Keywords: friction and wear, laser cladding, P91 steel, Stellite 6 coating

Procedia PDF Downloads 424
4475 Vaporization of a Single N-Pentane Liquid Drop in a Flowing Immiscible Liquid Media

Authors: Hameed B. Mahood, Ali Sh. Baqir

Abstract:

Vaporization of a single n-pentane drop in a direct contact with another flowing immiscible liquid (warm water) has been experimentally investigated. The experiments were carried out utilising a cylindrical Perspex tube of diameter 10 cm and height and 150 cm. Saturated liquid n-pentane and warm water at 45oC were used as the dispersed and continuous phases, respectively. Photron FASTCAM SA 1.1high speed camera (75,000f/s) with software V. 321 was implemented during the experiments. Five different continuous phase flow rates (warm water) (10, 20, 30, 40, and 46 L⁄h) were used in the study. The results indicated that the increase of the continuous phase (warm water) flow rate results in increasing of the drop/bubble diameter.

Keywords: drop evaporation, direct contact heat transfer, drop/bubble growth, experimental technique

Procedia PDF Downloads 334
4474 Improved Ohmic Contact by Li Doping in Electron Transport Layers

Authors: G. Sivakumar, T. Pratyusha, D. Gupta, W. Shen

Abstract:

To get ohmic contact between the cathode and organic semiconductor, transport layers are introduced between the active layer and the electrodes. Generally zinc oxide or titanium dioxide are used as electron transport layer. When electron transport layer is doped with lithium, the resultant film exhibited superior electronic properties, which enables faster electron transport. Doping is accomplished by heat treatment of films with Lithium salts. Li-doped films. We fabricated organic solar cell using PTB7(poly(3-hexylthiopene-2,5- diyl):PCBM(phenyl-C61-butyric acid methyl ester) and found that the solar cells prepared using Li doped films had better performance in terms of efficiency when compared to the undoped transport layers.

Keywords: electron transport layer, higher efficiency, lithium doping, ohmic contact

Procedia PDF Downloads 489
4473 Cold Flow Investigation of Silicon Carbide Cylindrical Filter Element

Authors: Mohammad Alhajeri

Abstract:

This paper reports a computational fluid dynamics (CFD) investigation of cylindrical filter. Silicon carbide cylindrical filter elements have proven to be an effective mean of removing particulates to levels exceeding the new source performance standard. The CFD code is used here to understand the deposition process and the factors that affect the particles distribution over the filter element surface. Different approach cross flow velocity to filter face velocity ratios and different face velocities (ranging from 2 to 5 cm/s) are used in this study. Particles in the diameter range 1 to 100 microns are tracked through the domain. The radius of convergence (or the critical trajectory) is compared and plotted as a function of many parameters.

Keywords: filtration, CFD, CCF, hot gas filtration

Procedia PDF Downloads 449
4472 Effects of Bacteria on Levels of AFM1 in Phosphate Buffer at Different Level of Energy Source

Authors: Ali M. Elgerbi, Obied A. Alwan, Al-Taher O. Alzwei, Abdurrahim A. Elouzi

Abstract:

The binding of AFM1 to bacteria in phosphate buffer solution depended on many factors such as: availability of energy, incubation period, species and strain of bacteria. Increase in concentration of sugar showed higher removal of AFM1 and faster than in phosphate buffer alone. With 1.0% glucose lactic acid bacteria and bifidobacteria showed toxin removal ranging from 7.7 to 39.7% whereas with 10.0% glucose the percentage removal was 21.8 to 45.4% at 96 hours of incubation.

Keywords: aflatoxin M1, lactic acid bacteria, bifidobacteria , binding, phosphate buffer

Procedia PDF Downloads 491
4471 Reformed Land: Extent of Use and Contribution to Livelihoods in the Waterberg District

Authors: A. J. Netshipale, M. L. Mashiloane, S. J. Oosting, I. J. M. De Boer, E. N. Raidimi

Abstract:

Three tier land reform programme (land restitution, land redistribution and land tenure reform) had been implemented for the past two decades in South Africa with an aim of redressing the unjust land ownership patterns of the past. Land restitution and redistribution seeked to make land available for beneficiaries’ ownership based on policy guidelines. Attention given to the two sub-programmes was mostly land reform focused with the quantity of land that exchanged ownership being used as a measure of success with disregard for how the land is used by the beneficiaries for their livelihoods. In few cases that the land use assessment was done for the two sub-programmes it was assessed on a case basis or few selected cases. The current study intended to shed light on a broader scope. This study investigated the extent to which land reform farms were used and contribution made by farms to the livelihoods of active beneficiaries. Seventy six farms that represented restitution (16 farms) and redistribution (60) programmes were selected for land use investigation. Land use data were collected from farm representatives by means of semi-structured questionnaire. A stratified sample of 87 households (38 for restitution and 49 for redistribution) were selected for livelihood investigations. Data on income generating activities and passive income sources were collected from household heads using semi-structured questionnaire. Additional data were collected through focus group discussions and from stakeholders through key-informants interviews. Livestock production used more land per farm on average (45%) in relation to the amount of average total land used per farm of 77% under land redistribution programme. Land restitution transformed crop farms into mixed farming and unused farms to be under use while land redistribution converted conservation land into agricultural land and also unused farms to be used. Livestock production contributed on average 25% to the livelihoods of 48% of the households whereas crop production contributed 31% on average to the livelihoods of 67% of the households. Government grants had the highest contribution of 54% on average and contributed to most households (72%). Agriculture was the sole source of livelihoods to only three per cent of the households. Most households (40%) had a mix of three livelihoods sources as their livelihood strategy. It could be concluded that the use of reformed land would be mainly influenced by the agro-ecological conditions of the area and agriculture could not be the main source of livelihoods for households that benefited from land reform. Land reform policies which accommodate diverse livelihoods activities could contribute to sustainable livelihoods.

Keywords: active beneficiaries, households, land reform, land use, livelihoods

Procedia PDF Downloads 181
4470 Recent Trends in Supply Chain Delivery Models

Authors: Alfred L. Guiffrida

Abstract:

A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas.

Keywords: delivery performance, delivery window, supply chain delivery models, supply chain performance

Procedia PDF Downloads 402
4469 Polypropylene/Red Mud Polymer Composites: Effects of Powder Size on Mechanical and Thermal Properties

Authors: Munir Tasdemir

Abstract:

Polymer/clay composites have received great attention in the past three decades owing to their light weight coupled with significantly better mechanical and barrier properties than the corresponding neat polymer resins. An investigation was carried out on the effects of red mud powder size and ratio on the mechanical and thermal properties of polypropylene /red mud polymer composites. Red mud, in four different concentrations (0, 10, 20 and 30 wt %) and three different powder size (180, 63 and 38 micron) were added to PP to produce composites. The mechanical properties, including the elasticity modulus, tensile & yield strength, % elongation, hardness, Izod impact strength and the thermal properties including the melt flow index, heat deflection temperature and vicat softening point of the composites were investigated. The structures of the composites were investigated by scanning electron microscopy and compared to mechanical and thermal properties as a function of red mud powder content and size.

Keywords: polypropylene, powder, red mud, mechanical properties

Procedia PDF Downloads 317
4468 Electroactivity of Clostridium saccharoperbutylacetonicum 1-4N during Carbon Dioxide Reduction in a Bioelectrosynthesis System

Authors: Carlos A. Garcia-Mogollon, Juan C. Quintero-Diaz, Claudio Avignone-Rossa

Abstract:

Clostridium saccharoperbutylacetonicum 1-4N (Csb 1-4N) is an industrial reference strain for Acetone-Butanol-Ethanol (ABE) fermentation. Csb 1-4N is a solventogenic clostridium and H₂ producer with a metabolic profile that makes it a good candidate for Bioelectrosynthesis System (BES). The aim of this study was to evaluate the electroactivity of Csb 1-4N by cyclic voltammetry technique (CV). The Bioelectrosynthesis fermentation (BES) started in a Triptone-Yeast extract (TY) medium with trace elements and vitamins, Complex Nitrogen Source (CNS), and bicarbonate (NaHCO₃, 4g/L) as a carbon source, run at -600mVAg/AgCl and adding 200uM NADH. The six BES batches were performed with different media composition with and without NADH, CNS, HCO₃⁻ , and applied potential. The CV was performed as three-electrode system: platinum slice working electrode (WE), nickel contra electrode (CE) and reference electrode Ag/AgCl (ER). CVs were run in a potential range of -0.7V to 0.7V vs. VAg/AgCl at a scan rate 10mV/s. A CV recorded using different NaHCO₃ concentrations (0.25; 0.5; 1.0; 4g/L) were obtained. BES fermentation samples were centrifuged (3000 rpm, 5min, 4C), and supernatant (7mL) was used. CVs were obtained for Csb1-4N BES culture cell-free supernatant at 0h, 24h, and 48h. The electrochemical analysis was carried out with a PalmSens 4.0 potentiostat/galvanostat controlled with the PStrace 5.7 software, and CVs curves were characterized by reduction and oxidation currents and reduction and oxidation peaks. The CVs obtained for NaHCO₃ solutions showed that the reduction current and oxidation current decreased as the NaHCO₃ concentration was decreased. All reduction and oxidation currents decreased until exponential growth stop (24h), independence of initial cathodic current, except in medium with trace elements, vitamins, and NaHCO3, in which reduction current was around half at 24h and followed decreasing at 48. In this medium, Csb1-4N did not grow, but pH was increased, indicating that NaHCO₃ was reduced as the reduction current decreased. In general, at 48h reduction currents did not present important changes between different mediums in BES cultures. In terms of intensities in the peaks (Ip) did not present important variations; except with Ipa and Ipc in BES culture with NaHCO₃ and NADH added are higher than peaks in other cultures. Based on results, cathodic and anodic currents changes were induced by NaHCO₃ reduction reactions during Csb1-4N metabolic activity in different BES experiments.

Keywords: clostridium saccharoperbutylacetonicum 1-4N, bioelectrosynthesis, carbon dioxide fixation, cyclic voltammetry

Procedia PDF Downloads 120