Search results for: splitting tensile strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4190

Search results for: splitting tensile strength

1520 Behaviour of Beam Reinforced with Longitudinal Steel-CFRP Composite Reinforcement under Static Load

Authors: Faris A. Uriayer, Mehtab Alam

Abstract:

The concept of using a hybrid composite by combining two or more different materials to produce bilinear stress–strain behaviour has become a subject of interest. Having studied the mechanical properties of steel-CFRP specimens (CFRP Laminate Sandwiched between Mild Steel Strips), full size steel-CFRP composite reinforcement were fabricated and used as a new reinforcing material inside beams in lieu of traditional steel bars. Four beams, three beams reinforced with steel-CFRP composite reinforcement and one beam reinforced with traditional steel bars were cast, cured and tested under quasi-static loading. The flexural test results of the beams reinforced with this composite reinforcement showed that the beams with steel-CFRP composite reinforcement had comparable flexural strength and flexural ductility with beams reinforced with traditional steel bars.

Keywords: CFRP laminate, steel strip, flexural behaviour, modified model, concrete beam

Procedia PDF Downloads 674
1519 IT and Security Experts' Innovation and Investment Front for IT-Entrepreneurship in Pakistan

Authors: Ahmed Mateen, Zhu Qingsheng, Muhammad Awais, Muhammad Yahya Saeed

Abstract:

This paper targets the rising factor of entrepreneurship innovation, which lacks in Pakistan as compared to the other countries or the regions like China, India, and Malaysia, etc. This is an exploratory and explanatory study. Major aspects have identified as the direction for the policymakers while highlighting the issues in true spirit. IT needs to be considered not only as a technology but also as itself growing as a new community. IT management processes are complex and broad, so generally requires extensive attention to the collective aspects of human variables, capital and technology. In addition, projects tend to have a special set of critical success factors, and if these are processed and given attention, it will improve the chances of successful implementation. This is only possible with state of the art intelligent decision support systems and accumulating IT staff to some extent in decision processes. This paper explores this issue carefully and discusses six issues to observe the implemented strength and possible enhancement.

Keywords: security and defense forces, IT-incentives, big IT-players, IT-entrepreneurial-culture

Procedia PDF Downloads 207
1518 Seismic Behavior of Short Core Buckling Restrained Braces

Authors: Nader Hoveidae

Abstract:

This paper investigates the seismic behavior of a new type of buckling restrained braces (BRBs) called "Short Core BRBs" in which a shorter core segment is used as an energy dissipating part and an elastic part is serially connected to the core. It seems that a short core BRB is easy to be fabricated, inspected and replaced after a severe earthquake. In addition, the energy dissipating capacity in a short core BRB is higher because of larger core strains. However, higher core strain demands result in high potential of low-cycle fatigue fracture. In this paper, a strategy is proposed to estimate the minimum core length in a short core BRBs. The seismic behavior of short core buckling restrained brace is experimentally examined. The results revealed that the short core buckling restrained brace is able to sustain large inelastic strains without any significant instability or strength degradation.

Keywords: short core, Buckling Restrained Brace, finite element analysis, cyclic test

Procedia PDF Downloads 349
1517 Improvement of the Geometric of Dental Bridge Framework through Automatic Program

Authors: Rong-Yang Lai, Jia-Yu Wu, Chih-Han Chang, Yung-Chung Chen

Abstract:

The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure.

Keywords: dental bridge, finite element analysis, framework, automatic program

Procedia PDF Downloads 273
1516 Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints

Authors: Gurmeet Singh Cheema, Navjotinder Singh, Gurjinder Singh, Amardeep Singh

Abstract:

Aluminium and its alloys play have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are, solution heat treatment, artificial aged and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of as welded and post weld treated joints of the aluminium alloys was examined.

Keywords: aluminium alloys, TIG welding, post weld heat treatment

Procedia PDF Downloads 555
1515 The Effect of Opening on Mode Shapes and Frequencies of Composite Shear Wall

Authors: A. Arabzadeh, H. R. Kazemi Nia Korrani

Abstract:

Composite steel plate shear wall is a lateral loading resistance system, which is used especially in tall buildings. This wall is made of a thin steel plate with reinforced a concrete cover, which is attached to one or both sides of the steel plate. This system is similar to stiffened steel plate shear wall, in which reinforced concrete replaces the steel stiffeners. Composite shear wall have in-plane and out-plane significant strength. Also, they have appropriate ductility. The present numerical investigations were focused on the effects of opening on wall mode shapes. In addition, frequencies of composite shear wall with and without opening are compared. For analyzing composite shear wall, a new program will be developed using of finite element theory and the effects of shape, size and position openings on the behavior of composite shear wall will be studied. Results indicated that the existence of opening decreases wall frequency.

Keywords: composite shear wall, opening, finite element method, modal analysis

Procedia PDF Downloads 521
1514 Investigation of Ductile Failure Mechanisms in SA508 Grade 3 Steel via X-Ray Computed Tomography and Fractography Analysis

Authors: Suleyman Karabal, Timothy L. Burnett, Egemen Avcu, Andrew H. Sherry, Philip J. Withers

Abstract:

SA508 Grade 3 steel is widely used in the construction of nuclear pressure vessels, where its fracture toughness plays a critical role in ensuring operational safety and reliability. Understanding the ductile failure mechanisms in this steel grade is crucial for designing robust pressure vessels that can withstand severe nuclear environment conditions. In the present study, round bar specimens of SA508 Grade 3 steel with four distinct notch geometries were subjected to tensile loading while capturing continuous 2D images at 5-second intervals in order to monitor any alterations in their geometries to construct true stress-strain curves of the specimens. 3D reconstructions of X-ray computed tomography (CT) images at high-resolution (a spatial resolution of 0.82 μm) allowed for a comprehensive assessment of the influences of second-phase particles (i.e., manganese sulfide inclusions and cementite particles) on ductile failure initiation as a function of applied plastic strain. Additionally, based on 2D and 3D images, plasticity modeling was executed, and the results were compared to experimental data. A specific ‘two-parameter criterion’ was established and calibrated based on the correlation between stress triaxiality and equivalent plastic strain at failure initiation. The proposed criterion demonstrated substantial agreement with the experimental results, thus enhancing our knowledge of ductile fracture behavior in this steel grade. The implementation of X-ray CT and fractography analysis provided new insights into the diverse roles played by different populations of second-phase particles in fracture initiation under varying stress triaxiality conditions.

Keywords: ductile fracture, two-parameter criterion, x-ray computed tomography, stress triaxiality

Procedia PDF Downloads 76
1513 The Mechanical Behavior of a Cement-Fiber Composite Material

Authors: K. Harrat, M. Hidjeb, M. T’kint

Abstract:

The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability.

Keywords: cement composite, durability, heat treatment, mechanical behaviour, vegetal fiber

Procedia PDF Downloads 445
1512 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX

Procedia PDF Downloads 68
1511 The Engineering Properties of Jordanian Marble

Authors: Mousa Bani Baker, Raed Abendeh, Zaidoon Abu Salem, Hesham Ahmad

Abstract:

This research paper was commissioned to discuss the Jordanian marble, which is a non-foliated metamorphic rock composed of recrystallized carbonate minerals, most commonly calcite or dolomite. Geologists use the term "marble" to refer to metamorphosed limestone; however, stonemasons use the term more broadly to encompass unmetamorphised limestone. Marble is commonly used for sculpture and as a building material. The marble has many uses; one of them is using the white marble that has been prized for its use in sculptures since classical times. This preference has to do with its softness, relative isotropy and homogeneity, and a relative resistance to shattering. Another use of it is the construction marble which is “a stone which is composed of calcite, dolomite or serpentine which is capable of taking a polish” Marble Institute of America. This report focuses most about the marble in Jordan and its properties: rock definition, physical properties, the marble occurrences in Jordan, types of Jordanian marble and their prices and test done on this marble.

Keywords: marble, metamorphic, non-foliated, compressive strength, recrystallized, Moh’s hardness, abrasion, absorption, modulus of rupture, porosity

Procedia PDF Downloads 360
1510 Strengthening and Toughening of Dental Porcelain by the Inclusion of an Yttria-Stabilized Zirconia Reinforcing Phase

Authors: Buno Henriques, Rafaela Santos, Júlio Matias de Souza, Filipe Silva, Rubens Nascimento, Márcio Fredel

Abstract:

Dental porcelain composites reinforced and toughened by 20 wt.% tetragonal zirconia (3Y-TZP) were processed by hot pressing at 1000°C. Two types of particles were tested: yttria-stabilized zirconia (ZrO2–3%Y2O3) agglomerates and pre-sintered yttria-stabilized zirconia (ZrO2–3%Y2O3) particles. The composites as well as the reinforcing particles were analyzed by the means of optical and Scanning Electron Microscopy (SEM), Energy Dispersion Spectroscopy (EDS) and X-Ray Diffraction (XRD). The mechanical properties were obtained by the transverse rupture strength test, Vickers indentations and fracture toughness. Wear tests were also performed on the composites and monolithic porcelain. The best mechanical and wear results were displayed by the porcelain reinforced with the pre-sintered ZrO2–3%Y2O3 particles.

Keywords: dental restoration, zirconia, porcelain, composites, strengthening, toughening, wear

Procedia PDF Downloads 440
1509 Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume

Authors: Alya Harichane, Badreddine Harichane

Abstract:

The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.

Keywords: polycarboxylate-ether superplasticizer, rheology, compressive strength, high-performance concrete, silica fume

Procedia PDF Downloads 64
1508 Model-Independent Price Bounds for the Swiss Re Mortality Bond 2003

Authors: Raj Kumari Bahl, Sotirios Sabanis

Abstract:

In this paper, we are concerned with the valuation of the first Catastrophic Mortality Bond that was launched in the market namely the Swiss Re Mortality Bond 2003. This bond encapsulates the behavior of a well-defined mortality index to generate payoffs for the bondholders. Pricing this bond is a challenging task. We adapt the payoff of the terminal principal of the bond in terms of the payoff of an Asian put option and present an approach to derive model-independent bounds exploiting comonotonic theory. We invoke Jensen’s inequality for the computation of lower bounds and employ Lagrange optimization technique to achieve the upper bound. The success of these bounds is based on the availability of compatible European mortality options in the market. We carry out Monte Carlo simulations to estimate the bond price and illustrate the strength of these bounds across a variety of models. The fact that our bounds are model-independent is a crucial breakthrough in the pricing of catastrophic mortality bonds.

Keywords: mortality bond, Swiss Re Bond, mortality index, comonotonicity

Procedia PDF Downloads 240
1507 Development and Analysis of Waste Human Hair Fiber Reinforced Composite

Authors: Tesfaye Worku

Abstract:

Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.

Keywords: composite, human hair fiber, matrix, unsaturated polyester

Procedia PDF Downloads 46
1506 Superhydrophobic, Heteroporous Flexible Ceramic for Micro-Emulsion Separation, Oil Sorption, and Recovery of Fats, Oils, and Grease from Restaurant Wastewater

Authors: Jhoanne Pedres Boñgol, Zhang Liu, Yuyin Qiu, King Lun Yeung

Abstract:

Flexible ceramic sorbent material can be a viable technology to capture and recover emulsified fats, oils, and grease (FOG) that often cause sanitary sewer overflows. This study investigates the sorption capacity and recovery rate of ceramic material in surfactant-stabilized oil-water emulsion by synthesizing silica aerogel: SiO₂–X via acid-base sol-gel method followed by ambient pressure drying. The SiO₂–X is amorphous, microstructured, lightweight, flexible, and highly oleophilic. It displays spring-back behavior apparent at 80% compression with compressive strength of 0.20 MPa and can stand a weight of 1000 times its own. The contact angles measured at 0° and 177° in oil and water, respectively, confirm its oleophilicity and hydrophobicity while its thermal stability even at 450 °C is confirmed via TGA. In pure oil phase, the qe,AV. of 1x1 mm SiO₂–X is 7.5 g g⁻¹ at tqe= 10 min, and a qe,AV. of 6.05 to 6.76 g g⁻¹ at tqe= 24 hrs in O/W emulsion. The filter ceramic can be reused 50 x with 75-80 % FOG recovery by manual compression.

Keywords: adsorption, aerogel, emulsion, FOG

Procedia PDF Downloads 147
1505 Layered Fiberconcrete Element Building Technology and Strength

Authors: Vitalijs Lusis, Videvuds-Arijs Lapsa, Olga Kononova, Andrejs Krasnikovs

Abstract:

Steel fibres use in a concrete, such way obtaining Steel Fibre Reinforced Concrete (SFRC), is an important technological direction in building industry. Steel fibers are substituting the steel bars in conventional concrete in another situation is possible to combine them in the concrete structures. Traditionally fibers are homogeneously dispersed in a concrete. At the same time in many situations fiber concrete with homogeneously dispersed fibers is not optimal (majority of added fibers are not participating in a load bearing process). It is obvious, that is possible to create constructions with oriented fibers distribution in them, in different ways. Present research is devoted to one of them. Acknowledgment: This work has been supported by the European Social Fund within the project «Support for the implementation of doctoral studies at Riga Technical University» and project No. 2013/0025/1DP/1.1.1.2.0/13/APIA/VIAA/019 “New “Smart” Nanocomposite Materials for Roads, Bridges, Buildings and Transport Vehicle”.

Keywords: fiber reinforced concrete, 4-point bending, steel fiber, SFRC

Procedia PDF Downloads 621
1504 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems

Authors: Mohamed Omar

Abstract:

Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing.

Keywords: finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing

Procedia PDF Downloads 315
1503 Factors Impacting Shopping Behavior for Luxury Fashion Brands: A Case of National Capital Region in India

Authors: Manoj Kumar, Preeti Goel

Abstract:

National Capital Region of India is one of the most populous urban agglomerations in the world. This region has residents from all the parts of India, and their shopping behaviors are quite different. The region also has the substantial population of people from other countries. Due to high purchasing power of a large number of people, NCR is one the major markets for luxury fashion brands. Marketers of luxury fashion brands keep on adding innovative features to their products to attract the buyers. This research is an attempt to understand the major factors which impact the brand selection for these brands and other buying decisions like purchasing time and location. The research is based on primary data collected from potential buyers of luxury fashion brands and the people involved in the marketing of these brands in various roles. The research has tried to identify the relative strength of various factors on the shopping behavior for these brands.

Keywords: luxury brands, fashion, shopping, National Capital Region (NCR)

Procedia PDF Downloads 400
1502 Scientometrics Analysis of Food Supply Chain Risk Assessment Literature: Based On Web of Science Record 1996-2014

Authors: Mohsen Shirani, Shadi Asadzandi, Micaela Demichela

Abstract:

This paper presents the results of a study to assess crucial aspects and the strength of the scientific basis of a typically interdisciplinary, applied field: food supply chain risk assessment research. Our approach is based on an advanced scientometrics analysis with novel elements to assess the influence and dissemination of research results and to measure interdisciplinary. This paper aims to describe the quantity and quality of the publication trends in food supply chain risk assessment. The population under study was composed of 266 articles from database web of science. The results were analyzed based on date of publication, type of document, language of the documents, source of publications, subject areas, authors and their affiliations, and the countries involved in developing the articles.

Keywords: food supply chain, risk assessment, scientometrics, web of science

Procedia PDF Downloads 488
1501 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX blend

Procedia PDF Downloads 77
1500 Viscoelastic Characterization of Gelatin/Cellulose Nanocrystals Aqueous Bionanocomposites

Authors: Liliane Samara Ferreira Leite, Francys Kley Vieira Moreira, Luiz Henrique Capparelli Mattoso

Abstract:

The increasing environmental concern regarding the plastic pollution worldwide has stimulated the development of low-cost biodegradable materials. Proteins are renewable feedstocks that could be used to produce biodegradable plastics. Gelatin, for example, is a cheap film-forming protein extracted from animal skin and connective tissues of Brazilian Livestock residues; thus it has a good potential in low-cost biodegradable plastic production. However, gelatin plastics are limited in terms of mechanical and barrier properties. Cellulose nanocrystals (CNC) are efficient nanofillers that have been used to extend physical properties of polymers. This work was aimed at evaluating the reinforcing efficiency of CNC on gelatin films. Specifically, we have employed the continuous casting as the processing method for obtaining the gelatin/CNC bionanocomposites. This required a first rheological study for assessing the effect of gelatin-CNC and CNC-CNC interactions on the colloidal state of the aqueous bionanocomposite formulations. CNC were isolated from eucalyptus pulp by sulfuric acid hydrolysis (65 wt%) at 55 °C for 30 min. Gelatin was solubilized in ultra-pure water at 85°C for 20 min and then mixed with glycerol at 20 wt.% and CNC at 0.5 wt%, 1.0 wt% and 2.5 wt%. Rotational measurements were performed to determine linear viscosity (η) of bionanocomposite solutions, which increased with increasing CNC content. At 2.5 wt% CNC, η increased by 118% regarding the neat gelatin solution, which was ascribed to percolation CNC network formation. Storage modulus (G’) and loss modulus (G″) further determined by oscillatory tests revealed that a gel-like behavior was dominant in the bionanocomposite solutions (G’ > G’’) over a broad range of temperature (20 – 85 °C), particularly at 2.5 wt% CNC. These results confirm effective interactions in the aqueous gelatin-CNC bionanocomposites that could substantially increase the physical properties of the gelatin plastics. Tensile tests are underway to confirm this hypothesis. The authors would like to thank the Fapesp (process n 2016/03080-3) for support.

Keywords: bionanocomposites, cellulose nanocrystals, gelatin, viscoelastic characterization

Procedia PDF Downloads 143
1499 Thermosonic Devulcanization of Waste Ground Rubber Tires by Quaternary Ammonium-Based Ternary Deep Eutectic Solvents and the Effect of α-Hydrogen

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid

Abstract:

Landfills, water contamination, and toxic gas emission are a few impacts faced by the environment due to the increasing number of αof waste rubber tires (WRT). In spite of such concerning issue, only minimal efforts are taken to reclaim or recycle these wastes as their products are generally not-profitable for companies. Unlike the typical reclamation process, devulcanization is a method to selectively cleave sulfidic bonds within vulcanizates to avoid polymeric scissions that compromise elastomer’s mechanical and tensile properties. The process also produces devulcanizates that are re-processable similar to virgin rubber. Often, a devulcanizing agent is needed. In the current study, novel and sustainable ammonium chloride-based ternary deep eutectic solvents (TDES), with a different number of α-hydrogens, were utilised to devulcanize ground rubber tire (GRT) as an effort to implement green chemistry to tackle such issue. 40-mesh GRT were soaked for 1 day with different TDESs and sonicated at 37-80 kHz for 60-120 mins and heated at 100-140oC for 30-90 mins. Devulcanizates were then filtered, dried, and evaluated based on the percentage of by means of Flory-Rehner calculation and swelling index. The result shows that an increasing number of α-Hs increases the degree of devulcanization, and the value achieved was around eighty-percent, thirty percent higher than the typical industrial-autoclave method. Resulting bondages of devulcanizates were also analysed by Fourier transform infrared spectrometer (FTIR), Horikx fitting, and thermogravimetric analyser (TGA). The earlier two confirms only sulfidic scissions were experienced by GRT through the treatment, while the latter proves the absence or negligibility of carbon-chains scission.

Keywords: ammonium, sustainable, deep eutectic solvent, α-hydrogen, waste rubber tire

Procedia PDF Downloads 117
1498 Role of Macro and Technical Indicators in Equity Risk Premium Prediction: A Principal Component Analysis Approach

Authors: Naveed Ul Hassan, Bilal Aziz, Maryam Mushtaq, Imran Ameen Khan

Abstract:

Equity risk premium (ERP) is the stock return in excess of risk free return. Even though it is an essential topic of finance but still there is no common consensus upon its forecasting. For forecasting ERP, apart from the macroeconomic variables attention is devoted to technical indicators as well. For this purpose, set of 14 technical and 14 macro-economic variables is selected and all forecasts are generated based on a standard predictive regression framework, where ERP is regressed on a constant and a lag of a macroeconomic variable or technical indicator. The comparative results showed that technical indicators provide better indications about ERP estimates as compared to macro-economic variables. The relative strength of ERP predictability is also investigated by using National Bureau of Economic Research (NBER) data of business cycle expansion and recessions and found that ERP predictability is more than twice for recessions as compared to expansions.

Keywords: equity risk premium, forecasting, macroeconomic indicators, technical indicators

Procedia PDF Downloads 295
1497 Controlling Differential Settlement of Large Reservoir through Soil Structure Interaction Approach

Authors: Madhav Khadilkar

Abstract:

Construction of a large standby reservoir was required to provide secure water supply. The new reservoir was required to be constructed at the same location of an abandoned old open pond due to space constraints. Some investigations were carried out earlier to improvise and re-commission the existing pond. But due to a lack of quantified risk of settlement from voids in the underlying limestone, the shallow foundations were not found feasible. Since the reservoir was resting on hard strata for about three-quarter of plan area and one quarter was resting on soil underlying with limestone and considerably low subgrade modulus. Further investigations were carried out to ascertain the locations and extent of voids within the limestone. It was concluded that the risk due to lime dissolution was acceptably low, and the site was found geotechnically feasible. The hazard posed by limestone dissolution was addressed through the integrated structural and geotechnical analysis and design approach. Finite Element Analysis was carried out to quantify the stresses and differential settlement due to various probable loads and soil-structure interaction. Walls behaving as cantilever under operational loads were found undergoing in-plane bending and tensile forces due to soil-structure interaction. Sensitivity analysis for varying soil subgrade modulus was carried out to check the variation in the response of the structure and magnitude of stresses developed. The base slab was additionally checked for the loss of soil contact due to lime pocket formations at random locations. The expansion and contraction joints were planned to receive minimal additional forces due to differential settlement. The reservoir was designed to sustain the actions corresponding to allowable deformation limits per code, and geotechnical measures were proposed to achieve the soil parameters set in structural analysis.

Keywords: differential settlement, limestone dissolution, reservoir, soil structure interaction

Procedia PDF Downloads 144
1496 Combining the Fictitious Stress Method and Displacement Discontinuity Method in Solving Crack Problems in Anisotropic Material

Authors: Bahatti̇n Ki̇mençe, Uğur Ki̇mençe

Abstract:

In this study, the purpose of obtaining the influence functions of the displacement discontinuity in an anisotropic elastic medium is to produce the boundary element equations. A Displacement Discontinuous Method formulation (DDM) is presented with the aim of modeling two-dimensional elastic fracture problems. This formulation is found by analytical integration of the fundamental solution along a straight-line crack. With this purpose, Kelvin's fundamental solutions for anisotropic media on an infinite plane are used to form dipoles from singular loads, and the various combinations of the said dipoles are used to obtain the influence functions of displacement discontinuity. This study introduces a technique for coupling Fictitious Stress Method (FSM) and DDM; the reason for applying this technique to some examples is to demonstrate the effectiveness of the proposed coupling method. In this study, displacement discontinuity equations are obtained by using dipole solutions calculated with known singular force solutions in an anisotropic medium. The displacement discontinuities method obtained from the solutions of these equations and the fictitious stress methods is combined and compared with various examples. In this study, one or more crack problems with various geometries in rectangular plates in finite and infinite regions, under the effect of tensile stress with coupled FSM and DDM in the anisotropic environment, were examined, and the effectiveness of the coupled method was demonstrated. Since crack problems can be modeled more easily with DDM, it has been observed that the use of DDM has increased recently. In obtaining the displacement discontinuity equations, Papkovitch functions were used in Crouch, and harmonic functions were chosen to satisfy various boundary conditions. A comparison is made between two indirect boundary element formulations, DDM, and an extension of FSM, for solving problems involving cracks. Several numerical examples are presented, and the outcomes are contrasted to existing analytical or reference outs.

Keywords: displacement discontinuity method, fictitious stress method, crack problems, anisotropic material

Procedia PDF Downloads 70
1495 Starch Incorporated Hydroxyapatite/Chitin Nanocomposite as a Novel Bone Construct

Authors: Reshma Jolly, Mohammad Shakir, Mohammad Shoeb Khan, Noor E. Iram

Abstract:

A nanocomposite system integrating hydroxyapatite, chitin and starch (n-HA/CT/ST) has been synthesized via co-precipitation approach at room temperature, addressing the issues of biocompatibility, mechanical strength and cytotoxicity required for Bone tissue engineering. The interactions, crystallite size and surface morphology against n-HA/CT (nano-hydroxyapatite/chitin) nanocomposite have been obtained by correlating and comparing the results of FTIR, SEM, TEM and XRD. The comparative study of the bioactivity of n-HA/CT and n-HA/CT/ST nanocomposites revealed that the incorporation of starch as templating agent improved these properties in n-HA/CT/ST nanocomposite. The rise in thermal stability in n-HA/CT/ST nanocomposite as compared to n-HA/CT has been observed by comparing the TGA results. The comparison of SEM images of both the scaffolds indicated that the addition of ST influenced the surface morphology of n-HA/CT scaffold which appeared to be rougher and porous. The MTT assay on murine fibroblast L929 cells and in-vitro bioactivity of n-HA/CT/ST matrix referred superior non-toxic property of n-HA/CT/ST nanocomposite and higher possibility of osteo-integration in-vivo, respectively.

Keywords: bioactive, chitin, hyroxyapatite, nanocomposite

Procedia PDF Downloads 478
1494 The Potential of Hydrophobically Modified Chitosan Cryogels to Be Used as Drug Delivery Systems

Authors: Courtney Evans, Yuto Morimitsu, Tsubasa Hisadome, Futo Inomoto, Masahiro Yoshida, Takayuki Takei

Abstract:

Hydrogels are useful biomaterials due to their highly biocompatible nature and their ability to absorb large quantities of liquid and mimic soft tissue. They are often used as therapeutic drug delivery systems. However, it is sometimes difficult to sustain controlled release when using hydrophobic medicines, as hydrogels are frequently hydrophilic. As such, this research shows the success of chitosan hydrogels modified through hydrophobic interaction. This was done through the imide bonding of the alkyl groups in fatty aldehydes and the amino groups in chitosan, followed by reductive animation. The resulting cryogels could be optimized for strength as well as sorption and desorption (of a hydrophobic dye used to mimic hydrophobic medicine) by varying the alkyl chain length and the substitution degree of the fatty aldehyde. Optimized cryogels showed potential as biomedical materials, particularly as drug delivery systems.

Keywords: biomedical materials, chitosan, drug carriers, hydrophobic modification

Procedia PDF Downloads 222
1493 Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo

Authors: F. Brunke, L. Waalkes, C. Siemers

Abstract:

Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti 15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the micro structure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti-15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys.

Keywords: Ti 15Mo, titanium alloys, rare earth metals, free machining alloy

Procedia PDF Downloads 333
1492 Experimental Verification and Finite Element Analysis of a Sliding Door System Used in Automotive Industry

Authors: C. Guven, M. Tufekci, E. Bayik, O. Gedik, M. Tas

Abstract:

A sliding door system is used in commercial vehicles and passenger cars to allow a larger unobstructed access to the interior for loading and unloading. The movement of a sliding door on vehicle body is ensured by mechanisms and tracks having special cross-section which is manufactured by roll forming and stretch bending process. There are three tracks and three mechanisms which are called upper, central and lower on a sliding door system. There are static requirements as strength on different directions, rigidity for mechanisms, and door drop off, door sag; dynamic requirements as high energy slam opening-closing and durability requirement to validate these products. In addition, there is a kinematic requirement to find out force values from door handle during manual operating. In this study, finite element analysis and physical test results which are realized for sliding door systems will be shared comparatively.

Keywords: finite element analysis, sliding door, experimental, verification, vehicle tests

Procedia PDF Downloads 325
1491 Brexit and Financial Stability: An Agent-Based Simulation

Authors: Aristeidis Samitas, Stathis Polyzos

Abstract:

As the UK and the EU prepare to start negotiations for Brexit, it is important for both sides to comprehend the full extent of the consequences of this process. In this paper, we employ an object oriented simulation framework in order to test for the short-term and long-term effects of Brexit on both sides of the Channel. The relative strength of the UK economy and the banking sector vis-à-vis the EU is taken under consideration. Our results confirm predictions in the relevant literature regarding the output cost of Brexit, with particular emphasis on the EU. Furthermore, we show that financial stability is also an important issue on both sides, with the banking system suffering significant losses, particularly over the longer term. Our findings suggest that policymakers should be extremely careful in handling Brexit negotiations, making sure to consider dynamic effects that may be caused by UK bank assets moving to the EU after Brexit. The model results show that, as the UK banking system loses its assets, the end state of the UK economy is deteriorated while the end state of EU economy is improved.

Keywords: Banking Crises, Brexit, Financial Stability, VBanking

Procedia PDF Downloads 272