Search results for: online learning management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30930

Search results for: online learning management system

28260 Classification of IoT Traffic Security Attacks Using Deep Learning

Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem

Abstract:

The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.

Keywords: IoT, traffic security, deep learning, classification

Procedia PDF Downloads 153
28259 Effect Of E-banking On Performance Efficiency Of Commercial Banks In Pakistan

Authors: Naeem Hassan

Abstract:

The study intended to investigate the impact of the e banking system on the performance efficiency of the commercial banks in KP, Pakistan. In addition to this main purpose, the study also aimed at analyzing the impact of e banking on the service quality as well as satisfaction of the customers using e banking system. More over, the focus was also given to highlight the risks involved in the e banking system. The researcher has adopted the quantitative methodology in the study. in order to reach concrete finding, the researcher has analyzed the secondary data taken from the annual reports of selected banks and State bank of Pakistan as well as the primary data collected through the self-administrated questionnaire from the participants selected for the current study. The study highlighted that there is a significant impact of e banking on the financial efficiency on the commercial banks in KP, Pakistan. Additionally, the results of the study also show that the online banking is having significant effects on the customer satisfaction. The researcher recommends on the bases of findings that commercial banks should continue to adopt new technologies which will improve their margins and hence their net profit after tax in order to attract more investors. Additionally, commercial bank needs to minimize the time and risk in e-banking to attract more customers which will improve their net profit. Furthermore, the study findings also recommend the banking policy makers should also review policies related to promotion of innovation adoption and transfer of technology. Commercial banking system should encourage adoption of innovations that will improve profit of the banking industry.

Keywords: E-banking, performance efficiency, commercial banks, effect

Procedia PDF Downloads 72
28258 Stakeholder Management for Successful Software Projects

Authors: Kassem Saleh

Abstract:

An alarming number of software projects fail to deliver the required functionalities within the provided budget and timeframe and with the required qualities. Some of the main reasons for this problem include bad stakeholder management, poor communications and informal change management. Informal processes to identify, engage and control stakeholders lead to these reasons. Recently, to emphasize its importance, the Project Management Institute (PMI) updated the Project Management Body of Knowledge (PMBoK) to explicitly include the stakeholder management knowledge area. This knowledge area consists of four processes to identify stakeholders, plan stakeholder management, and manage and control stakeholder engagement. The use of appropriate techniques for stakeholder management in software projects will definitely lead to higher quality and successful software. In this paper, we describe some of the proven techniques that can be used during the execution of the four processes for stakeholder management. Development of collaboration tools for automating these processes are recommended and need to be integrated in available software project management tools.

Keywords: project management, stakeholder management, software development, project management body of knowledge

Procedia PDF Downloads 311
28257 Creating a Professional Knowledge Base for Multi-Grade Teaching: Case Studies

Authors: Matshidiso Joyce Taole, Linley Cornish

Abstract:

Teacher’s professional knowledge has become the focus of interest over decades and the interest has intensified in the 21st century. Teachers are expected to develop their professional academic expertise continually, on an ongoing basis. Such professional development may relate to acquiring enhanced expertise in terms of leadership, curriculum development, teaching and learning, assessment of/for learning and feedback for enhanced learning. The paper focuses on professional knowledge base required for teachers in multi-grade contexts. This paper argues that although teacher knowledge is strongly related to individual experiences and contexts, there are elements of teacher knowledge that are particular to multi-grade context. The study employed qualitative design using interviews and observations. The participants were multi-grade teachers and teaching principals. The study revealed that teachers need to develop skills such as learner grouping, differentiating the curriculum, planning, time management and be life-long learners so that they stay relevant and up to date with developments not only in the education sector but globally. This will help teachers to learn increasingly sophisticated methods for engaging the diverse needs of students in their classrooms.

Keywords: curriculum differentiation, multi-grade, planning, teacher knowledge

Procedia PDF Downloads 417
28256 Silicon-Photonic-Sensor System for Botulinum Toxin Detection in Water

Authors: Binh T. T. Nguyen, Zhenyu Li, Eric Yap, Yi Zhang, Ai-Qun Liu

Abstract:

Silicon-photonic-sensor system is an emerging class of analytical technologies that use evanescent field wave to sensitively measure the slight difference in the surrounding environment. The wavelength shift induced by local refractive index change is used as an indicator in the system. These devices can be served as sensors for a wide variety of chemical or biomolecular detection in clinical and environmental fields. In our study, a system including a silicon-based micro-ring resonator, microfluidic channel, and optical processing is designed, fabricated for biomolecule detection. The system is demonstrated to detect Clostridium botulinum type A neurotoxin (BoNT) in different water sources. BoNT is one of the most toxic substances known and relatively easily obtained from a cultured bacteria source. The toxin is extremely lethal with LD50 of about 0.1µg/70kg intravenously, 1µg/ 70 kg by inhalation, and 70µg/kg orally. These factors make botulinum neurotoxins primary candidates as bioterrorism or biothreat agents. It is required to have a sensing system which can detect BoNT in a short time, high sensitive and automatic. For BoNT detection, silicon-based micro-ring resonator is modified with a linker for the immobilization of the anti-botulinum capture antibody. The enzymatic reaction is employed to increase the signal hence gains sensitivity. As a result, a detection limit to 30 pg/mL is achieved by our silicon-photonic sensor within a short period of 80 min. The sensor also shows high specificity versus the other type of botulinum. In the future, by designing the multifunctional waveguide array with fully automatic control system, it is simple to simultaneously detect multi-biomaterials at a low concentration within a short period. The system has a great potential to apply for online, real-time and high sensitivity for the label-free bimolecular rapid detection.

Keywords: biotoxin, photonic, ring resonator, sensor

Procedia PDF Downloads 117
28255 Advancements in AI Training and Education for a Future-Ready Healthcare System

Authors: Shamie Kumar

Abstract:

Background: Radiologists and radiographers (RR) need to educate themselves and their colleagues to ensure that AI is integrated safely, useful, and in a meaningful way with the direction it always benefits the patients. AI education and training are fundamental to the way RR work and interact with it, such that they feel confident using it as part of their clinical practice in a way they understand it. Methodology: This exploratory research will outline the current educational and training gaps for radiographers and radiologists in AI radiology diagnostics. It will review the status, skills, challenges of educating and teaching. Understanding the use of artificial intelligence within daily clinical practice, why it is fundamental, and justification on why learning about AI is essential for wider adoption. Results: The current knowledge among RR is very sparse, country dependent, and with radiologists being the majority of the end-users for AI, their targeted training and learning AI opportunities surpass the ones available to radiographers. There are many papers that suggest there is a lack of knowledge, understanding, and training of AI in radiology amongst RR, and because of this, they are unable to comprehend exactly how AI works, integrates, benefits of using it, and its limitations. There is an indication they wish to receive specific training; however, both professions need to actively engage in learning about it and develop the skills that enable them to effectively use it. There is expected variability amongst the profession on their degree of commitment to AI as most don’t understand its value; this only adds to the need to train and educate RR. Currently, there is little AI teaching in either undergraduate or postgraduate study programs, and it is not readily available. In addition to this, there are other training programs, courses, workshops, and seminars available; most of these are short and one session rather than a continuation of learning which cover a basic understanding of AI and peripheral topics such as ethics, legal, and potential of AI. There appears to be an obvious gap between the content of what the training program offers and what the RR needs and wants to learn. Due to this, there is a risk of ineffective learning outcomes and attendees feeling a lack of clarity and depth of understanding of the practicality of using AI in a clinical environment. Conclusion: Education, training, and courses need to have defined learning outcomes with relevant concepts, ensuring theory and practice are taught as a continuation of the learning process based on use cases specific to a clinical working environment. Undergraduate and postgraduate courses should be developed robustly, ensuring the delivery of it is with expertise within that field; in addition, training and other programs should be delivered as a way of continued professional development and aligned with accredited institutions for a degree of quality assurance.

Keywords: artificial intelligence, training, radiology, education, learning

Procedia PDF Downloads 85
28254 Complex Learning Tasks and Their Impact on Cognitive Engagement for Undergraduate Engineering Students

Authors: Anastassis Kozanitis, Diane Leduc, Alain Stockless

Abstract:

This paper presents preliminary results from a two-year funded research program looking to analyze and understand the relationship between high cognitive engagement, higher order cognitive processes employed in situations of complex learning tasks, and the use of active learning pedagogies in engineering undergraduate programs. A mixed method approach was used to gauge student engagement and their cognitive processes when accomplishing complex tasks. Quantitative data collected from the self-report cognitive engagement scale shows that deep learning approach is positively correlated with high levels of complex learning tasks and the level of student engagement, in the context of classroom active learning pedagogies. Qualitative analyses of in depth face-to-face interviews reveal insights into the mechanisms influencing students’ cognitive processes when confronted with open-ended problem resolution. Findings also support evidence that students will adjust their level of cognitive engagement according to the specific didactic environment.

Keywords: cognitive engagement, deep and shallow strategies, engineering programs, higher order cognitive processes

Procedia PDF Downloads 324
28253 Networks in the Tourism Sector in Brazil: Proposal of a Management Model Applied to Tourism Clusters

Authors: Gysele Lima Ricci, Jose Miguel Rodriguez Anton

Abstract:

Companies in the tourism sector need to achieve competitive advantages for their survival in the market. In this way, the models based on association, cooperation, complementarity, distribution, exchange and mutual assistance arise as a possibility of organizational development, taking as reference the concept of networks. Many companies seek to partner in local networks as clusters to act together and associate. The main objective of the present research is to identify the specificities of management and the practices of cooperation in the tourist destination of São Paulo - Brazil, and to propose a new management model with possible cluster of tourism. The empirical analysis was carried out in three phases. As a first phase, a research was made by the companies, associations and tourism organizations existing in São Paulo, analyzing the characteristics of their business. In the second phase, the management specificities and cooperation practice used in the tourist destination. And in the third phase, identifying the possible strengths and weaknesses that potential or potential tourist cluster could have, proposing the development of the management model of the same adapted to the needs of the companies, associations and organizations. As a main result, it has been identified that companies, associations and organizations could be looking for synergies with each other and collaborate through a Hiperred organizational structure, in which they share their knowledge, try to make the most of the collaboration and to benefit from three concepts: flexibility, learning and collaboration. Finally, it is concluded that, the proposed tourism cluster management model is viable for the development of tourism destinations because it makes it possible to strategically address agents which are responsible for public policies, as well as public and private companies and organizations in their strategies competitiveness and cooperation.

Keywords: cluster, management model, networks, tourism sector

Procedia PDF Downloads 284
28252 Collaboration and Automatic Tutoring as a Learning Strategy: A Case Study in Programming Courses

Authors: Luis H. Gonzalez-Guerra, Armandina J. Leal-Flores

Abstract:

Students attending classrooms nowadays are habituated to use digital devices all the time and for multiple things. They have been familiar with digital technology throughout their lives so they have developed skills that should be naturally adopted as part of their study strategies. New learning styles require taking in consideration the use of models that support and promote student motivation for learning and development of their creative thinking skills. To achieve student learning in programming courses, different strategies are used. One of them is a collaboration between students, which is a tool which faculty can take advantage of when teaching these kinds of courses. Moreover, cooperation is an essential skill that society should reinforce in order to promote a healthy social environment and cohabitation. Nevertheless, students will still require support and advice to get a complete and correct programming solution to successfully address and solve the problems given throughout the course. This paper present a model where collaboration between students is associated with an automatic tutoring platform providing an excellent approach for the individual learning in collaborative activities in programming courses, and also motivates students to increase their knowledge regarding the topics covered in the classroom.

Keywords: automatic tutoring, collaboration learning, creative thinking, motivation

Procedia PDF Downloads 272
28251 COVID-19 Case: A Definition of Infodemia through Online Italian Journalism

Authors: Concetta Papapicco

Abstract:

The spreading of new Coronavirus (COVID-19) in addition to becoming a global phenomenon, following the declaration of a pandemic state, has generated excessive access to information, sometimes not thoroughly screened, which makes it difficult to navigate a given topic because of the difficulty of finding reliable sources. As a result, there is a high level of contagion, understood as the spread of the virus, but also as the spread of information in a viral and harmful way, which prompted the World Health Organization to coin the term Infodemia to give 'a name' the phenomenon of excessive information. With neologism 'Infodemia', the World Health Organization (OMS) wanted, in these days when fear of the coronavirus is raging, point out that perhaps the greatest danger of global society in the age of social media. This phenomenon is the distortion of reality in the rumble of echoes and comments of the global community on real or often invented facts. The general purpose of the exploratory study is to investigate how the coronavirus situation is described from journalistic communication. Starting from La Repubblica online, as a reference journalistic magazine, as a specific objective, the research aims to understand the way in which journalistic communication describes the phenomenon of the COVID-19 virus spread, the spread of contagion and restrictive measures of social distancing in the Italian context. The study starts from the hypothesis that if the circulation of information helps to create a social representation of the phenomenon, the excessive accessibility to sources of information (Infodemia) can be modulated by the 'how' the phenomenon is described by the journalists. The methodology proposed, in fact, in the exploratory study is a quanti-qualitative (mixed) method. A Content Analysis with the SketchEngine software is carried out first. In support of the Content Analysis, a Diatextual Analysis was carried out. The Diatextual Analysis is a qualitative analysis useful to detect in the analyzed texts, that is the online articles of La Repubblica on the topic of coronavirus, Subjectivity, Argomentativity, and Mode. The research focuses mainly on 'Mode' or 'How' are the events related to coronavirus in the online articles of La Repubblica about COVID-19 phenomenon. The results show the presence of the contrast vision about COVID-19 situation in Italy.

Keywords: coronavirus, Italian infodemia, La Republica online, mix method

Procedia PDF Downloads 122
28250 The Impact of Bitcoin and Cryptocurrency on the Development of Community

Authors: Felib Ayman Shawky Salem

Abstract:

Nowadays crypto currency has become a global phenomenon known to most people. People using this alternative digital money to do a transaction in many ways (e.g. Used for online shopping, wealth management, and fundraising). However, this digital asset also widely used in criminal activities since its use decentralized control as opposed to centralized electronic money and central banking systems and this makes a user, who used this currency invisible. The high-value exchange of these digital currencies also has been a target to criminal activities. The crypto currency crimes have become a challenge for the law enforcement to analyze and to proof the evidence as criminal devices. In this paper, our focus is more on bitcoin crypto currency and the possible artifacts that can be obtained from the different type of digital wallet, which is software and browser-based application. The process memory and physical hard disk are examined with the aims of identifying and recovering potential digital evidence. The stage of data acquisition divided by three states which are the initial creation of the wallet, transaction that consists transfer and receiving a coin and the last state is after the wallet is being deleted. Findings from this study suggest that both data from software and browser type of wallet process memory is a valuable source of evidence, and many of the artifacts found in process memory are also available from the application and wallet files on the client computer storage.

Keywords: cryptocurrency, bitcoin, payment methods, blockchain, appropriation, online retailers, TOE framework, disappropriation, non-appropriationBitCoin, financial protection, crypto currency, money laundering cryptocurrency, digital wallet, digital forensics

Procedia PDF Downloads 42
28249 HelpMeBreathe: A Web-Based System for Asthma Management

Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer

Abstract:

We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.

Keywords: asthma, environmental triggers, map interface, web-based systems

Procedia PDF Downloads 294
28248 A Qualitative Study About a Former Professional Baseball Player with Dyslexia

Authors: Matthias Grunke

Abstract:

In this qualitative study, we interviewed a young man with learning disabilities who played professional baseball for two years. Individuals with severe academic challenges constitute one of the most vulnerable groups of our society. Science has to find ways on how to arm them against life’s challenges and help them to cope with the many risk factors that they are usually confronted with. Team sports like baseball seem to be a suitable means for that purpose. In the interview, our participant talked about his life as a student with severe learning difficulties and related how his career in baseball made his academic challenges appear much less significant. He gave some meaningful insights into what helped him to build a happy and fulfilling life for himself, not only in spite of his challenges but also because of what he's learning disabilities taught him. Support from significant others, a sense of purpose, his fighting spirit ignited by sports, and the success that he experienced on the baseball field were among the most relevant factors. Overall, this study highlights the importance of finding an outlet for young people with learning disabilities where their academic difficulties retreat into the background and their talents are validated.

Keywords: baseball, inclusion, learning disabilities, resilience

Procedia PDF Downloads 97
28247 Learning on the Go: Practicing Vocabulary with Mobile Apps

Authors: Shoba Bandi-Rao

Abstract:

The lack of college readiness is one of the major contributors to low graduation rates at community colleges, especially among educationally and financially disadvantaged students. About 45% of underprepared high school graduates are required to complete ‘remedial’ reading/writing courses before they can begin taking college-level courses. Mobile apps present ‘bite-size’ learning materials that can be useful for practicing certain literacy skills, such as vocabulary learning. The convenience of mobile phones is ideal for a majority of students at community colleges who hold full or part-time jobs. Mobile apps allow students to learn during small ‘chunks’ of time available to them outside of the class—during subway commute, between classes, etc. Learning with mobile apps is a relatively new area in research, and their effectiveness for learning new words has been inconclusive. Using Mishra & Koehler’s TPCK theoretical framework, this study explored the effectiveness of the mobile app (Quizlet) for learning one hundred common college-level words in ‘remedial’ writing class over one semester. Each week, before coming to class, students studied a list of 10-15 words presented in context within sentences. Students came across these words in the article they read in class making their learning more meaningful. A pre and post-test measured the number of words students knew, learned and remembered. Statistical analysis shows that students performed better by 41% on the post-test indicating that the mobile app was helpful for learning words. Students also completed a short survey each week that sought to determine the amount of time students spent on the vocabulary app. A positive correlation was found between the amount of time spent on the mobile app and the number of words learned. The goal of this research is to capitalize on the convenience of smartphones to (1) better prepare them for college-level course work, and (2) contribute to current literature on mobile learning.

Keywords: mobile learning, vocabulary learning, literacy skills, Quizlet

Procedia PDF Downloads 224
28246 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 266
28245 An Analysis of The Philippines' Legal Transition from Open Dumpsites to Solid Waste Management Facilities

Authors: Mary Elenor Adagio, John Roben Ambas, Ramilyn Bertolano, Julie Ann Garcia

Abstract:

Ecological Solid Waste Management has been a long-time concern in both national and international spheres. The exponential growth of waste generation is not properly matched with a waste management system that is cost-effective. As a result, governments and their communities within inevitably resort to the old ways of opening dumpsites to serve as a giant garbage bin. However, due to the environmental and public health problems these unmanaged dumpsites caused, countries like the Philippines mandated the closure of these dumpsites and converted them into or opened new sanitary landfills. This study aims to determine how the transition from open dumpsites to Solid Waste Management Facilities improve the implementation of the Solid Waste Management Framework of the government pursuant to Republic Act 9003. To test the hypothesis that the mandatory closure of dumpsites is better in the management of wastes in local government units, a review of related literature on analysis reports, news, and case studies was conducted. The results suggest that advocating for the transition of dumpsites to sanitary landfills would not only prevent environmental risks caused by pollution but also reduce problems regarding public health. Although this transition can be effective, data also show that with a lack of funding and resources, many local government units still find it difficult to provide their solid waste management plans and to adapt to the transition to sanitary landfills.

Keywords: solid waste management, environmental law, solid waste management facilities, open dumpsites

Procedia PDF Downloads 157
28244 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)

Authors: Tesfaye Fenta Boka, Niu Zhendong

Abstract:

Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.

Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks

Procedia PDF Downloads 90
28243 Solid Waste Management & Practise within the University Community: Case Study in Universiti Malaysia Terengganu, Terengganu

Authors: J. Izan, E.I. Tengku Azmina, F. Pey Thing

Abstract:

Sustainability has been introduced globally since the emerging of the advancement of technology and product development in various aspects. This concept is regarded highly, listed among the seventeenth elements in Sustainable Development Goals (SDG), especially by developed countries in any of their development plans and being considered in the development of the developing countries. It is such as the concept of sustainability can undeniably provide a medium where the cost used by energy consumption and pollution problems can be greatly reduced. In Malaysia, many rules and policies had been advocated to achieve sustainability; however, the practice and implementation as well the enforcement to ensure its implementation are still not great. University, as an educational institution, shall practice and implement sustainability concepts in as much aspect as possible as a positive example for a wider community. University Malaysia Terengganu (UMT) has already published a blueprint guide in 2015, aims to introduce and implement sustainable practice in the university, and solid waste is one of the key elements highlighted. This study was conducted to determine the status of solid waste management practice among the university community associated with several factors that facilitate the room for sustainable management, as drawn in the established blueprint document. The quantitative analysis was carried out via survey conducted online, acquired the questions on green campus concept and implementation in general and solid waste in particular. The results showed that community UMT showed a high level of awareness and knowledge on sustainable solid waste; however, low percentage in managing solid waste in a sustainable manner. Respondents suggested that stringent guidelines and the establishment of policy greatly help in the realization and enforcement of sustainable solid waste handling and management. Facilities such as waste collection centre with separation and segregation containers will motivate the community to practice 3Rs on a daily basis. This will eventually reduce the generation of waste need to be sent to landfill hence reduce the disposal cost. Prolong, and continuous campaign on sustainable solid waste management need to be carried out more frequently.

Keywords: management, solid waste, sustainability, university

Procedia PDF Downloads 102
28242 The Significance of Awareness about Gender Diversity for the Future of Work: A Multi-Method Study of Organizational Structures and Policies Considering Trans and Gender Diversity

Authors: Robin C. Ladwig

Abstract:

The future of work becomes less predictable, which requires increasing the adaptability of organizations to social and work changes. Society is transforming regarding gender identity in the sense that more people come forward to identify as trans and gender diverse (TGD). Organizations are ill-equipped to provide a safe and encouraging work environment by lacking inclusive organizational structures. The qualitative multi-method research about TGD inclusivity in the workplace explores the enablers and barriers for TGD individuals to satisfactory engage in the work environment and organizational culture. Furthermore, these TGD insights are analyzed about their organizational implications and awareness from a leadership and management perspective. The semi-structured online interviews with TGD individuals and the photo-elicit open-ended questionnaire addressed to leadership and management in diversity, career development, and human resources have been analyzed with a critical grounded theory approach. Findings demonstrated the significance of TGD voices, the support of leadership and management, as well as the synergy between voices and leadership. Hence, it indicates practical implications such as the revision of exclusive language used in policies, data collection, or communication and reconsideration of organizational decision-making by leaders to include TGD voices.

Keywords: future of work, occupational identity, organisational decision-making, trans and gender diverse identity

Procedia PDF Downloads 127
28241 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification

Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang

Abstract:

Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.

Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification

Procedia PDF Downloads 134
28240 Lifelong Learning in Applied Fields (LLAF) Tempus Funded Project: A Case Study of Problem-Based Learning

Authors: Nirit Raichel, Dorit Alt

Abstract:

Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies based on the constructivist approach for learning, arranged along Delors’ four theoretical ‘pillars’ of education: Learning to know, learning to do, learning to live together, and learning to be. This presentation will be limited to problem-based learning (PBL), as a strategy introduced in the second pillar. PBL leads not only to the acquisition of technical skills, but also allows the development of skills like problem analysis and solving, critical thinking, cooperation and teamwork, decision- making and self-regulation that can be transferred to other contexts. This educational strategy will be exemplified by a case study conducted in the pre-piloting stage of the project. The case describes a three-fold process implemented in a postgraduate course for in-service teachers, including: (1) learning about PBL (2) implementing PBL in the participants' classes, and (3) qualitatively assessing the contributions of PBL to students' outcomes. An example will be given regarding the ways by which PBL was applied and assessed in civic education for high-school students. Two 9th-grade classes have participated the study; both included several students with learning disability. PBL was applied only in one class whereas traditional instruction was used in the other. Results showed a robust contribution of PBL to students' affective and cognitive outcomes as reflected in their motivation to engage in learning activities, and to further explore the subject. However, students with learning disability were less favorable with this "active" and "annoying" environment. Implications of these findings for the LLAF project will be discussed.

Keywords: problem-based learning, higher education, pedagogical strategies

Procedia PDF Downloads 334
28239 The Impact of Neuroscience Knowledge on the Field of Education

Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena

Abstract:

Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.

Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors

Procedia PDF Downloads 62
28238 Mental Balance, Emotional Balance, and Stress Management: The Role of Ancient Vedic Philosophy from India

Authors: Emily Schulz

Abstract:

The ancient Vedic culture from India had traditions that supported all aspects of health, including psychological health, and are relevant in the current era. These traditions have been compiled by Professor Dr. Purna, a rare Himalayan Master, into the Purna Health Management System (PHMS). The PHMS is a unique, holistic, and integrated approach to health management. It is comprised of four key factors: Health, Fitness, and Nutrition (HF&N), Life Balance (Stress Management) (LB-SM), Spiritual Growth and Development (SG&D); and Living in Harmony with the Natural Environment (LHWNE). The purpose of the PHMS is to give people the tools to take responsibility for managing their own holistic health and wellbeing. A study using a cross-sectional mixed-methods anonymous online survey was conducted during 2017-2018. Adult students of Professor Dr. Purna were invited to participate through announcements made at various events He held throughout the globe. Follow-up emails were sent with consenting language for interested parties and provided them with a link to the survey. Participation in the study was completely voluntary and no incentives were given to respond to the survey. The overall aim of the study was to investigate the effectiveness of implementation of the PHMS on practitioners' emotional balance. However, given the holistic nature of the PHMS, survey questions also inquired about participants’ physical health, stress level, ability to manage stress, and wellbeing using Likert scales. The survey also included some open-ended questions to gain an understanding of the participants’ experiences with the PHMS relative to their emotional balance. In total, 52 people out of 253 potential respondents participated in the study. Data were analyzed using nonparametric Spearman’s Rho correlation coefficient (rs) since the data were not on a normal distribution. Statistical significance was set at p < .05. Results of the study suggested that there are moderate to strong statistically significant relationships (p < .001) between participants' frequent implementation of each of the four key factors of the PHMS and self-reported mental/emotional health (HF&N rs = 0.42; LB-SM rs = 0.54; SG&D rs = 0.49; LHWNE rs = 0.45) Results also demonstrated statistically significant relationships (p < .001) between participants' frequent implementation of each of the four key factors of the PHMS and their self-reported ability to manage stress (HF&N rs = 0.44; LB-SM rs = 0.55; SG&D rs = 0.39; LHWNE rs = 0.55). Additionally, those who reported experiencing better physical health also reported better mental/emotional health (rs = 0.49, p < .001) and better ability to manage stress (rs = 0.46, p < .001). The findings of this study suggest that wisdom from the ancient Vedic culture may be useful for those working in the field of psychology and related fields who would like to assist clients in calming their mind and emotions and managing their stress levels.

Keywords: balanced emotions, balanced mind, stress management, Vedic philosophy

Procedia PDF Downloads 121
28237 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 67
28236 English and Information and Communication Technology: Zones of Exclusion in Education in Low-Income Countries

Authors: Ram A. Giri, Amna Bedri, Abdou Niane

Abstract:

Exclusion in education on the basis of language in multilingual contexts operates at multiple levels. Learners of diverse ethnolinguistic backgrounds are often expected to learn through English and are pushed further down the learning ladder if they also have to access education through Information and Communication Technology (ICT). The paper explores marginalized children’s lived experiences in accessing technology and English in four low-income countries in Africa and Asia. Based on the findings of the first phase of a multinational qualitative research study, we report on the factors or barriers that affect children’s access, opportunities and motivation for learning through technology and English. ICT and English - the language of ICT and education - can enhance learning and can even be essential. However, these two important keys to education can also function as barriers to accessing quality education, and therefore as zones of exclusion. This paper looks into how marginalized children (aged 13-15) engage in learning through ICT and English and to what extent the restrictive access and opportunities contribute to the widening of the already existing gap in education. By applying the conceptual frameworks of “access and accessibility of learning” and “zones of exclusion,” the paper elucidates how the barriers prevent children’s effective engagement with learning and addresses such questions as to how marginalized children access technology and English for learning; whether the children value English, and what their motivation and opportunity to learn it are. In addition, the paper will point out policy and pedagogic implications.

Keywords: exclusion, inclusion, inclusive education, marginalization

Procedia PDF Downloads 230
28235 Public Financial Management in Ghana: A Move beyond Reforms to Consolidation and Sustainability

Authors: Mohammed Sani Abdulai

Abstract:

Ghana’s Public Financial Management reforms have been going on for some two decades now (1997/98 to 2017/18). Given this long period of reforms, Ghana in 2019 is putting together both a Public Financial Management (PFM) strategy and a Ghana Integrated Financial Management Information System (GIFMIS) strategy for the next 5-years (2020-2024). The primary aim of these dual strategies is assisting the country in moving beyond reforms to consolidation and sustainability. In this paper we, first, examined the evolution of Ghana’s PFM reforms. We, secondly, reviewed the legal and institutional reforms undertaken to strengthen the country’s key PFM institutions. Thirdly, we summarized the strengths and weaknesses identified by the 2018 Public Expenditure and Financial Accountability (PEFA) assessment of Ghana’s PFM system relating to its macro-fiscal framework, budget preparation and approval, budget execution, accounting and fiscal reporting as well as external scrutiny and audit. We, finally, considered what the country should be doing to achieve its intended goal of PFM consolidation and sustainability. Using a qualitative method of review and analysis of existing documents, we, through this paper, brought to the fore the lessons that could be learnt by other developing countries from Ghana’s PFM reforms experiences. These lessons included the need to: (a) undergird any PFM reform with a comprehensive PFM reform strategy; (b) undertake a legal and institutional reforms of the key PFM institutions; (c) assess the strengths and weaknesses of those reforms using PFM performance evaluation tools such as PEFA framework; and (d) move beyond reforms to consolidation and sustainability.

Keywords: public financial management, public expenditure and financial accountability, reforms, consolidation, sustainability

Procedia PDF Downloads 233
28234 Virtualization and Visualization Based Driver Configuration in Operating System

Authors: Pavan Shah

Abstract:

In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.

Keywords: virtualization, visualization, network driver, operating system

Procedia PDF Downloads 133
28233 Towards a Multilevel System of Talent Management in Small And Medium-Sized Enterprises: French Context Exploration

Authors: Abid Kousay

Abstract:

Appeared and developed essentially in large companies and multinationals, Talent Management (TM) in Small and Medium-Sized Enterprises (SMEs) has remained an under-explored subject till today. Although the literature on TM in the Anglo-Saxon context is developing, it remains monopolized in non-European contexts, especially in France. Therefore, this article aims to address these shortcomings through contributing to TM issues, by adopting a multilevel approach holding the goal of reaching a global holistic vision of interactions between various levels, while applying TM. A qualitative research study carried out within 12 SMEs in France, built on the methodological perspective of grounded theory, will be used in order to go beyond description, to generate or discover a theory or even a unified theoretical explanation. Our theoretical contributions are the results of the grounded theory, the fruit of context considerations and the dynamic of the multilevel approach. We aim firstly to determine the perception of talent and TM in SMEs. Secondly, we formalize TM in SME through the empowerment of all 3 levels in the organization (individual, collective, and organizational). And we generate a multilevel dynamic system model, highlighting the institutionalization dimension in SMEs and the managerial conviction characterized by the domination of the leader's role. Thirdly, this first study shed the light on the importance of rigorous implementation of TM in SMEs in France by directing CEO and HR and TM managers to focus on elements that upstream TM implementation and influence the system internally. Indeed, our systematic multilevel approach policy reminds them of the importance of the strategic alignment while translating TM policy into strategies and practices in SMEs.

Keywords: French context, institutionalization, talent, multilevel approach, talent management system

Procedia PDF Downloads 200
28232 Chinese Vocabulary Acquisition and Mobile Assisted Language Learning

Authors: Yuqing Sun

Abstract:

Chinese has been regarded as one of the most difficult languages in learning due to its complex spelling structure, difficult pronunciation, as well as its varying forms. Since vocabulary acquisition is the basic process to acquire a language, to express yourself, to compose a sentence, and to conduct a communication, so learning the vocabulary is of great importance. However, the vocabulary contains pronunciation, spelling, recognition and application which may seem as a huge work. This may pose a question for the language teachers (language teachers in China who teach Chinese to the foreign students): How to teach them in an effective way? Traditionally, teachers have no choice but teach it all by themselves, then with the development of technology, they can use computer as a tool to help them (Computer Assisted Language Learning or CALL). Now, they move into the Mobile Assisted Language Learning (MALL) method to guide their teaching, upon which the appraisal is convincing. It diversifies the learning material and the way of output, which can activate learners’ curiosity and accelerate their understanding. This paper will focus on actual case studies occurring in the universities in China of teaching the foreign students to learn Chinese, and the analysis of the utilization of WeChat channel as an example of MALL model to explore the active role of MALL to enhance the effectiveness of Chinese vocabulary acquisition.

Keywords: Chinese, vocabulary acquisition, MALL, case

Procedia PDF Downloads 414
28231 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning

Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody

Abstract:

The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.

Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification

Procedia PDF Downloads 107