Search results for: linked data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26399

Search results for: linked data

23729 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia

Authors: Nguyen-Thanh Son

Abstract:

Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.

Keywords: MODIS, flood, mapping, Cambodia

Procedia PDF Downloads 132
23728 The Potential Role of Industrialized Building Systems in Malaysian Sustainable Construction: Awareness and Barriers

Authors: Aawag Mohsen Al-Awag, Wesam Salah Alaloul, M. S. Liew

Abstract:

Industrialized building system (IBS) is a method of construction with concentrated practices consisting of techniques, products, and a set of linked elements which operate collectively to accomplish objectives. The Industrialised Building System (IBS) has been recognised as a viable method for improving overall construction performance in terms of quality, cost, safety and health, waste reduction, and productivity. The Malaysian construction industry is considered one of the contributors to the development of the country. The acceptance level of IBS is still below government expectations. Thus, the Malaysian government has been continuously encouraging the industry to use and implement IBS. Conventional systems have several drawbacks, including project delays, low economic efficiency, excess inventory, and poor product quality. When it comes to implementing IBS, construction companies still face several obstacles and problems, notably in terms of contractual and procurement concerns, which leads to the low adoption of IBS in Malaysia. There are barriers to the acceptance of IBS technology, focused on awareness of historical failure and risks connected to IBS practices to provide enhanced performance. Therefore, the transformation from the existing conventional building systems to the industrialized building systems (IBS) is needed more than ever. The flexibility of IBS in Malaysia’s construction industry is very low due to numerous shortcomings and obstacles. Due to its environmental, economic, and social benefits, IBS could play a significant role in the Malaysian construction industry in the future. This paper concentrates on the potential role of IBS in sustainable construction practices in Malaysia. It also highlights the awareness, barriers, advantages, and disadvantages of IBS in the construction sector. The study concludes with recommendations for Malaysian construction stakeholders to encourage and increase the utilization of industrialised building systems.

Keywords: construction industry, industrialized building system, barriers, advantages and disadvantages, construction, sustainability, Malaysia

Procedia PDF Downloads 108
23727 Comparison Study of Capital Protection Risk Management Strategies: Constant Proportion Portfolio Insurance versus Volatility Target Based Investment Strategy with a Guarantee

Authors: Olga Biedova, Victoria Steblovskaya, Kai Wallbaum

Abstract:

In the current capital market environment, investors constantly face the challenge of finding a successful and stable investment mechanism. Highly volatile equity markets and extremely low bond returns bring about the demand for sophisticated yet reliable risk management strategies. Investors are looking for risk management solutions to efficiently protect their investments. This study compares a classic Constant Proportion Portfolio Insurance (CPPI) strategy to a Volatility Target portfolio insurance (VTPI). VTPI is an extension of the well-known Option Based Portfolio Insurance (OBPI) to the case where an embedded option is linked not to a pure risky asset such as e.g., S&P 500, but to a Volatility Target (VolTarget) portfolio. VolTarget strategy is a recently emerged rule-based dynamic asset allocation mechanism where the portfolio’s volatility is kept under control. As a result, a typical VTPI strategy allows higher participation rates in the market due to reduced embedded option prices. In addition, controlled volatility levels eliminate the volatility spread in option pricing, one of the frequently cited reasons for OBPI strategy fall behind CPPI. The strategies are compared within the framework of the stochastic dominance theory based on numerical simulations, rather than on the restrictive assumption of the Black-Scholes type dynamics of the underlying asset. An extended comparative quantitative analysis of performances of the above investment strategies in various market scenarios and within a range of input parameter values is presented.

Keywords: CPPI, portfolio insurance, stochastic dominance, volatility target

Procedia PDF Downloads 169
23726 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 619
23725 Evaluation of Routing Protocols in Mobile Adhoc Networks

Authors: Anu Malhotra

Abstract:

An Ad-hoc network is one that is an autonomous, self configuring network made up of mobile nodes connected via wireless links. Ad-hoc networks often consist of nodes, mobile hosts (MH) or mobile stations (MS, also serving as routers) connected by wireless links. Different routing protocols are used for data transmission in between the nodes in an adhoc network. In this paper two protocols (OLSR and AODV) are analyzed on the basis of two parameters i.e. time delay and throughput with different data rates. On the basis of these analysis, we observed that with same data rate, AODV protocol is having more time delay than the OLSR protocol whereas throughput for the OLSR protocol is less compared to the AODV protocol.

Keywords: routing adhoc, mobile hosts, mobile stations, OLSR protocol, AODV protocol

Procedia PDF Downloads 510
23724 Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load

Authors: Aref Aasi, Sadegh Mehdi Aghaei, Balaji Panchapakesan

Abstract:

This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations.

Keywords: Euler-Bernoulli beam, natural frequency, forced vibration, experimental setup

Procedia PDF Downloads 278
23723 Depollution of the Pinheiros River in the City of São Paulo: Mapping the Dynamics of Conflicts and Coalitions between Actors in Two Recent Depollution Projects

Authors: Adalberto Gregorio Back

Abstract:

Historically, the Pinheiros River, which crosses the urban area of the largest South American metropolis, the city of São Paulo, has been the subject of several interventions involving different interests and multiple demands, including the implementation of road axes and industrial occupation in the city, following its floodplains. the dilution of sewers; generation of electricity, with the reversal of its waters to the Billings Dam; and urban drainage. These processes, together with the exclusionary and peripheral urban sprawl with high population density in the peripheries, result in difficulties for the collection and treatment of household sewage, which flow into the tributaries and the Pinheiros River itself. In the last 20 years, two separate projects have been undertaken to clean up its waters. The first one between 2001-2011 was the flotation system, aimed at cleaning the river in its own gutter with equipment installed near the Bilings Dam; and, more recently, from 2019 to 2022, the proposal to connect about 74 thousand dwellings to the sewage collection and treatment system, as well as to install treatment plants in the tributaries of Pinheiros where the connection to the system is impracticable, given the irregular occupations. The purpose of this paper is to make a comparative analysis on the dynamics of conflicts, interests and opportunities of coalitions between the actors involved in the two referred projects of pollution of the Pinheiros River. For this, we use the analysis of documents produced by the state government; as well as documents related to the legal disputes that occurred in the first attempt of decontamination involving the sanitation company; the Billings Dam management company interested in power generation; the city hall and regular and irregular dwellings not linked to the sanitation system.

Keywords: depollution of the Pinheiros River, interests groups, São Paulo, water energy nexus

Procedia PDF Downloads 110
23722 The Phonemic Inventory of Tenyidie Affricates: An Acoustic Study

Authors: NeisaKuonuo Tungoe

Abstract:

Tenyidie, also known as Angami, is spoken by the Angami tribe of Nagaland, North-East India, bordering Myanmar (Burma). It belongs to the Tibeto-Burman language group, falling under the Kuki-Chin-Naga sub-family. Tenyidie studies have seen random attempts at explaining the phonemic inventory of Tenyidie. Different scholars have variously emphasized the grammar or the history of Tenyidie. Many of these claims have been stimulating, but they were often based on a small amount of merely suggestive data or on auditory perception only. The principal objective of this paper is to analyse the affricate segments of Tenyidie as an acoustic study. There are seven categories to the inventory of Tenyidie; Plosives, Nasals, Affricates, Laterals, Rhotics, Fricatives, Semi vowels and Vowels. In all, there are sixty phonemes in the inventory. As mentioned above, the only prominent readings on Tenyidie or affricates in particular are only reflected through auditory perception. As noted above, this study aims to lay out the affricate segments based only on acoustic conclusions. There are seven affricates found in Tenyidie. They are: 1) Voiceless Labiodental Affricate - / pf /, 2) Voiceless Aspirated Labiodental Affricate- / pfh /, 3) Voiceless Alveolar Affricate - / ts /, 4) Voiceless Aspirated Alveolar Affricate - / tsh /, 5) Voiced Alveolar Affricate - / dz /, 6) Voiceless Post-Alveolar Affricate / tʃ / and 7) Voiced Post- Alveolar Affricate- / dʒ /. Since the study is based on acoustic features of affricates, five informants were asked to record their voice with Tenyidie phonemes and English phonemes. Throughout the study of the recorded data, PRAAT, a scientific software program that has made itself indispensible for the analyses of speech in phonetics, have been used as the main software. This data was then used as a comparative study between Tenyidie and English affricates. Comparisons have also been drawn between this study and the work of another author who has stated that there are only six affricates in Tenyidie. The study has been quite detailed regarding the specifics of the data. Detailed accounts of the duration and acoustic cues have been noted. The data will be presented in the form of spectrograms. Since there aren’t any other acoustic related data done on Tenyidie, this study will be the first in the long line of acoustic researches on Tenyidie.

Keywords: tenyidie, affricates, praat, phonemic inventory

Procedia PDF Downloads 422
23721 Morphological Variation of the Mesenteric Lymph Node in Dromedary Camels: The Impact of Rearing Systems

Authors: Khenenou Tarek, Mohamed Amine Fares, Djallal Eddine Rahmoun

Abstract:

The study intends to evaluate the morphological changes in the mesenteric lymph nodes of dromedaries in different rearing systems. we aimed to evaluate the adaptative behavior of the animal’s immune system with environmental variations, and to conduct a comparative analysis on the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued, with two different rearing systems, with different practices and different purposes. The study was conducted using histo-morphometric techniques to analyze the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued. Two groups of dromedaries were used in the study, one group raised in a free-roaming housing system and another group raised in a restricted-roaming housing system. The results revealed that there were significant differences between the two groups in terms of active follicle ratio and size and also the cellular population of functional zones. Animals living and roaming outside the farm barriers were more exposed to pathogens, which leads to the installation of an adaptative process, whereas the animals living under restricted-roaming housing system were not exposed to pathogens. This study indicated that the adaptative behavior of the animal’s immune system with environmental variations is the functional translation of morphological changes. The obtained findings revealed that the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued are directly linked to the rearing system practices

Keywords: adaptative behavior, dromedary, lymph node, morphology, rearing systems

Procedia PDF Downloads 29
23720 Exploring Students' Understanding about Bullying in Private Colleges in Rawalpindi, Pakistan

Authors: Alveena Khan

Abstract:

The objective of this research is to explore students’ understanding about bullying and different bullying types. Nowadays bullying is considered as an important social issue around the world because it has long lasting effects on students’ lives. Sometimes due to bullying students commit suicide, they lose confidence and become isolated. This research used qualitative research approach. In order to generate data, triangulation was considered for the verification and reliability of the generated data. Semi-structured interview, non-participant observation, and case studies were conducted. This research focused on five major private colleges and 20 students (both female and male) participated in Rawalpindi, Pakistan. The data generated included approximately 45 hours of total interviews. Thematic analysis was used for data analysis and followed grounded theory to generate themes. The findings of the research highlights that bullying does prevail in studied private colleges, mostly in the form of verbal and physical bullying. No specific gender difference was found in experiencing verbal and physical bullying. Furthermore, from students’ point of view, college administrators are responsible to deal with bullying. The researcher suggests that there must be a proper check and balance system and anti-bullying programs should be held in colleges to create a protective and healthy environment in which students do not face bullying.

Keywords: bullying, college student, physical and verbal bullying, qualitative research

Procedia PDF Downloads 163
23719 Consumer Values in the Perspective of Javanese Mataraman Society: Identification, Meaning, and Application

Authors: Anna Triwijayati, Etsa Astridya Setiyati, Titik Desi Harsoyo

Abstract:

Culture is the important determinant of human behavior and desire. Culture influences the consumer through the norms and values established by the society in which they live and reflect it. The cultural values of Javanese society certainly have united in the Javanese society behavior in consumption. This research is expected to give big enough theoretical benefits in the findings of cultural value in consumption in Javanese society. These can be an incentive in finding the local cultural value in many tribes in Indonesia, so one time, the local cultural value in Indonesia about consumption can be fundamental part in education and consumption practice in Indonesia. The approach used in this research is non positivist research or is known as qualitative approach. The method or type of research used in this research is ethnomethodology. The collection data is done in Central Java region. The research subject or informant is determined by the purposive technique by certain criteria determined by the researcher. The data is collected by deep interview and observation. Before the data analysis, the researcher does the storing method data stage and implements the data validity procedures. Then, the data is analyzed by the theme and interactive analysis technique. The Javanese Mataraman society has such consumption values such as has to be sufficient, be careful, economical, submit to the one who creates the life, the way life flow, and the present problem is thought in the present also. In the financial management for consumption, the consumer should have the simple life principles, has to be sufficient, has to be able to eat, has to be able to self-press, well-managed/diligent/accurate/careful, the open or transparent management, has the struggle effort, like to self-sacrifice and think about the future. The meaning of consumption value in family is centered to the submission and full-trust to God. These consumption values are applied in consumer behavior in self, family, investment and credit need in short term and long term perspective.

Keywords: values, consumer, consumption, Javanese Mataraman, ethnomethodology

Procedia PDF Downloads 395
23718 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 495
23717 Design and Development of a Computerized Medical Record System for Hospitals in Remote Areas

Authors: Grace Omowunmi Soyebi

Abstract:

A computerized medical record system is a collection of medical information about a person that is stored on a computer. One principal problem of most hospitals in rural areas is using the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved, this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to quickly retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.

Keywords: programming, computing, data, innovation

Procedia PDF Downloads 122
23716 Modified CUSUM Algorithm for Gradual Change Detection in a Time Series Data

Authors: Victoria Siriaki Jorry, I. S. Mbalawata, Hayong Shin

Abstract:

The main objective in a change detection problem is to develop algorithms for efficient detection of gradual and/or abrupt changes in the parameter distribution of a process or time series data. In this paper, we present a modified cumulative (MCUSUM) algorithm to detect the start and end of a time-varying linear drift in mean value of a time series data based on likelihood ratio test procedure. The design, implementation and performance of the proposed algorithm for a linear drift detection is evaluated and compared to the existing CUSUM algorithm using different performance measures. An approach to accurately approximate the threshold of the MCUSUM is also provided. Performance of the MCUSUM for gradual change-point detection is compared to that of standard cumulative sum (CUSUM) control chart designed for abrupt shift detection using Monte Carlo Simulations. In terms of the expected time for detection, the MCUSUM procedure is found to have a better performance than a standard CUSUM chart for detection of the gradual change in mean. The algorithm is then applied and tested to a randomly generated time series data with a gradual linear trend in mean to demonstrate its usefulness.

Keywords: average run length, CUSUM control chart, gradual change detection, likelihood ratio test

Procedia PDF Downloads 304
23715 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 176
23714 Production, Extraction and Purification of Fungal Chitosan and Its Modification for Medical Applications

Authors: Debajyoti Bose

Abstract:

Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Chitosan is a positively charged natural biodegradable and biocompatible polymer. It is a linear polysaccharide consisting of β-1,4 linked monomers of glucosamine and N-acetylglucosamine. Chitosan can be mainly obtained from fungal sources during large fermentation process. In this study,three different fungal strains Aspergillus niger NCIM 1045, Aspergillus oryzae NCIM 645 and Mucor indicus MTCC 3318 were used for the production of chitosan. The growth mediums were optimized for maximum fungal production. The produced chitosan was characterized by determining degree of deacetylation. Chitosan possesses one reactive amino at the C-2 position of the glucosamine residue, and these amines confer important functional properties to chitosan which can be exploited for biofabrication to generate various chemically modified derivatives and explore their potential for pharmaceutical field. Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein (e.g. enzyme diastase) in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. It was noted that the chitosan loading and releasing efficiency as a nanocapsule, obtained from different fungal sources was almost near to initial enzyme activity(12026 U/ml) with a negligible loss. This signify, chitosan can be used as a polymeric drug as well as active component or protein carrier material in dosage by design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. Based upon these initial experiments, studies were also carried out on modification of chitosan based nanocapsules incorporated with physiologically important enzymes and nutraceuticals for target delivery.

Keywords: fungi, chitosan, enzyme, nanocapsule

Procedia PDF Downloads 509
23713 Computational Screening of Secretory Proteins with Brain-Specific Expression in Glioblastoma Multiforme

Authors: Sumera, Sanila Amber, Fatima Javed Mirza, Amjad Ali, Saadia Zahid

Abstract:

Glioblastoma multiforme (GBM) is a widely spread and fatal primary brain tumor with an increased risk of relapse in spite of aggressive treatment. The current procedures for GBM diagnosis include invasive procedures i.e. resection or biopsy, to acquire tumor mass. Implementation of negligibly invasive tests as a potential diagnostic technique and biofluid-based monitoring of GBM stresses on discovering biomarkers in CSF and blood. Therefore, we performed a comprehensive in silico analysis to identify potential circulating biomarkers for GBM. Initially, six gene and protein databases were utilized to mine brain-specific proteins. The resulting proteins were filtered using a channel of five tools to predict the secretory proteins. Subsequently, the expression profile of the secreted proteins was verified in the brain and blood using two databases. Additional verification of the resulting proteins was done using Plasma Proteome Database (PPD) to confirm their presence in blood. The final set of proteins was searched in literature for their relationship with GBM, keeping a special emphasis on secretome proteome. 2145 proteins were firstly mined as brain-specific, out of which 69 proteins were identified as secretory in nature. Verification of expression profile in brain and blood eliminated 58 proteins from the 69 proteins, providing a final list of 11 proteins. Further verification of these 11 proteins further eliminated 2 proteins, giving a final set of nine secretory proteins i.e. OPCML, NPTX1, LGI1, CNTN2, LY6H, SLIT1, CREG2, GDF1 and SERPINI1. Out of these 9 proteins, 7 were found to be linked to GBM, whereas 2 proteins are not investigated in GBM so far. We propose that these secretory proteins can serve as potential circulating biomarker signatures of GBM and will facilitate the development of minimally invasive diagnostic methods and novel therapeutic interventions for GBM.

Keywords: glioblastoma multiforme, secretory proteins, brain secretome, biomarkers

Procedia PDF Downloads 156
23712 Osteoarthritis (OA): A Total Knee Replacement Surgery

Authors: Loveneet Kaur

Abstract:

Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.

Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR

Procedia PDF Downloads 56
23711 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning

Authors: Jiahao Tian, Michael D. Porter

Abstract:

Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.

Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation

Procedia PDF Downloads 69
23710 Positivity of Pathogenic Leptospira in Pigs from Rural Communities on the Coast of Ecuador

Authors: Veronica Barragan, Ligia Luna, Maria Patricia Zambrano, Carlos Bulnes, Eduardo Diaz, Talima Pearson

Abstract:

Leptospirosis impacts animal production and is responsible for important economic losses in the pig industry. Infection is associated with reproductive failures that lead to abortions, stillbirth, and perinatal mortality. The leptospira serogroups that have been traditionally linked to disease in pigs are Pomona, Australis, and Tarassovi. Unfortunately, knowledge about pig leptospirosis is biased towards infection in large-scale commercial farms from developed countries, where exposure is usually limited to host-specific serotypes. The aim of our study is to describe leptospirosis in pigs from rural communities located in the coast of Ecuador-South America, where leptospirosis is endemic. A particularity of these pigs is that, because they are usually raised in the backyard of their owner’s houses, exposure to other leptospira excreted by other animals is likely to occur. Therefore, we collected 420 kidney samples from pigs sacrificed at a local slaughterhouse, and Leptospira positivity was tested in all samples by amplifying the Lipl32 gen. Our results show pathogenic Leptospira positivity in 19.3% (81/420) of pigs. Microaglutination test was performed in 60 PCR positive samples with titers >1:100 in 17 pigs, titers of 1:50 in 28 pigs, and no MAT titers in 15 pigs even though Leptospira DNA was found in their kidneys. Interestingly, reacting serovars were very diverse, with 18.3% of pig sera reacting with two or more serovars. Additionally, serovar Canicola was found in 16.7% of pigs followed by Tarassovi (10%), Australis (6.7%), Pyogenes (5%), Icterohaemorrhageae (1.7%), and Grippotyphosa (1.7%). It is also important to highlight that most of the analyzed animals came from small-scale farms where pigs may be exposed to the pathogen by exposure to other domestic and peridomestic animals such as rats, dogs, horses, donkeys, and even wildlife. This would explain the finding of non-pig adapted Leptospira serovars such as Canicola, which is commonly reported in dogs.

Keywords: Leptospira, Lipl32, peridomestic, pig, serovar

Procedia PDF Downloads 141
23709 Diversifying from Petroleum Products to Arable Farming as Source of Revenue Generation in Nigeria: A Case Study of Ondo West Local Government

Authors: A. S. Akinbani

Abstract:

Overdependence on petroleum is causing set back in Nigeria economy. Field survey was carried out to assess the profitability and production of selected arable crops in six selected towns and villages of Ondo southwestern. Data were collected from 240 arable crop farmers with the aid of both primary and secondary data. Data were collected with the use of oral interview and structured questionnaires. Data collected were analyzed using both descriptive and inferential statistics. Forty farmers were randomly selected to give a total number of 240 respondents. 84 farmers interviewed had no formal education, 72 had primary education, 50 farmers attained secondary education while 38 attained beyond secondary education. The majority of the farmers hold less than 10 acres of land. The data collected from the field showed that 192 farmers practiced mixed cropping which includes mixtures of yam, cowpea, cocoyam, vegetable, cassava and maize while only 48 farmers practiced monocropping. Among the sampled farmers, 93% agreed that arable production is profitable while 7% disagreed. The findings show that managerial practices that conserve the soil fertility and reduce labor cost such as planting of leguminous crops and herbicide application instead of using hand held hoe for weeding should be encouraged. All the respondents agreed that yam, cowpea, cocoyam, sweet potato, rice, maize and vegetable production will solve the problem of hunger and increase standard of living compared with petroleum product that Nigeria relied on as means of livelihood.

Keywords: farmers, arable crop, cocoyam, respondents, maize

Procedia PDF Downloads 255
23708 Participation of Students and Lecturers in Social Networking for Teaching and Learning in Public Universities in Rivers State, Nigeria

Authors: Nkeiruka Queendarline Nwaizugbu

Abstract:

The use of social media and mobile devices has become acceptable in virtually all areas of today’s world. Hence, this study is a survey that was carried out to find out if students and lecturers in public universities in Rivers State use social networking for educational purposes. The sample of the study comprised of 240 students and 99 lecturers from the University of Port Harcourt and the Rivers State University of science and Technology. The study had five research questions, two hypotheses and the instrument for data collection was a 4-point Likert-type rating scale questionnaire. The data was analysed using mean, standard deviation and z-test. The findings gotten from the analysed data shows that students participate in social networking using different types of web applications but they hardly use them for educational purposes. Some recommendations were also made.

Keywords: internet access, mobile learning, participation, social media, social networking, technology

Procedia PDF Downloads 427
23707 Handling Missing Data by Using Expectation-Maximization and Expectation-Maximization with Bootstrapping for Linear Functional Relationship Model

Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, A. H. M. R. Imon

Abstract:

Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in two types of LFRM namely the full model of LFRM and in LFRM when the slope is estimated using a nonparametric method. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.

Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators

Procedia PDF Downloads 456
23706 A Comparative Study of Environment Risk Assessment Guidelines of Developing and Developed Countries Including Bangladesh

Authors: Syeda Fahria Hoque Mimmi, Aparna Islam

Abstract:

Genetically engineered (GE) plants are the need of time for increased demand for food. A complete set of regulations need to be followed from the development of a GE plant to its release into the environment. The whole regulation system is categorized into separate stages for maintaining the proper biosafety. Environmental risk assessment (ERA) is one of such crucial stages in the whole process. ERA identifies potential risks and their impacts through science-based evaluation where it is done in a case-by-case study. All the countries which deal with GE plants follow specific guidelines to conduct a successful ERA. In this study, ERA guidelines of 4 developing and 4 developed countries, including Bangladesh, were compared. ERA guidelines of countries such as India, Canada, Australia, the European Union, Argentina, Brazil, and the US were considered as a model to conduct the comparison study with Bangladesh. Initially, ten parameters were detected to compare the required data and information among all the guidelines. Surprisingly, an adequate amount of data and information requirements (e.g., if the intended modification/new traits of interest has been achieved or not, the growth habit of GE plants, consequences of any potential gene flow upon the cultivation of GE plants to sexually compatible plant species, potential adverse effects on the human health, etc.) matched between all the countries. However, a few differences in data requirement (e.g., agronomic conventions of non-transformed plants, applicants should clearly describe experimental procedures followed, etc.) were also observed in the study. Moreover, it was found that only a few countries provide instructions on the quality of the data used for ERA. If these similarities are recognized in a more framed manner, then the approval pathway of GE plants can be shared.

Keywords: GE plants, ERA, harmonization, ERA guidelines, Information and data requirements

Procedia PDF Downloads 191
23705 Creation of a Realistic Railway Simulator Developed on a 3D Graphic Game Engine Using a Numerical Computing Programming Environment

Authors: Kshitij Ansingkar, Yohei Hoshino, Liangliang Yang

Abstract:

Advances in algorithms related to autonomous systems have made it possible to research on improving the accuracy of a train’s location. This has the capability of increasing the throughput of a railway network without the need for the creation of additional infrastructure. To develop such a system, the railway industry requires data to test sensor fusion theories or implement simultaneous localization and mapping (SLAM) algorithms. Though such simulation data and ground truth datasets are available for testing automation algorithms of vehicles, however, due to regulations and economic considerations, there is a dearth of such datasets in the railway industry. Thus, there is a need for the creation of a simulation environment that can generate realistic synthetic datasets. This paper proposes (1) to leverage the capabilities of open-source 3D graphic rendering software to create a visualization of the environment. (2) to utilize open-source 3D geospatial data for accurate visualization and (3) to integrate the graphic rendering software with a programming language and numerical computing platform. To develop such an integrated platform, this paper utilizes the computing platform’s advanced sensor models like LIDAR, camera, IMU or GPS and merges it with the 3D rendering of the game engine to generate high-quality synthetic data. Further, these datasets can be used to train Railway models and improve the accuracy of a train’s location.

Keywords: 3D game engine, 3D geospatial data, dataset generation, railway simulator, sensor fusion, SLAM

Procedia PDF Downloads 18
23704 In-service High School Teachers’ Experiences On Blended Teaching Approach Of Mathematics

Authors: Lukholo Raxangana

Abstract:

Fourth Industrial Revolution (4IR)-era teaching offers in-service mathematics teachers opportunities to use blended approaches to engage learners while teaching mathematics. This study explores in-service high school teachers' experiences with a blended teaching approach to mathematics. This qualitative case study involved eight pre-service teachers from four selected schools in the Sedibeng West District of the Gauteng Province. The study used the community of inquiry model as its analytical framework for data analysis. Data collection was through semi-structured interviews and focus-group discussions to explore in-service teachers' experiences with the influence of blended teaching (BT) on learning mathematics. The study results are the impact of load-shedding, benefits of BT, and perceptions of in-service and hindrances of BT. Based on these findings, the study recommends that further research should focus on developing data-free BT tools to assist during load-shedding, regardless of location.

Keywords: bended teaching, teachers, in-service, and mathematics

Procedia PDF Downloads 61
23703 The Role of Cultural Expectations in Emotion Regulation among Nepali Adolescents

Authors: Martha Berg, Megan Ramaiya, Andi Schmidt, Susanna Sharma, Brandon Kohrt

Abstract:

Nepali adolescents report tension and negative emotion due to perceived expectations of both academic and social achievement. These societal goals, which are internalized through early-life socialization, drive the development of self-regulatory processes such as emotion regulation. Emotion dysregulation is linked with adverse psychological outcomes such as depression, self-harm, and suicide, which are public health concerns for organizations working with Nepali adolescents. This study examined the relation among socialization, internalized cultural goals, and emotion regulation to inform interventions for reducing depression and suicide in this population. Participants included 102 students in grades 7 through 9 in a post-earthquake school setting in rural Kathmandu valley. All participants completed a tablet-based battery of quantitative measures, comprising transculturally adapted assessments of emotion regulation, depression, and self-harm/suicide ideation and behavior. Qualitative measures included two focus groups and semi-structured interviews with 22 students and 3 parents. A notable proportion of the sample reported depression symptoms in the past 2 weeks (68%), lifetime self-harm ideation (28%), and lifetime suicide attempts (13%). Students who lived with their nuclear family reported lower levels of difficulty than those who lived with more distant relatives (z=2.16, p=.03), which suggests a link between family environment and adolescent emotion regulation, potentially mediated by socialization and internalization of cultural goals. These findings call for further research into the aspects of nuclear versus extended family environments that shape the development of emotion regulation.

Keywords: adolescent mental health, emotion regulation, Nepal, socialization

Procedia PDF Downloads 278
23702 Promoting Environmental Sustainability in the Workplace: The Be-Green Project

Authors: Elena Carbone, Chiara Meneghetti, Ivan Innocenti, Monica Musicanti, Paola Volpe, Francesca Pazzaglia

Abstract:

Promoting environmental sustainability is becoming a priority for organizations. Little is known, however, on the extent to which green workplace behaviors are linked, alongside organizational determinants, and also to various employees’ individual characteristics. The BE-GREEN research project, in collaboration with Eni S.p.A., aimed at investigating the relationship between the adoption of green workplace behaviors and various employees’ job-related and broader individual characteristics as well as organizational determinants. A sample of 513 Eni employees was administered a survey assessing the adoption of green workplace behaviors and the management of events (e.g., near-miss, unsafe conditions, weak signals) that could anticipate the occurrence of incidents with a harmful environmental impact. The survey also assessed employees’ job-related (e.g., proneness toward behaving pro-environmentally at work) and general (e.g., soft skills, connectedness to nature and environmental awareness) characteristics and perceived organizational support (e.g., environmental culture, leadership). Results showed that the adoption of green workplace behaviors was associated with employees’ proneness toward behaving pro-environmentally at work, and these factors were, in turn, influenced by broader individual characteristics related to soft skills as well as a connectedness to nature and environmental awareness, along with perceived organizational support. The management of events potentially anticipating the occurrence of incidents with a harmful environmental impact was mainly associated with perceived organizational support. These findings highlight how, alongside organizational determinants, different employees’ individual characteristics influence their adoption of green workplace behaviors, with important implications for the development of interventions tailored to promote environmental sustainability in organizations.

Keywords: green workplace behaviors, soft skills, connectedness to nature, environmental awareness.

Procedia PDF Downloads 66
23701 Auditory Brainstem Response in Wave VI for the Detection of Learning Disabilities

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

The use of brain stem auditory evoked potential (BAEP) is a common way to study the auditory function of people, a way to learn the functionality of a part of the brain neuronal groups that intervene in the learning process by studying the behaviour of wave VI. The latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of innocuous, low-cost, and easy-access techniques such as, among others, the BAEP that can help us to detect early possible neurodevelopmental difficulties for their subsequent assessment and cure. To date and to the authors' best knowledge, only the latency data obtained, observing the first to V waves and mainly in the left ear, were taken into account. This work shows that it is essential to take into account both ears; with these latest data, it has been possible had diagnosed more precise some cases than with the previous data had been diagnosed as 'normal' despite showing signs of some alteration that motivated the new consultation to the specialist.

Keywords: ear, neurodevelopment, auditory evoked potentials, intervals of normality, learning disabilities

Procedia PDF Downloads 169
23700 Quantum Cryptography: Classical Cryptography Algorithms’ Vulnerability State as Quantum Computing Advances

Authors: Tydra Preyear, Victor Clincy

Abstract:

Quantum computing presents many computational advantages over classical computing methods due to the utilization of quantum mechanics. The capability of this computing infrastructure poses threats to standard cryptographic systems such as RSA and AES, which are designed for classical computing environments. This paper discusses the impact that quantum computing has on cryptography, while focusing on the evolution from classical cryptographic concepts to quantum and post-quantum cryptographic concepts. Standard Cryptography is essential for securing data by utilizing encryption and decryption methods, and these methods face vulnerability problems due to the advancement of quantum computing. In order to counter these vulnerabilities, the methods that are proposed are quantum cryptography and post-quantum cryptography. Quantum cryptography uses principles such as the uncertainty principle and photon polarization in order to provide secure data transmission. In addition, the concept of Quantum key distribution is introduced to ensure more secure communication channels by distributing cryptographic keys. There is the emergence of post-quantum cryptography which is used for improving cryptographic algorithms in order to be more secure from attacks by classical and quantum computers. Throughout this exploration, the paper mentions the critical role of the advancement of cryptographic methods to keep data integrity and privacy safe from quantum computing concepts. Future research directions that would be discussed would be more effective cryptographic methods through the advancement of technology.

Keywords: quantum computing, quantum cryptography, cryptography, data integrity and privacy

Procedia PDF Downloads 32