Search results for: linear trend flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9404

Search results for: linear trend flow

6734 Theoretical Analysis of Self-Starting Busemann Intake Family

Authors: N. Moradian, E. Timofeev, R. Tahir

Abstract:

In this work, startability of the Busemann intake family with weak/strong conical shock, as most efficient intakes, via overboard mass spillage method is theoretically analyzed. Masterix and Candifix codes are used to numerically simulate few models of this type of intake and verify the theoretical results. Portions of the intake corresponding to various flow capture angles are considered to have mass spillage in the starting process of this intake. This approach allows for overboard mass spillage via a V-shaped slot with the tip of V coinciding with the focal point of the Busemann flow. The theoretical results, achieved using two different theories, of self-started Busemann takes with weak/strong conical shock show that significant improve in intake startability using overboard spillage technique. The starting phenomena of Busemann intakes with weak conical shock and seven different capture angles are numerically simulated at freestream Mach number of 3 to find the minimum area ratios of self-started intakes. The numerical results confirm the theoretical ones achieved by authors.

Keywords: Busemann intake, conical shock, overboard spillage, startability

Procedia PDF Downloads 192
6733 Bio-Inspired Information Complexity Management: From Ant Colony to Construction Firm

Authors: Hamza Saeed, Khurram Iqbal Ahmad Khan

Abstract:

Effective information management is crucial for any construction project and its success. Primary areas of information generation are either the construction site or the design office. There are different types of information required at different stages of construction involving various stakeholders creating complexity. There is a need for effective management of information flows to reduce uncertainty creating complexity. Nature provides a unique perspective in terms of dealing with complexity, in particular, information complexity. System dynamics methodology provides tools and techniques to address complexity. It involves modeling and simulation techniques that help address complexity. Nature has been dealing with complex systems since its creation 4.5 billion years ago. It has perfected its system by evolution, resilience towards sudden changes, and extinction of unadaptable and outdated species that are no longer fit for the environment. Nature has been accommodating the changing factors and handling complexity forever. Humans have started to look at their natural counterparts for inspiration and solutions for their problems. This brings forth the possibility of using a biomimetics approach to improve the management practices used in the construction sector. Ants inhabit different habitats. Cataglyphis and Pogonomyrmex live in deserts, Leafcutter ants reside in rainforests, and Pharaoh ants are native to urban developments of tropical areas. Detailed studies have been done on fifty species out of fourteen thousand discovered. They provide the opportunity to study the interactions in diverse environments to generate collective behavior. Animals evolve to better adapt to their environment. The collective behavior of ants emerges from feedback through interactions among individuals, based on a combination of three basic factors: The patchiness of resources in time and space, operating cost, environmental stability, and the threat of rupture. If resources appear in patches through time and space, the response is accelerating and non-linear, and if resources are scattered, the response follows a linear pattern. If the acquisition of energy through food is faster than energy spent to get it, the default is to continue with an activity unless it is halted for some reason. If the energy spent is rather higher than getting it, the default changes to stay put unless activated. Finally, if the environment is stable and the threat of rupture is low, the activation and amplification rate is slow but steady. Otherwise, it is fast and sporadic. To further study the effects and to eliminate the environmental bias, the behavior of four different ant species were studied, namely Red Harvester ants (Pogonomyrmex Barbatus), Argentine ants (Linepithema Humile), Turtle ants (Cephalotes Goniodontus), Leafcutter ants (Genus: Atta). This study aims to improve the information system in the construction sector by providing a guideline inspired by nature with a systems-thinking approach, using system dynamics as a tool. Identified factors and their interdependencies were analyzed in the form of a causal loop diagram (CLD), and construction industry professionals were interviewed based on the developed CLD, which was validated with significance response. These factors and interdependencies in the natural system corresponds with the man-made systems, providing a guideline for effective use and flow of information.

Keywords: biomimetics, complex systems, construction management, information management, system dynamics

Procedia PDF Downloads 124
6732 Numerical Investigation of Wire Mesh Heat Pipe for Spacecraft Applications

Authors: Jayesh Mahitkar, V. K. Singh, Surendra Singh Kachhwaha

Abstract:

Wire Mesh Heat Pipe (WMHP) as an effective component of thermal control system in the payload of spacecraft, utilizing ammonia to transfer efficient amount of heat. One dimensional generic and robust mathematical model with partial-analytical hydraulic approach (PAHA) is developed to study inside behaviour of WMHP. In this model, inside performance during operation is investigated like mass flow rate, and velocity along the wire mesh as well as vapour core is modeled respectively. This numerical model investigate heat flow along length, pressure drop along wire mesh as well as vapour line in axial direction. Furthermore, WMHP is modeled into equivalent resistance network such that total thermal resistance of heat pipe, temperature drop across evaporator end and condenser end is evaluated. This numerical investigation should be carried out for single layer and double layer wire mesh each with heat input at evaporator section is 10W, 20 W and 30 W at condenser temperature maintained at 20˚C.

Keywords: ammonia, heat transfer, modeling, wire mesh

Procedia PDF Downloads 264
6731 Study of Fire Propagation and Soot Flow in a Pantry Car of Railway Locomotive

Authors: Juhi Kaushik, Abhishek Agarwal, Manoj Sarda, Vatsal Sanjay, Arup Kumar Das

Abstract:

Fire accidents in trains bring huge disaster to human life and property. Evacuation becomes a major challenge in such incidents owing to confined spaces, large passenger density and trains moving at high speeds. The pantry car in Indian Railways trains carry inflammable materials like cooking fuel and LPG and electrical fittings. The pantry car is therefore highly susceptible to fire accidents. Numerical simulations have been done in a pantry car of Indian locomotive train using computational fluid dynamics based software. Different scenarios of a fire outbreak have been explored by varying Heat Release Rate per Unit Area (HRRPUA) of the fire source, introduction of exhaust in the cooking area, and taking a case of an air conditioned pantry car. Temporal statures of flame and soot have been obtained for each scenario and differences have been studied and reported. Inputs from this study can be used to assess casualties in fire accidents in locomotive trains and development of smoke control/detection systems in Indian trains.

Keywords: fire propagation, flame contour, pantry fire, soot flow

Procedia PDF Downloads 326
6730 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results

Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj

Abstract:

Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.

Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters

Procedia PDF Downloads 205
6729 Shear Stress and Oxygen Concentration Manipulation in a Micropillars Microfluidic Bioreactor

Authors: Deybith Venegas-Rojas, Jens Budde, Dominik Nörz, Manfred Jücker, Hoc Khiem Trieu

Abstract:

Microfluidics is a promising approach for biomedicine cell culture experiments with microfluidic bioreactors (MBR), which can provide high precision in volume and time control over mass transport and microenvironments in small-scale studies. Nevertheless, shear stress and oxygen concentration are important factors that affect the microenvironment and then the cell culture. It is presented a novel MBR design in which differences in geometry, shear stress, and oxygen concentration were studied and optimized for cell culture. The aim is to mimic the in vivo condition with biocompatible materials and continuous perfusion of nutrients, a healthy shear stress, and oxygen concentration. The design consists of a capture system of PDMS micropillars which keep cells in place, so it is not necessary any hydrogel or complicated scaffolds for cells immobilization. Besides, the design allows continuous supply with nutrients or even any other chemical for cell experimentation. Finite element method simulations were used to study and optimize the effect of parameters such as flow rate, shear stress, oxygen concentration, micropillars shape, and dimensions. The micropillars device was fabricated with microsystem technology such as soft-lithography, deep reactive ion etching, self-assembled monolayer, replica molding, and oxygen plasma bonding. Eight different geometries were fabricated and tested, with different flow rates according to the simulations. During the experiments, it was observed the effect of micropillars size, shape, and configuration for stability and shear stress control when increasing flow rate. The device was tested with several successful HepG2 3D cell cultures. With this MBR, the aforementioned parameters can be controlled in order to keep a healthy microenvironment according to specific necessities of different cell types, with no need of hydrogels and can be used for a wide range of experiments with cells.

Keywords: cell culture, micro-bioreactor, microfluidics, micropillars, oxygen concentration, shear stress

Procedia PDF Downloads 274
6728 Comparative Performance Analysis of Parabolic Trough Collector Using Twisted Tape Inserts

Authors: Atwari Rawani, Hari Narayan Singh, K. D. P. Singh

Abstract:

In this paper, an analytical investigation of the enhancement of thermal performance of parabolic trough collector (PTC) with twisted tape inserts in the absorber tube is being reported. A comparative study between the absorber with various types of twisted tape inserts and plain tube collector has been performed in turbulent flows conditions. The parametric studies were conducted to investigate the effects of system and operating parameters on the performance of the collector. The parameters such as heat gain, overall heat loss coefficient, air rise temperature and efficiency are used to analyze the relative performance of PTC. The results show that parabolic through collector with serrated twisted tape insert shows the best performance under same set of conditions under range of parameters investigated. Results reveal that for serrated twisted tape with x=1, Nusselt number/heat transfer coefficient is found to be 4.38 and 3.51 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 15.7% and 5.41% respectively.

Keywords: efficiency, heat transfer, twisted tape ratio, turbulent flow

Procedia PDF Downloads 273
6727 Large Eddy Simulation of Particle Clouds Using Open-Source CFD

Authors: Ruo-Qian Wang

Abstract:

Open-source CFD has become increasingly popular and promising. The recent progress in multiphase flow enables new CFD applications, which provides an economic and flexible research tool for complex flow problems. Our numerical study using four-way coupling Euler-Lagrangian Large-Eddy Simulations to resolve particle cloud dynamics with OpenFOAM and CFDEM will be introduced: The fractioned Navier-Stokes equations are numerically solved for fluid phase motion, solid phase motion is addressed by Lagrangian tracking for every single particle, and total momentum is conserved by fluid-solid inter-phase coupling. The grid convergence test was performed, which proves the current resolution of the mesh is appropriate. Then, we validated the code by comparing numerical results with experiments in terms of particle cloud settlement and growth. A good comparison was obtained showing reliability of the present numerical schemes. The time and height at phase separations were defined and analyzed for a variety of initial release conditions. Empirical formulas were drawn to fit the results.

Keywords: four-way coupling, dredging, land reclamation, multiphase flows, oil spill

Procedia PDF Downloads 410
6726 Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids

Authors: A. Ghadbane, M. N. Bouaziz, S. Hanini, B. Baggoura, M. Abbaci

Abstract:

The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate.

Keywords: PWR fuel assembly, spacer grid, mixing vane, swirl flow, turbulent heat transfer, CFD

Procedia PDF Downloads 474
6725 Assessment of the Effects of Water Harvesting Technology on Downstream Water Availability Using SWAT Model

Authors: Ayalkibet Mekonnen, Adane Abebe

Abstract:

In hydrological cycle there are many water-related human interventions that modify the natural systems. Rainwater harvesting is one such intervention that involves harnessing of water in the upstream. Water harvesting used in upstream prevents water runoff on downstream mainly disturbance on biodiversity and ecosystems. The main objectives of the study are to assess the effects of water harvesting technologies on downstream water availability in the Woreda. To address the above problem, SWAT model, cost-benefit ratio and optimal control approach was used to analyse the hydrological and socioeconomic impact and tradeoffs on water availability of the community, respectively. The downstream impacts of increasing water consumption in the upstream rain-fed areas of the Bilate and Shala Catchment are simulated using the semi-distributed SWAT model. The two land use scenarios tested at sub basin levels (1) conventional land use represents the current land use practice (Agri-CON) and (2) in-field rainwater harvesting (IRWH), improving soil water availability through rainwater harvesting land use scenario. The simulated water balance results showed that the highest peak mean monthly direct flow obtained from Agri-CON land use (127.1 m3/ha), followed by Agri-IRWH land use (11.5 mm) and LULC 2005 (90.1 m3/ha). The Agri-IRWH scenario reduced direct flow by 10% compared to Agri-CON and more groundwater flow contributed by Agri-IRWH (190 m3/ha) than Agri-CON (125 m3/ha). The overall result suggests that the water yield of the Woreda may not be negatively affected by the Agri-IRWH land use scenario. The technology in the Woreda benefited positively having an average benefit cost ratio of 4.2. Water harvesting for domestic use was not optimal that the value of the water per demand harvested was less than the amount of water needed. Storage tanks, series of check dams, gravel filled dams are an alternative solutions for water harvesting.

Keywords: water harvesting, SWAT model, land use scenario, Agri-CON, Agri-IRWH, trade off, benefit cost ratio

Procedia PDF Downloads 321
6724 Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer

Authors: Bhavesh N. Bhatt, Zozimus D. Labana

Abstract:

This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends.

Keywords: gas turbine, conjugate heat transfer, NASA C3X Blade, circular film cooling channel

Procedia PDF Downloads 312
6723 Thermodynamic Modeling of Methane Injection in Gas-Condensate Reservoir Core: A Case Study

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the core of Sarkhoon Gas Condensate Reservoir located in the south of Iran was thermodynamically modeled in order to study the natural depletion process and methane injection phenomena for enhanced gas-condensate recovery using the Eclipse 300 compositional simulator. Modeling was performed for three different core lengths with different production and injection flow rates in both vertical and horizontal cases. According to the results, the final condensate in place value in the natural depletion process is approximately independent of the production rate for a given pressure drop. The final condensate in place value is lower in vertical cases compared to horizontal cases. An increase in the injection flow rate leads to a decrease in the percentage of gascondensate recovery. In cores of equal length, gas condensate recovery percent is higher in vertical cases in comparison to horizontal cases. For a constant injection rate, decreasing the core length leads to a decrease in gas condensate recovery.

Keywords: reservoir simulation, methane injection, enhanced condensate recovery, reservoir core, modeling

Procedia PDF Downloads 77
6722 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty

Procedia PDF Downloads 362
6721 A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines

Authors: P. Jost, L. Muckova, M. Matula, J. Pejchal, D. Jun, R. Stetina

Abstract:

Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.

Keywords: apoptosis, cell cycle, cytotoxicity, sulfur mustard

Procedia PDF Downloads 176
6720 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface

Authors: Renata Gerhardt, Detlev Belder

Abstract:

Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.

Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS

Procedia PDF Downloads 227
6719 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope

Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov

Abstract:

Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.

Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions

Procedia PDF Downloads 306
6718 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet

Procedia PDF Downloads 416
6717 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness

Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed

Abstract:

A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.

Keywords: artificial roughness, lid-driven cavity, mixed convection heat transfer, rotating cylinder, URANS method

Procedia PDF Downloads 183
6716 The Use of Geographic Information System and Spatial Statistic for Analyzing Leukemia in Kuwait for the Period of 2006-2012

Authors: Muhammad G. Almatar, Mohammad A. Alnasrallah

Abstract:

This research focuses on the study of three main issues: 1) The temporal analysis of leukemia for a period of six years (2006-2012), 2) spatial analysis by investigating this phenomenon in the Kuwaiti society spatially in the residential areas within the six governorates, 3) the use of Geographic Information System technology in investigating the hypothesis of the research and its variables using the linear regression, to show the pattern of linear relationship. The study depends on utilizing the map to understand the distribution of blood cancer in Kuwait. Several geodatabases were created for the number of patients and air pollution. Spatial interpolation models were used to generate layers of air pollution in the study area. These geodatabases were tested over the past six years to reach the conclusion: Is there a relationship with significant significance between the two main variables of the study: blood cancer and air pollution? This study is the first to our best knowledge. As far as the researchers know, the distribution of this disease has not been studied geographically at the level of regions in Kuwait within six years and in specific areas as described above. This study investigates the concentration of this type of disease. The study found that there is no relationship of significant value between the two variables studied, and this may be due to the nature of the disease, which are often hereditary. On the other hand, this study has reached a number of suggestions and recommendations that may be useful to decision-makers and interested in the study of leukemia in Kuwait by focusing on the study of genetic diseases, which may be a cause of leukemia rather than air pollution.

Keywords: Kuwait, GIS, cancer, geography

Procedia PDF Downloads 103
6715 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells

Authors: Victorita Radulescu

Abstract:

Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.

Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils

Procedia PDF Downloads 144
6714 Zinc Oxide Varistor Performance: A 3D Network Model

Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic

Abstract:

ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.

Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide

Procedia PDF Downloads 269
6713 Open Forging of Cylindrical Blanks Subjected to Lateral Instability

Authors: A. H. Elkholy, D. M. Almutairi

Abstract:

The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.

Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen

Procedia PDF Downloads 277
6712 Characterization of Calcined Clay Blended Self Compacting Concrete-Correlation between Super-Plasticizer Dosage and Self Compacting Concrete Properties

Authors: Kumator Josiphiah Taku

Abstract:

Sustainability in construction is essential to the economic construction and can be achieved by the use of locally available construction materials. This research work, thus, uses locally available materials –calcined clay and Sandcrete SPR-300 superplasticizer in the production of Self Compacting Concrete (SCC) by investigating the correlation between the superplasticizer dosage and the fresh and hardened states properties of a grade 50 SCC made by incorporating a Calcined Clay (CC) – Portland Limestone Cement (PLC) blend as the cementitious matter at 20% replacement of PLC with CC and using CC as filler. The superplasticizer dosage was varied from 0.4 to 3.0% by weight of cementitious material and the slump, v-funnel, L-box and strength parameters investigated. The result shows a positive correlation between the increased dosage of the superplasticizer and the fresh and hardened states properties of the SCC up to 2% dosage. The J¬Spread¬, t¬500J¬, Slump flow, L-box H¬2¬/H¬1 ¬ratio and strength, all increases with SP dosage while the V-funnel flow decreased with SP dosage. Overall, SP ratio of 0.5 to 2.0 can be used in improving the properties of SCC produced using calcined clay both as filler and cementitious material.

Keywords: calcined clay, compressive strength, fresh-state properties of SCC, self compacting concrete, superplasticizer dosage

Procedia PDF Downloads 144
6711 Aiding Water Flow in Irrigation Technology with a Pedal Operated Manual Pump

Authors: Isaac Ali Kwasu, Aje Tokan

Abstract:

The research was set to design a manually pedal operated water pump to aid water flow technology for irrigation activities for rural farmers. The development was carried out first by a prototype design to guide the fabrication. All items needed for the fabrication were used for the final product. The machine is operated manually by pedaling. This engages all the parts of the machine into active motion. Energy is generated and transfer finally to the pumping unit which is wired with plastic pipes. The pumping unit which is wired with PVC pipes, both linked to the water source and the reservoir respectively. The (rpm) revolution per minute of the machine is approximated at 3130 depending on the pedaling speed of the user. The machine does not have gear arrangement yet can give high (rpm) for effective performance. The pumping performance of the machine is 125 liters in one minute and can sustain small scale irrigation farming activities and to supplement water management system to sustain crop growth.

Keywords: pump, development, manual, flywheel, sprocket, pulley, machine, v belt, chain, hub, pipe, steel, mechanism, irrigation, prototype, fabrication

Procedia PDF Downloads 190
6710 Industrial Revolution: Army Production

Authors: M. Şimşek

Abstract:

Additive manufacturing (AM) or generally known as three dimensional (3D) printing provides great opportunities for both civilian and military applications by which 3D has become the biggest nominee of breakthrough of 21th century. When properly used, it has a wide spectrum of applications that make production easier and more profitable. Considering the advantages of AM, every firm has an intention of catching up with this new trend. As well as reducing costs and thus increasing benefits, 3D printing provides opportunities for national armies by reducing maintenance and repair time and increasing operational readiness.

Keywords: additive manufacturing, operational cost, operational readiness, supply chain, three dimensional printing

Procedia PDF Downloads 383
6709 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations

Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam

Abstract:

Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.

Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD

Procedia PDF Downloads 403
6708 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry

Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood

Abstract:

The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.

Keywords: ADV, experimental data, multiple Reynolds number, post-processing

Procedia PDF Downloads 126
6707 A Review on Building Information Modelling in Nigeria and Its Potentials

Authors: Mansur Hamma-Adama, Tahar Kouider

Abstract:

Construction Industry has been evolving since the development of Building Information Modelling (BIM). This technological process is unstoppable; it is out to the market with remarkable case studies of solving the long industry’s history of fragmentation. This industry has been changing over time; United States has recorded the most significant development in construction digitalization, Australia, United Kingdom and some other developed nations are also amongst promoters of BIM process and its development. Recently, a developing country like China and Malaysia are keying into the industry’s digital shift, while very little move is seen in South Africa whose development is considered higher and perhaps leader in the digital transition amongst the African countries. To authors’ best knowledge, Nigerian construction industry has never engaged in BIM discussions hence has no attention at national level. Consequently, Nigeria has no “Noteworthy BIM publications.” Decision makers and key stakeholders need to be informed on the current trend of the industry’s development (BIM in specific) and the opportunities of adopting this digitalization trend in relation to the identified challenges. BIM concept can be traced mostly in Architectural practices than engineering practices in Nigeria. A superficial BIM practice is found to be at organisational level only and operating a model based - “BIM stage 1.” Research to adopting this innovation has received very little attention. This piece of work is literature review based, aimed at exploring BIM in Nigeria and its prospects. The exploration reveals limitations in the literature availability as to extensive research in the development of BIM in the country. Numerous challenges were noticed including building collapse, inefficiencies, cost overrun and late project delivery. BIM has potentials to overcome the above challenges and even beyond. Low level of BIM adoption with reasonable level of awareness is noticed. However, lack of policy and guideline as well as serious lack of experts in the field are amongst the major barriers to BIM adoption. The industry needs to embrace BIM to possibly compete with its global counterpart.

Keywords: adoption, BIM, CAD, construction industry, Nigeria, opportunities

Procedia PDF Downloads 141
6706 Analysis of the Homogeneous Turbulence Structure in Uniformly Sheared Bubbly Flow Using First and Second Order Turbulence Closures

Authors: Hela Ayeb Mrabtini, Ghazi Bellakhal, Jamel Chahed

Abstract:

The presence of the dispersed phase in gas-liquid bubbly flow considerably alters the liquid turbulence. The bubbles induce turbulent fluctuations that enhance the global liquid turbulence level and alter the mechanisms of turbulence. RANS modeling of uniformly sheared flows on an isolated sphere centered in a control volume is performed using first and second order turbulence closures. The sphere is placed in the production-dissipation equilibrium zone where the liquid velocity is set equal to the relative velocity of the bubbles. The void fraction is determined by the ratio between the sphere volume and the control volume. The analysis of the turbulence statistics on the control volume provides numerical results that are interpreted with regard to the effect of the bubbles wakes on the turbulence structure in uniformly sheared bubbly flow. We assumed for this purpose that at low void fraction where there is no hydrodynamic interaction between the bubbles, the single-phase flow simulation on an isolated sphere is representative on statistical average of a sphere network. The numerical simulations were firstly validated against the experimental data of bubbly homogeneous turbulence with constant shear and then extended to produce numerical results for a wide range of shear rates from 0 to 10 s^-1. These results are compared with our turbulence closure proposed for gas-liquid bubbly flows. In this closure, the turbulent stress tensor in the liquid is split into a turbulent dissipative part produced by the gradient of the mean velocity which also contains the turbulence generated in the bubble wakes and a pseudo-turbulent non-dissipative part induced by the bubbles displacements. Each part is determined by a specific transport equation. The simulations of uniformly sheared flows on an isolated sphere reproduce the mechanisms related to the turbulent part, and the numerical results are in perfect accordance with the modeling of the transport equation of the turbulent part. The reduction of second order turbulence closure provides a description of the modification of turbulence structure by the bubbles presence using a dimensionless number expressed in terms of two-time scales characterizing the turbulence induced by the shear and that induced by bubbles displacements. The numerical simulations carried out in the framework of a comprehensive analysis reproduce particularly the attenuation of the turbulent friction showed in the experimental results of bubbly homogeneous turbulence subjected to a constant shear.

Keywords: gas-liquid bubbly flows, homogeneous turbulence, turbulence closure, uniform shear

Procedia PDF Downloads 447
6705 Corporate Demography: An Unexplored Trend along the Latin American Context

Authors: Jesus Argueta

Abstract:

This study aims to explore the Business Demography Phenomena along the Central American context, through the examination of its theoretical background, and the revision of Central American corporations success stories, that will eventually guide this research towards the business Demography Key Performance Indicators, across the Central American Business Ambiance. Considering that this analysis will support the development of a Small and Medium Business Observatory over the Honduran commercial landscapes, as platform for the reinforcement of this global topic.

Keywords: business demography, economic dynamism, small, medium and large enterprises, corporate demography

Procedia PDF Downloads 515