Search results for: formative process
12735 Development of Hydrophobic Coatings on Aluminum Alloy 7075
Authors: Nauman A. Siddiqui
Abstract:
High performance requirement of aircrafts and marines industry demands to cater major industrial problems like wetting, high-speed efficiency, and corrosion resistance. These problems can be resolved by producing the hydrophobic surfaces on the metal substrate. By anodization process, the surface of AA 7075 has been modified and achieved a rough surface with a porous aluminum oxide (Al2O3) structure at nano-level. This surface modification process reduces the surface contact energy and increases the liquid contact angle which ultimately enhances the anti-icing properties. Later the Silane and Polyurethane (PU) coatings on the anodized surface have produced a contact angle of 130°. The results showed a good water repellency and self-cleaning properties. Using SEM analysis, micrographs revealed the round nano-porous oxide structure on the substrate. Therefore this technique can help in increasing the speed efficiency by reducing the friction with the outer interaction and can also be declared as a green technique since it is user-friendly.Keywords: AA 7075, hydrophobicity, silanes, polyurethane, anodization
Procedia PDF Downloads 28212734 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition
Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos
Abstract:
Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region
Procedia PDF Downloads 20812733 Mechanistic Modelling to De-risk Process Scale-up
Authors: Edwin Cartledge, Jack Clark, Mazaher Molaei-Chalchooghi
Abstract:
The mixing in the crystallization step of active pharmaceutical ingredient manufacturers was studied via advanced modeling tools to enable a successful scale-up. A virtual representation of the vessel was created, and computational fluid dynamics were used to simulate multiphase flow and, thus, the mixing environment within this vessel. The study identified a significant dead zone in the vessel underneath the impeller and found that increasing the impeller speed and power did not improve the mixing. A series of sensitivity analyses found that to improve mixing, the vessel had to be redesigned, and found that optimal mixing could be obtained by adding two extra cylindrical baffles. The same two baffles from the simulated environment were then constructed and added to the process vessel. By identifying these potential issues before starting the manufacture and modifying the vessel to ensure good mixing, this study mitigated a failed crystallization and potential batch disposal, which could have resulted in a significant loss of high-value material.Keywords: active pharmaceutical ingredient, baffles, computational fluid dynamics, mixing, modelling
Procedia PDF Downloads 10212732 Cloud Points to Create an Innovative and Custom Ankle Foot Orthosis in CAD Environment
Authors: Y. Benabid, K. Benfriha, V. Rieuf, J. F. Omhover
Abstract:
This paper describes an approach to create custom concepts for innovative products; this approach describes relations between innovation tools and Computer Aided Design environment (use creativity session and design tools). A model for the design process is proposed and explored in order to describe the power tool used to create and ameliorate an innovative product all based upon a range of data (cloud points) in this study. Comparison between traditional method and innovative method we help to generate and put forward a new model of the design process in order to create a custom Ankle Foot Orthosis (AFO) in a CAD environment in order to ameliorate and controlling the motion. The custom concept needs big development in different environments; the relation between these environments is described. The results can help the surgeons in the upstream treatment phases. CAD models can be applied and accepted by professionals in the design and manufacture systems. This development is based on the anatomy of the population of North Africa.Keywords: ankle foot orthosis, CAD, reverse engineering, sketch
Procedia PDF Downloads 45912731 Prioritization Assessment of Housing Development Risk Factors: A Fuzzy Hierarchical Process-Based Approach
Authors: Yusuf Garba Baba
Abstract:
The construction industry and housing subsector are fraught with risks that have the potential of negatively impacting on the achievement of project objectives. The success or otherwise of most construction projects depends to large extent on how well these risks have been managed. The recent paradigm shift by the subsector to use of formal risk management approach in contrast to hitherto developed rules of thumb means that risks must not only be identified but also properly assessed and responded to in a systematic manner. The study focused on identifying risks associated with housing development projects and prioritisation assessment of the identified risks in order to provide basis for informed decision. The study used a three-step identification framework: review of literature for similar projects, expert consultation and questionnaire based survey to identify potential risk factors. Delphi survey method was employed in carrying out the relative prioritization assessment of the risks factors using computer-based Analytical Hierarchical Process (AHP) software. The results show that 19 out of the 50 risks significantly impact on housing development projects. The study concludes that although significant numbers of risk factors have been identified as having relevance and impacting to housing construction projects, economic risk group and, in particular, ‘changes in demand for houses’ is prioritised by most developers as posing a threat to the achievement of their housing development objectives. Unless these risks are carefully managed, their effects will continue to impede success in these projects. The study recommends the adoption and use of the combination of multi-technique identification framework and AHP prioritization assessment methodology as a suitable model for the assessment of risks in housing development projects.Keywords: risk management, risk identification, risk analysis, analytic hierarchical process
Procedia PDF Downloads 12312730 Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements
Authors: Sanita Rubene, Martins Vilnitis, Juris Noviks
Abstract:
Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper.Keywords: aerated concrete, electrical impedance spectrometry, humidity distribution, non-destructive testing
Procedia PDF Downloads 33312729 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth
Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie
Abstract:
Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.Keywords: Spent bleaching earth, reactivation, regeneration, thermal treatment, dye removal, thermodynamic
Procedia PDF Downloads 18812728 Entrepreneurial Education in the European Union
Authors: Marko Kolaković, Mladen Turuk
Abstract:
Entrepreneurship is a valuable discipline important for the competitiveness of the European economy. The European Union's economy is constantly changing, and there is an increased demand for special knowledge and skills to help actors cope in a turbulent business environment. By promoting entrepreneurship in education, the citizens of the European Union are encouraged to be enterprising, innovative, and creative in designing solutions to perceived commercial and social problems in the form of offered products and services created as a result of the entrepreneurial process. The European Union has developed a series of guidelines to encourage entrepreneurship in education and training, and it supports entrepreneurship itself through various activities such as Erasmus + and other programs. A number of tools have been developed to support the development of entrepreneurial spirit among the citizens of the European Union. Special emphasis is placed on the methods of developing creativity, critical thinking, and the development of digital competencies. The aim of this paper is to investigate the initiatives of the European Union in the field of entrepreneurship education and to analyze the concept of entrepreneurship education in selected EU member states. Also, an overview of the desired learning outcomes acquired as a result of the successfully completed entrepreneurship education process will be provided.Keywords: entrepreneurship, entrepreneurial education, EU, croatia
Procedia PDF Downloads 12812727 Self-Assembled ZnFeAl Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts
Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja
Abstract:
Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) and is among the most frequently detected pharmaceuticals in environmental samples and among the most widespread drug in the world. Its concentration in the environment is reported to be between 10 and 160 ng L-1. In order to improve the abatement efficiency of this compound for water source prevention and reclamation, the development of innovative technologies is mandatory. AOPs (advanced oxidation processes) are known as highly efficient towards the oxidation of organic pollutants. Among the promising combined treatments, photo-Fenton processes using layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents the self-supported Fe, Mn or Ti on ZnFeAl LDHs obtained by co-precipitation followed by reconstruction method as novel efficient photo-catalysts for Fenton-like catalysis. Fe, Mn or Ti/ZnFeAl LDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively, by means of a lab-scale system consisting of a batch reactor equipped with an UV lamp (17 W). The present study presents comparatively the degradation of Ibuprofen in aqueous solution UV light irradiation using four different types of LDHs. The newly prepared Ti/ZnFeAl 4:1 catalyst results in the best degradation performance. After 60 minutes of light irradiation, the Ibuprofen removal efficiency reaches 95%. The slowest degradation of Ibuprofen solution occurs in case of Fe/ZnFeAl 4:1 LDH, (67% removal efficiency after 60 minutes of process). Evolution of Ibuprofen degradation during the photo Fenton process is also studied using Ti/ZnFeAl 2:1 and 4:1 LDHs in the presence and absence of H2O2. It is found that after 60 min the use of Ti/ZnFeAl 4:1 LDH in presence of 100 mg/L H2O2 leads to the fastest degradation of Ibuprofen molecule. After 120 min, both catalysts Ti/ZnFeAl 4:1 and 2:1 result in the same value of removal efficiency (98%). In the absence of H2O2, Ibuprofen degradation reaches only 73% removal efficiency after 120 min of degradation process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: layered double hydroxide, advanced oxidation process, micropollutant, heterogeneous Fenton
Procedia PDF Downloads 23312726 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii
Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi
Abstract:
Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.Keywords: full factorial design, neural network, nose radius, surface finish
Procedia PDF Downloads 37312725 Industrial Production of the Saudi Future Dwelling: A Saudi Volumetric Solution for Single Family Homes, Leveraging Industry 4.0 with Scalable Automation, Hybrid Structural Insulated Panels Technology and Local Materials
Authors: Bandar Alkahlan
Abstract:
The King Abdulaziz City for Science and Technology (KACST) created the Saudi Future Dwelling (SFD) initiative to identify, localize and commercialize a scalable home manufacturing technology suited to deployment across the Kingdom of Saudi Arabia (KSA). This paper outlines the journey, the creation of the international project delivery team, the product design, the selection of the process technologies, and the outcomes. A target was set to remove 85% of the construction and finishing processes from the building site as these activities could be more efficiently completed in a factory environment. Therefore, integral to the SFD initiative is the successful industrialization of the home building process using appropriate technologies, automation, robotics, and manufacturing logistics. The technologies proposed for the SFD housing system are designed to be energy efficient, economical, fit for purpose from a Saudi cultural perspective, and will minimize the use of concrete, relying mainly on locally available Saudi natural materials derived from the local resource industries. To this end, the building structure is comprised of a hybrid system of structural insulated panels (SIP), combined with a light gauge steel framework manufactured in a large format panel system. The paper traces the investigative process and steps completed by the project team during the selection process. As part of the SFD Project, a pathway was mapped out to include a proof-of-concept prototype housing module and the set-up and commissioning of a lab-factory complete with all production machinery and equipment necessary to simulate a full-scale production environment. The prototype housing module was used to validate and inform current and future product design as well as manufacturing process decisions. A description of the prototype design and manufacture is outlined along with valuable learning derived from the build and how these results were used to enhance the SFD project. The industrial engineering concepts and lab-factory detailed design and layout are described in the paper, along with the shop floor I.T. management strategy. Special attention was paid to showcase all technologies within the lab-factory as part of the engagement strategy with private investors to leverage the SFD project with large scale factories throughout the Kingdom. A detailed analysis is included in the process surrounding the design, specification, and procurement of the manufacturing machinery, equipment, and logistical manipulators required to produce the SFD housing modules. The manufacturing machinery was comprised of a combination of standardized and bespoke equipment from a wide range of international suppliers. The paper describes the selection process, pre-ordering trials and studies, and, in some cases, the requirement for additional research and development by the equipment suppliers in order to achieve the SFD objectives. A set of conclusions is drawn describing the results achieved thus far, along with a list of recommended ongoing operational tests, enhancements, research, and development aimed at achieving full-scale engagement with private sector investment and roll-out of the SFD project across the Kingdom.Keywords: automation, dwelling, manufacturing, product design
Procedia PDF Downloads 12912724 An Experimental Study on the Mechanical Performance of Concrete Enhanced with Graphene Nanoplatelets
Authors: Johana Jaramillo, Robin Kalfat, Dmitriy A. Dikin
Abstract:
The cement production process is one of the major sources of carbon dioxide (CO₂), a potent greenhouse gas. Indeed, as a result of its cement manufacturing process, concrete contributes approximately 8% of global greenhouse gas emissions. In addition to environmental concerns, concrete also has a low tensile and ductility strength, which can lead to cracks. Graphene nanoplatelets (GNPs) have proven to be an eco-friendly solution for improving the mechanical and durability properties of concrete. The current research investigates the effects of preparing concrete enhanced with GNPs by using different wet dispersions techniques and mixing methods on its mechanical properties. Concrete specimens were prepared with 0.00 wt%, 0.10 wt%, 0.20 wt%, 0.30 wt% and wt% GNPs. Compressive and flexural strength of concrete at age 7 days were determined. The results showed that the maximum improvement in mechanical properties was observed when GNPs content was 0.20 wt%. The compressive and flexural were improved by up to 17.5% and 8.6%, respectively. When GNP dispersions were prepared by the combination of a drill and an ultrasonic probe, mechanical properties experienced maximum improvement.Keywords: concrete, dispersion techniques, graphene nanoplatelets, mechanical properties, mixing methods
Procedia PDF Downloads 12812723 Texture Identification Using Vision System: A Method to Predict Functionality of a Component
Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran
Abstract:
Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.Keywords: diamond stylus, manufacturing process, texture identification, vision system
Procedia PDF Downloads 29212722 Syngas From Polypropylene Gasification in a Fluidized Bed
Authors: Sergio Rapagnà, Alessandro Antonio Papa, Armando Vitale, Andre Di Carlo
Abstract:
In recent years the world population has enormously increased the use of plastic products for their living needs, in particular for transporting and storing consumer goods such as food and beverage. Plastics are widely used in the automotive industry, in construction of electronic equipment, clothing and home furnishings. Over the last 70 years, the annual production of plastic products has increased from 2 million tons to 460 million tons. About 20% of the last quantity is mismanaged as waste. The consequence of this mismanagement is the release of plastic waste into the terrestrial and marine environments which represents a danger to human health and the ecosystem. Recycling all plastics is difficult because they are often made with mixtures of polymers that are incompatible with each other and contain different additives. The products obtained are always of lower quality and after two/three recycling cycles they must be eliminated either by thermal treatment to produce heat or disposed of in landfill. An alternative to these current solutions is to obtain a mixture of gases rich in H₂, CO and CO₂ suitable for being profitably used for the production of chemicals with consequent savings fossil sources. Obtaining a hydrogen-rich syngas can be achieved by gasification process using the fluidized bed reactor, in presence of steam as the fluidization medium. The fluidized bed reactor allows the gasification process of plastics to be carried out at a constant temperature and allows the use of different plastics with different compositions and different grain sizes. Furthermore, during the gasification process the use of steam increase the gasification of char produced by the first pyrolysis/devolatilization process of the plastic particles. The bed inventory can be made with particles having catalytic properties such as olivine, capable to catalyse the steam reforming reactions of heavy hydrocarbons normally called tars, with a consequent increase in the quantity of gases produced. The plant is composed of a fluidized bed reactor made of AISI 310 steel, having an internal diameter of 0.1 m, containing 3 kg of olivine particles as a bed inventory. The reactor is externally heated by an oven up to 1000 °C. The hot producer gases that exit the reactor, after being cooled, are quantified using a mass flow meter. Gas analyzers are present to measure instantly the volumetric composition of H₂, CO, CO₂, CH₄ and NH₃. At the conference, the results obtained from the continuous gasification of polypropylene (PP) particles in a steam atmosphere at temperatures of 840-860 °C will be presented.Keywords: gasification, fluidized bed, hydrogen, olivine, polypropyle
Procedia PDF Downloads 3512721 Library on the Cloud: Universalizing Libraries Based on Virtual Space
Authors: S. Vanaja, P. Panneerselvam, S. Santhanakarthikeyan
Abstract:
Cloud Computing is a latest trend in Libraries. Entering in to cloud services, Librarians can suit the present information handling and they are able to satisfy needs of the knowledge society. Libraries are now in the platform of universalizing all its information to users and they focus towards clouds which gives easiest access to data and application. Cloud computing is a highly scalable platform promising quick access to hardware and software over the internet, in addition to easy management and access by non-expert users. In this paper, we discuss the cloud’s features and its potential applications in the library and information centers, how cloud computing actually works is illustrated in this communication and how it will be implemented. It discuss about what are the needs to move to cloud, process of migration to cloud. In addition to that this paper assessed the practical problems during migration in libraries, advantages of migration process and what are the measures that Libraries should follow during migration in to cloud. This paper highlights the benefits and some concerns regarding data ownership and data security on the cloud computing.Keywords: cloud computing, cloud-service, cloud based-ILS, cloud-providers, discovery service, IaaS, PaaS, SaaS, virtualization, Web scale access
Procedia PDF Downloads 66612720 Development of Vacuum Planar Membrane Dehumidifier for Air-Conditioning
Authors: Chun-Han Li, Tien-Fu Yang, Chen-Yu Chen, Wei-Mon Yan
Abstract:
The conventional dehumidification method in air-conditioning system mostly utilizes a cooling coil to remove the moisture in the air via cooling the supply air down below its dew point temperature. During the process, it needs to reheat the supply air to meet the set indoor condition that consumes a considerable amount of energy and affect the coefficient of performance of the system. If the processes of dehumidification and cooling are separated and operated respectively, the indoor conditions will be more efficiently controlled. Therefore, decoupling the dehumidification and cooling processes in heating, ventilation and air conditioning system is one of the key technologies as membrane dehumidification processes for the next generation. The membrane dehumidification method has the advantages of low cost, low energy consumption, etc. It utilizes the pore size and hydrophilicity of the membrane to transfer water vapor by mass transfer effect. The moisture in the supply air is removed by the potential energy and driving force across the membrane. The process can save the latent load used to condense water, which makes more efficient energy use because it does not involve heat transfer effect. In this work, the performance measurements including the permeability and selectivity of water vapor and air with the composite and commercial membranes were conducted. According to measured data, we can choose the suitable dehumidification membrane for designing the flow channel length and components of the planar dehumidifier. The vacuum membrane dehumidification system was set up to examine the effects of temperature, humidity, vacuum pressure, flow rate, the coefficient of performance and other parameters on the dehumidification efficiency. The results showed that the commercial Nafion membrane has better water vapor permeability and selectivity. They are suitable for filtration with water vapor and air. Meanwhile, Nafion membrane has promising potential in the dehumidification process.Keywords: vacuum membrane dehumidification, planar membrane dehumidifier, water vapour and air permeability, air conditioning
Procedia PDF Downloads 14912719 Water Re-Use Optimization in a Sugar Platform Biorefinery Using Municipal Solid Waste
Authors: Leo Paul Vaurs, Sonia Heaven, Charles Banks
Abstract:
Municipal solid waste (MSW) is a virtually unlimited source of lignocellulosic material in the form of a waste paper/cardboard mixture which can be converted into fermentable sugars via cellulolytic enzyme hydrolysis in a biorefinery. The extraction of the lignocellulosic fraction and its preparation, however, are energy and water demanding processes. The waste water generated is a rich organic liquor with a high Chemical Oxygen Demand that can be partially cleaned while generating biogas in an Upflow Anaerobic Sludge Blanket bioreactor and be further re-used in the process. In this work, an experiment was designed to determine the critical contaminant concentrations in water affecting either anaerobic digestion or enzymatic hydrolysis by simulating multiple water re-circulations. It was found that re-using more than 16.5 times the same water could decrease the hydrolysis yield by up to 65 % and led to a complete granules desegregation. Due to the complexity of the water stream, the contaminant(s) responsible for the performance decrease could not be identified but it was suspected to be caused by sodium, potassium, lipid accumulation for the anaerobic digestion (AD) process and heavy metal build-up for enzymatic hydrolysis. The experimental data were incorporated into a Water Pinch technology based model that was used to optimize the water re-utilization in the modelled system to reduce fresh water requirement and wastewater generation while ensuring all processes performed at optimal level. Multiple scenarios were modelled in which sub-process requirements were evaluated in term of importance, operational costs and impact on the CAPEX. The best compromise between water usage, AD and enzymatic hydrolysis yield was determined for each assumed contaminant degradations by anaerobic granules. Results from the model will be used to build the first MSW based biorefinery in the USA.Keywords: anaerobic digestion, enzymatic hydrolysis, municipal solid waste, water optimization
Procedia PDF Downloads 32212718 Foreign Tourists’ Attitude toward Service Marketing Mix and Intention to Revisit in Boutique Hotel
Authors: Nattapong Techarattanased
Abstract:
This survey research aimed to study the influence of attitude in services, product, and marketing mix affected intention to revisit in boutique hotel of foreign travelers in Bangkok, Thailand. The total 400 sets of closed-ended questionnaires were utilized for conducting data from foreign tourists who come to boutique hotel and can communicate in English. The descriptive statistics and multiple regression analysis were used to analyze data. The research found that tourists’ attitude towards the service of check in and check out process, food and beverage, guest room and other facilities affected in opportunity of revisiting, recommending to others and possibility of revisiting in the future at 0.05 statistically significant levels. Tourists’ attitude towards service and marketing mix in term of people, physical evidence, price, process and channel of distribution could forecast intention to revisit in term of recommending to others and intention to revisit in the future at 0.05 statistically significant levels.Keywords: boutique hotel, foreign tourists, intention to revisit, service marketing mix
Procedia PDF Downloads 24812717 The Impact of Bim Technology on the Whole Process Cost Management of Civil Engineering Projects in Kenya
Authors: Nsimbe Allan
Abstract:
The study examines the impact of Building Information Modeling (BIM) on the cost management of engineering projects, focusing specifically on the Mombasa Port Area Development Project. The objective of this research venture is to determine the mechanisms through which Building Information Modeling (BIM) facilitates stakeholder collaboration, reduces construction-related expenses, and enhances the precision of cost estimation. Furthermore, the study investigates barriers to execution, assesses the impact on the project's transparency, and suggests approaches to maximize resource utilization. The study, selected for its practical significance and intricate nature, conducted a Systematic Literature Review (SLR) using credible databases, including ScienceDirect and IEEE Xplore. To constitute the diverse sample, 69 individuals, including project managers, cost estimators, and BIM administrators, were selected via stratified random sampling. The data were obtained using a mixed-methods approach, which prioritized ethical considerations. SPSS and Microsoft Excel were applied to the analysis. The research emphasizes the crucial role that project managers, architects, and engineers play in the decision-making process (47% of respondents). Furthermore, a significant improvement in cost estimation accuracy was reported by 70% of the participants. It was found that the implementation of BIM resulted in enhanced project visibility, which in turn optimized resource allocation and facilitated the process of budgeting. In brief, the study highlights the positive impacts of Building Information Modeling (BIM) on collaborative decision-making and cost estimation, addresses challenges related to implementation, and provides solutions for the efficient assimilation and understanding of BIM principles.Keywords: cost management, resource utilization, stakeholder collaboration, project transparency
Procedia PDF Downloads 7512716 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials
Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries
Abstract:
Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring
Procedia PDF Downloads 10712715 State Rescaling of the Urban Development in Hong Kong after the Reunification: A Case Study of the Planning Process of the Hong Kong Section of the Guangzhou-Shenzhen-Hong Kong Express Rail Link
Authors: Zhihua Xu
Abstract:
In the era of globalization, the urban question is increasingly being posed in the form of a scale question. Scale theory provides a new perspective for analyzing various dynamics and their influences on urban development. After the reunification, how the government of the Hong Kong Special Administrative Region (SAR) interacts with the actors at various scales and carries out state rescaling are the keys to exploring the issue of urban development and governance in Hong Kong. This paper examines the entire planning process of the Hong Kong Section of the Guangzhou-Shenzhen-Hong Kong Express Rail Link, from project conception, design, to consultation, and fund application, to identify the actors at different scales involved in the process, and analyze the modes and consequences of their interaction. This study shows that after the reunification, the Hong Kong SAR Government takes the initiative to scale up to expand its hinterland. Intergovernmental institutional cooperation is an important mode of state rescaling for the Hong Kong SAR government. Meanwhile, the gradually growing civil society plays an important role in the rescaling of urban development. Local actors use scalar politics to construct discourses and take actions at multiple scales to challenge the government’s proposal and trigger a discussion on the project throughout the Hong Kong society. The case study of Hong Kong can deepen the understanding of state rescaling of territorial organizations in the context of institutional transformation and enrich the theoretical connotation of state rescaling. It also helps the Mainland government to better understand the case of Hong Kong and formulate appropriate.Keywords: Hong Kong, state rescaling, scalar politics, Hong Kong section of the Guangzhou-Shenzhen-Hong Kong express rail link, urban governance
Procedia PDF Downloads 22512714 Performance Modeling and Availability Analysis of Yarn Dyeing System of a Textile Industry
Authors: P. C. Tewari, Rajiv Kumar, Dinesh Khanduja
Abstract:
This paper discusses the performance modeling and availability analysis of Yarn Dyeing System of a Textile Industry. The Textile Industry is a complex and repairable engineering system. Yarn Dyeing System of Textile Industry consists of five subsystems arranged in series configuration. For performance modeling and analysis of availability, a performance evaluating model has been developed with the help of mathematical formulation based on Markov-Birth-Death Process. The differential equations have been developed on the basis of Probabilistic Approach using a Transition Diagram. These equations have further been solved using normalizing condition in order to develop the steady state availability, a performance measure of the system concerned. The system performance has been further analyzed with the help of decision matrices. These matrices provide various availability levels for different combinations of failure and repair rates for various subsystems. The findings of this paper are, therefore, considered to be useful for the analysis of availability and determination of the best possible maintenance strategies which can be implemented in future to enhance the system performance.Keywords: performance modeling, markov process, steady state availability, availability analysis
Procedia PDF Downloads 34012713 The Choosing the Right Projects With Multi-Criteria Decision Making to Ensure the Sustainability of the Projects
Authors: Saniye Çeşmecioğlu
Abstract:
The importance of project sustainability and success has become increasingly significant due to the proliferation of external environmental factors that have decreased project resistance in contemporary times. The primary approach to forestall the failure of projects is to ensure their long-term viability through the strategic selection of projects as creating judicious project selection framework within the organization. Decision-makers require precise decision contexts (models) that conform to the company's business objectives and sustainability expectations during the project selection process. The establishment of a rational model for project selection enables organizations to create a distinctive and objective framework for the selection process. Additionally, for the optimal implementation of this decision-making model, it is crucial to establish a Project Management Office (PMO) team and Project Steering Committee within the organizational structure to oversee the framework. These teams enable updating project selection criteria and weights in response to changing conditions, ensuring alignment with the company's business goals, and facilitating the selection of potentially viable projects. This paper presents a multi-criteria decision model for selecting project sustainability and project success criteria that ensures timely project completion and retention. The model was developed using MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique) and was based on broadcaster companies’ expectations. The ultimate results of this study provide a model that endorses the process of selecting the appropriate project objectively by utilizing project selection and sustainability criteria along with their respective weights for organizations. Additionally, the study offers suggestions that may ascertain helpful in future endeavors.Keywords: project portfolio management, project selection, multi-criteria decision making, project sustainability and success criteria, MACBETH
Procedia PDF Downloads 6712712 Incorporating Polya’s Problem Solving Process: A Polytechnic Mathematics Module Case Study
Authors: Pei Chin Lim
Abstract:
School of Mathematics and Science of Singapore Polytechnic offers a Basic Mathematics module to students who did not pass GCE O-Level Additional Mathematics. These students are weaker in Mathematics. In particular, they struggle with word problems and tend to leave them blank in tests and examinations. In order to improve students’ problem-solving skills, the school redesigned the Basic Mathematics module to incorporate Polya’s problem-solving methodology. During tutorial lessons, students have to work through learning activities designed to raise their metacognitive awareness by following Polya’s problem-solving process. To assess the effectiveness of the redesign, students’ working for a challenging word problem in the mid-semester test were analyzed. Sixty-five percent of students attempted to understand the problem by making sketches. Twenty-eight percent of students went on to devise a plan and implement it. Only five percent of the students still left the question blank. These preliminary results suggest that with regular exposure to an explicit and systematic problem-solving approach, weak students’ problem-solving skills can potentially be improved.Keywords: mathematics education, metacognition, problem solving, weak students
Procedia PDF Downloads 16512711 Classroom Management Whereas Teaching ESL to Saudi Students
Authors: Mohammad Akram
Abstract:
The aim of this study is to improve classroom management while teaching especially ESL/EFL. At the same time, it has been discussed about the standard of the students through some surveys held in Jazan University in the month of February and March, 2013. The present research is a classroom action-oriented study. The subject of the study is mainly the students whose first language is not English at all. The study is prepared in one cycle that has planning, action, and reaction as well. Teachers of English as a second language/foreign language generally face numerous of unexpected problems while dealing with their students. To make the classes practical, meaningful, and easy like fun for the students is really a cumbersome task. It's a very practical move towards classroom ESL/EFL teaching if we want to apply anything new, I mean new policies, tactics, recent/smart teaching methodologies, we must peep into the hole of past because it will give us the best solution for the present strategies. We need to academically study the past of our students to make their present fruitful. Here, author wants to present a few important problematic issues like classroom management in the area of ESL/EFL while teaching ESL students. Impact these are suggestions to combat drawbacks of 'Classroom Teaching'. “Classroom management is to put into practice and a process through teaching and learning process”.Keywords: global, teachers, perceptions, classroom, management, integrated, segregated, comprehension, productive
Procedia PDF Downloads 67212710 The Distribution of HLA-B*15:01 and HLA-B*51:01 Alleles in Thai Population: Clinical Implementation and Diagnostic Process of COVID-19 Severity
Authors: Aleena Rena Onozuka, Patompong Satapornpong
Abstract:
Introduction: In a Human Leukocyte Antigen (HLA)’s immune response, HLA alleles (HLA class I and class II) play a crucial role in fighting against pathogens. HLA-B*15:01 allele had a significant association with asymptomatic COVID-19 infection (p-value = 5.67 x 10-5 ; OR = 2.40 and 95% CI = 1.54 - 3.64). There was also a notable linkage between HLA-B*51:01 allele and critically ill patients with COVID-19 (p-value = 0.007 and OR = 3.38). This study has described the distribution of HLA marker alleles in Thais and sub-groups. Objective: We want to investigate the prevalence of HLA-B*15:01 and HLA-B*51:01 alleles in the Thai population. Materials and Methods: 200 healthy Thai population were included in this study from the College of Pharmacy, Rangsit University. HLA-B alleles were genotyped using the sequence-specific oligonucleotides process (PCR-SSOs). Results: We found out that HLA-B*46:01 (12.00%), HLA-B*15:02 (9.25%), HLA-B*40:01 (6.50%), HLA-B*13:01 (6.25%), and HLA-B* 38:02 (5.50%) alleles were more common than other alleles in Thai population. HLA-B*46:01 and HLA-B*15:02 were the most common allele found across four regions. Moreover, the frequency of HLA-B*15:01 and HLA-B*51:01 alleles were similarly distributed in Thai population (0.50, 5.25 %) and (p-value > 0.05), respectively. The frequencies of HLA-B*15:01 and HLA-B*51:01 alleles were not significantly different from other populations compared to the Thai population. Conclusions: We can screen for HLA-B*15:01 and HLA-B*51:01 alleles to determine the symptoms of COVID-19 since they are universal HLA-B markers. Importantly, the database of HLA markers indicates the association between HLA frequency and populations. However, we need further research on larger numbers of COVID-19 patients and in different populations.Keywords: HLA-B*15:01, HLA-B*51:01, COVID-19, HLA-B alleles
Procedia PDF Downloads 12412709 The Contribution of Vygotsky's Social and Cultural Theory to the Understanding of Cognitive Development
Authors: Salah Eddine Ben Fadhel
Abstract:
Lev Vygotsky (1896–1934) was one of the most significant psychologists of the twentieth century despite his short life. His cultural-historical theory is still inspiring many researchers today. At the same time, we observe in many studies a lack of understanding of his thoughts. Vygotsky poses in this theory the contribution of society to individual development and learning. Thus, it suggests that human learning is largely a social and cultural process, further mentioning the influence of interactions between people and the culture in which they live. In this presentation, we highlight, on the one hand, the strong points of the theory by highlighting the major questions it raises and its contribution to developmental psychology in general. On the other hand, we will demonstrate what Vygotsky's theory brings today to the understanding of the cognitive development of children and adolescents. The major objective is to better understand the cognitive mechanisms involved in the learning process in children and adolescents and, therefore, demonstrate the complex nature of psychological development. The main contribution is to provide conceptual insight, which allows us to better understand the importance of the theory and its major pedagogical implications.Keywords: vygotsky, society, culture, history
Procedia PDF Downloads 7012708 The Effect of Ultrasound on Permeation Flux and Changes in Blocking Mechanisms during Dead-End Microfiltration of Carrot Juice
Authors: A. Hemmati, H. Mirsaeedghazi, M. Aboonajmi
Abstract:
Carrot juice is one of the most nutritious foods that are consumed around the world. Large particles in carrot juice causing turbid appearance make some problems in the concentration process such as off-flavor due to the large particles burnt on the walls of evaporators. Microfiltration (MF) is a pressure driven membrane separation method that can clarify fruit juices without enzymatic treatment. Fouling is the main problem in the membrane process causing reduction of permeate flux. Ultrasound as a cleaning technique was applied at 20 kHz to reduce fouling in membrane clarification of carrot juice using dead-end MF system with polyvinylidene fluoride (PVDF) membrane. Results showed that application of ultrasound waves reduce diphasic characteristic of carrot juice and permeate flux increased. Evaluation of different membrane fouling mechanisms showed that application of ultrasound waves changed creation time of each fouling mechanism. Also, its behavior was changed with varying transmembrane pressure.Keywords: Carrot juice, Dead end, Microfiltration, Ultrasound
Procedia PDF Downloads 32312707 Transformative Leadership and Learning Management Systems Implementation: Leadership Practices in Instructional Design for Online Learning
Authors: Felix Brito
Abstract:
With the growth of online learning, several higher education institutions have attempted to incorporate technology in their curriculum. Successful technology implementation projects really on technology infrastructure and on the acceptance of education professionals towards innovation. This research study is aimed at illustrating the relevance of the human component in technology implementation projects in higher education by describing the Learning Management System implementation project executed by instructional designers working for a higher education institution in the southeast region of the United States. An analysis of the Transformative Leadership Theory, the Technology Acceptance Model, and the Diffusion of Innovation Process provide the support for a solid understanding of this issue and address recommendations for future technology implementation projects in higher education institutions.Keywords: diffusion of innovation process, instructional design, leadership, learning management systems, online learning, technology acceptance model, transformative leadership theory
Procedia PDF Downloads 33812706 Euthanasia as a Case of Judicial Entrepreneurship in India: Analyzing the Role of the Supreme Court in the Policy Process of Euthanasia
Authors: Aishwarya Pothula
Abstract:
Euthanasia in India is a politically dormant policy issue in the sense that discussions around it are sporadic in nature (usually with developments in specific cases) and it stays as a dominant issue in the public domain for a fleeting period. In other words, it is a non-political issue that has been unable to successfully get on the policy agenda. This paper studies how the Supreme Court of India (SC) plays a role in euthanasia’s policy making. In 2011, the SC independently put a law in place that legalized passive euthanasia through its judgement in the Aruna Shanbaug v. Union of India case. According to this, it is no longer illegal to withhold/withdraw a patient’s medical treatment in certain cases. This judgement, therefore, is the empirical focus of this paper. The paper essentially employs two techniques of discourse analysis to study the SC’s system of argumentation. The two methods, Text Analysis using Gasper’s Analysis Table and Frame Analysis – are complemented by two discourse techniques called metaphor analysis and lexical analysis. The framework within which the analysis is conducted lies in 1) the judicial process of India, i.e. the SC procedures and the Constitutional rules and provisions, and 2) John W. Kingdon’s theory of policy windows and policy entrepreneurs. The results of this paper are three-fold: first, the SC dismiss the petitioner’s request for passive euthanasia on inadequate and weak grounds, thereby setting no precedent for the historic law they put in place. In other words, they leave the decision open for the Parliament to act upon. Hence the judgement, as opposed to arguments by many, is by no means an instance of judicial activism/overreach. Second, they define euthanasia in a way that resonates with existing broader societal themes. They combine this with a remarkable use of authoritative and protective tones/stances to settle at an intermediate position that balances the possible opposition to their role in the process and what they (perhaps) perceive to be an optimal solution. Third, they soften up the policy community (including the public) to the idea of passive euthanasia leading it towards a Parliamentarian legislation. They achieve this by shaping prevalent principles, provisions and worldviews through an astute use of the legal instruments at their disposal. This paper refers to this unconventional role of the SC as ‘judicial entrepreneurship’ which is also the first scholarly contribution towards research on euthanasia as a policy issue in India.Keywords: argumentation analysis, Aruna Ramachandra Shanbaug, discourse analysis, euthanasia, judicial entrepreneurship, policy-making process, supreme court of India
Procedia PDF Downloads 272