Search results for: explainable machine learning
5974 Deep Learning Based Road Crack Detection on an Embedded Platform
Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan
Abstract:
It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.Keywords: deep learning, embedded platform, real-time processing, road crack detection
Procedia PDF Downloads 3425973 Time Series Forecasting (TSF) Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window
Procedia PDF Downloads 1595972 Basic Characteristics and Prospects of Synchronized Stir Welding
Authors: Shoji Matsumoto
Abstract:
Friction Stir Welding (FSW) has been widely used in the automotive, aerospace, and high-tech industries due to its superior mechanical properties after welding. However, when it becomes a matter to perform a high-quality joint using FSW, it is necessary to secure an advanced tilt angle (usually 1 to 5 degrees) using a dedicated FSW machine and to use a joint structure and a restraining jig that can withstand the tool pressure applied during the jointing process using a highly rigid processing machine. One issue that has become a challenge in this process is ‘productivity and versatility’. To solve this problem, we have conducted research and development of multi-functioning machines and robotics with FSW tools, which combine cutting/milling and FSW functions as one in recent years. However, the narrow process window makes it prone to welding defects and lacks repeatability, which makes a limitation for FSW its use in the fields where precisions required. Another reason why FSW machines are not widely used in the world is because of the matter of very high cost of ownership.Keywords: synchronized, stir, welding, friction, traveling speed, synchronized stir welding, friction stir welding
Procedia PDF Downloads 595971 Undergraduate Students’ Learning Experience and Practices in Multilingual Higher Education Institutions: The Case of the University of Luxembourg
Authors: Argyro Maria Skourmalla
Abstract:
The present paper draws on the example of the University of Luxembourg as a multilingual and international setting. The University of Luxembourg, which is located between France, Germany, and Belgium, has adopted a new multilingualism policy in 2020, establishing English, French, German, and Luxembourgish as the official languages of the Institution. With around 7.000 students, more than half of which are international students, the University is a meeting point for languages and cultures. This paper includes data from an online survey that with undergraduate students from different disciplines at the University of Luxembourg. Students shared their personal experience and opinions regarding language use in this higher education context, as well as practices they use in learning in this multilingual context. Findings show the role of technology in assisting students in different aspects of learning this multilingual context. At the same time, more needs to be done to avoid an exclusively monolingual paradigm in higher education. Findings also show that some languages remain ‘unseen’ in this context. Overall, even though linguistic diversity in this University is seen as an asset, a lot needs to be done towards the recognition of staff and students’ linguistic repertoires for inclusion and education equity.Keywords: higher education, learning, linguistic diversity, multilingual practices
Procedia PDF Downloads 695970 Flipped Learning in the Delivery of Structural Analysis
Authors: Ali Amin
Abstract:
This paper describes a flipped learning initiative which was trialed in the delivery of the course: structural analysis and modelling. A short series of interactive videos were developed, which introduced the key concepts of each topic. The purpose of the videos was to introduce concepts and give the students more time to develop their thoughts prior to the lecture. This allowed more time for face to face engagement during the lecture. As part of the initial study, videos were developed for half the topics covered. The videos included a short summary of the key concepts ( < 10 mins each) as well as fully worked-out examples (~30mins each). Qualitative feedback was attained from the students. On a scale from strongly disagree to strongly agree, students were rate statements such as 'The pre-class videos assisted your learning experience', 'I felt I could appreciate the content of the lecture more by watching the videos prior to class'. As a result of the pre-class engagement, the students formed more specific and targeted questions during class, and this generated greater comprehension of the material. The students also scored, on average, higher marks in questions pertaining to topics which had videos assigned to them.Keywords: flipped learning, structural analysis, pre-class videos, engineering education
Procedia PDF Downloads 975969 Blended Learning Instructional Approach to Teach Pharmaceutical Calculations
Authors: Sini George
Abstract:
Active learning pedagogies are valued for their success in increasing 21st-century learners’ engagement, developing transferable skills like critical thinking or quantitative reasoning, and creating deeper and more lasting educational gains. 'Blended learning' is an active learning pedagogical approach in which direct instruction moves from the group learning space to the individual learning space, and the resulting group space is transformed into a dynamic, interactive learning environment where the educator guides students as they apply concepts and engage creatively in the subject matter. This project aimed to develop a blended learning instructional approach to teaching concepts around pharmaceutical calculations to year 1 pharmacy students. The wrong dose, strength or frequency of a medication accounts for almost a third of medication errors in the NHS therefore, progression to year 2 requires a 70% pass in this calculation test, in addition to the standard progression requirements. Many students were struggling to achieve this requirement in the past. It was also challenging to teach these concepts to students of a large class (> 130) with mixed mathematical abilities, especially within a traditional didactic lecture format. Therefore, short screencasts with voice-over of the lecturer were provided in advance of a total of four teaching sessions (two hours/session), incorporating core content of each session and talking through how they approached the calculations to model metacognition. Links to the screencasts were posted on the learning management. Viewership counts were used to determine that the students were indeed accessing and watching the screencasts on schedule. In the classroom, students had to apply the knowledge learned beforehand to a series of increasingly difficult set of questions. Students were then asked to create a question in group settings (two students/group) and to discuss the questions created by their peers in their groups to promote deep conceptual learning. Students were also given time for question-and-answer period to seek clarifications on the concepts covered. Student response to this instructional approach and their test grades were collected. After collecting and organizing the data, statistical analysis was carried out to calculate binomial statistics for the two data sets: the test grade for students who received blended learning instruction and the test grades for students who received instruction in a standard lecture format in class, to compare the effectiveness of each type of instruction. Student response and their performance data on the assessment indicate that the learning of content in the blended learning instructional approach led to higher levels of student engagement, satisfaction, and more substantial learning gains. The blended learning approach enabled each student to learn how to do calculations at their own pace freeing class time for interactive application of this knowledge. Although time-consuming for an instructor to implement, the findings of this research demonstrate that the blended learning instructional approach improves student academic outcomes and represents a valuable method to incorporate active learning methodologies while still maintaining broad content coverage. Satisfaction with this approach was high, and we are currently developing more pharmacy content for delivery in this format.Keywords: active learning, blended learning, deep conceptual learning, instructional approach, metacognition, pharmaceutical calculations
Procedia PDF Downloads 1765968 Evaluation of Teaching Team Stress Factors in Two Engineering Education Programs
Authors: Kari Bjorn
Abstract:
Team learning has been studied and modeled as double loop model and its variations. Also, metacognition has been suggested as a concept to describe the nature of team learning to be more than a simple sum of individual learning of the team members. Team learning has a positive correlation with both individual motivation of its members, as well as the collective factors within the team. Team learning of previously very independent members of two teaching teams is analyzed. Applied Science Universities are training future professionals with ever more diversified and multidisciplinary skills. The size of the units of teaching and learning are increasingly larger for several reasons. First, multi-disciplinary skill development requires more active learning and richer learning environments and learning experiences. This occurs on students teams. Secondly, teaching of multidisciplinary skills requires a multidisciplinary and team-based teaching from the teachers as well. Team formation phases have been identifies and widely accepted. Team role stress has been analyzed in project teams. Projects typically have a well-defined goal and organization. This paper explores team stress of two teacher teams in a parallel running two course units in engineering education. The first is an Industrial Automation Technology and the second is Development of Medical Devices. The courses have a separate student group, and they are in different campuses. Both are run in parallel within 8 week time. Both of them are taught by a group of four teachers with several years of teaching experience, but individually. The team role stress scale items - the survey is done to both teaching groups at the beginning of the course and at the end of the course. The inventory of questions covers the factors of ambiguity, conflict, quantitative role overload and qualitative role overload. Some comparison to the study on project teams can be drawn. Team development stage of the two teaching groups is different. Relating the team role stress factors to the development stage of the group can reveal the potential of management actions to promote team building and to understand the maturity of functional and well-established teams. Mature teams indicate higher job satisfaction and deliver higher performance. Especially, teaching teams who deliver highly intangible results of learning outcome are sensitive to issues in the job satisfaction and team conflicts. Because team teaching is increasing, the paper provides a review of the relevant theories and initial comparative and longitudinal results of the team role stress factors applied to teaching teams.Keywords: engineering education, stress, team role, team teaching
Procedia PDF Downloads 2295967 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 2625966 Investigating Gender Differences in M-Learning Gameplay Adoption
Authors: Chih-Ping Chen
Abstract:
Despite the increasing popularity of and interest in mobile games, there has been little research that evaluates gender differences in users’ actual preferences for mobile game content, and the factors that influence entertainment and mobile-learning habits. To fill this void, this study examines different gender users’ experience of mobile English learning game adoption in order to identify the areas of development in Taiwan, using Uses and Gratification Theory, Expectation Confirmation Theory and experiential value. The integration of these theories forms the basis of an extended research concept. Users’ responses to questions about cognitive perceptions, confirmation, gratifications and continuous use were collected and analyzed with various factors derived from the theories.Keywords: expectation confirmation theory, experiential value, gender difference, mobile game, uses and gratification
Procedia PDF Downloads 3335965 Physical Education Effect on Sports Science Analysis Technology
Authors: Peter Adly Hamdy Fahmy
Abstract:
The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics.Keywords: approach competencies, physical, education, teachers employment, graduate, physical education and sport sciences, SWOT analysis character education, sport season, game performance, sport competence
Procedia PDF Downloads 565964 Nalanda ‘School of Joy’: Teaching Learning Strategies and Support System, for Implementing Child-Friendly Education in Bangladesh
Authors: Sufia Ferdousi
Abstract:
Child-friendly education (CFE) is very important for the children, especially the early year’s students, because it fosters the holistic development of a child. Teacher plays a key role in creating child-friendly education. This study intends to learn about child-friendly education in Bangladesh. The purpose of the study is to explore how CFE is being practiced in Bangladesh. The study attempted to fulfill the purpose through case study investigation. One school, named Nalanda, was selected for the study as it claims to run the school through CFE approach. The objective of the study was to identify, how this school is different from the other schools in Bangladesh, to explore overall teaching learning system like, curriculum, teaching strategies, assessments and to investigate the support system for Child Friendly Education provided to the teachers through training or mentoring. The nature of the case study was qualitative method to get maximum information from the students, parents, teachers and school authorities. The findings were based on 3 classroom observations, interviews with 1 teacher, 1 head teacher and 1 trainer, FGD with 10 students and 6 parents, were used to collect the data. It has been found that Nalanda is different than the other schools in Bangladesh in terms of, parents’ motivation about school curriculum, and sufficiency of teachers’ knowledge on joyful learning/child-friendly learning. The students took part in the extracurricular activities alongside the national curriculum. Teachers showed particular strength in the teaching learning strategies, using materials and assessment. And Nalanda gives strong support for teacher’s training. In conclusion, The Nalanda School in Dhaka was found appropriate for the requirements of Child-friendly education.Keywords: child friendly education, overall teaching learning system, the requirements of child-friendly education, the alternative education approach
Procedia PDF Downloads 2485963 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 1755962 Forensic Imaging as an Effective Learning Tool for Teaching Forensic Pathology to Undergraduate Medical Students
Authors: Vasudeva Murthy Challakere Ramaswamy
Abstract:
Background: Conventionally forensic pathology is learnt through autopsy demonstrations which carry various limitations such as unavailability of cases in the mortuary, medico-legal implication and infection. Over the years forensic pathology and science has undergone significant evolution in this digital world. Forensic imaging is a technology which can be effectively utilized for overcoming the current limitations in the undergraduate learning of forensic curriculum. Materials and methods: demonstration of forensic imaging was done using a novel technology of autopsy which has been recently introduced across the globe. Three sessions were conducted in international medical university for a total of 196 medical students. The innovative educational tool was evacuated by using quantitative questionnaire with the scoring scales between 1 to 10. Results: The mean score for acceptance of new tool was 82% and about 74% of the students recommended incorporation of the forensic imaging in the regular curriculum. 82% of students were keen on collaborative research and taking further training courses in forensic imaging. Conclusion: forensic imaging can be an effective tool and also a suitable alternative for teaching undergraduate students. This feedback also supports the fact that students favour the use of contemporary technologies in learning medicine.Keywords: forensic imaging, forensic pathology, medical students, learning tool
Procedia PDF Downloads 4855961 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model
Authors: Sujay Kotwale, Ramasubba Reddy M.
Abstract:
Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost
Procedia PDF Downloads 1255960 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 3595959 Container Chaos: The Impact of a Casual Game on Learning and Behavior
Authors: Lori L. Scarlatos, Ryan Courtney
Abstract:
This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior.Keywords: behavior, carbon footprint, casual games, environmental impact, material sciences
Procedia PDF Downloads 1645958 Developing a Model of Teaching Writing Based On Reading Approach through Reflection Strategy for EFL Students of STKIP YPUP
Authors: Eny Syatriana, Ardiansyah
Abstract:
The purpose of recent study was to develop a learning model on writing, based on the reading texts which will be read by the students using reflection strategy. The strategy would allow the students to read the text and then they would write back the main idea and to develop the text by using their own sentences. So, the writing practice was begun by reading an interesting text, then the students would develop the text which has been read into their writing. The problem questions are (1) what kind of learning model that can develop the students writing ability? (2) what is the achievement of the students of STKIP YPUP through reflection strategy? (3) is the using of the strategy effective to develop students competence In writing? (4) in what level are the students interest toward the using of a strategy In writing subject? This development research consisted of some steps, they are (1) need analysis (2) model design (3) implementation (4) model evaluation. The need analysis was applied through discussion among the writing lecturers to create a learning model for writing subject. To see the effectiveness of the model, an experiment would be delivered for one class. The instrument and learning material would be validated by the experts. In every steps of material development, there was a learning process, where would be validated by an expert. The research used development design. These Principles and procedures or research design and development .This study, researcher would do need analysis, creating prototype, content validation, and limited empiric experiment to the sample. In each steps, there should be an assessment and revision to the drafts before continue to the next steps. The second year, the prototype would be tested empirically to four classes in STKIP YPUP for English department. Implementing the test greatly was done through the action research and followed by evaluation and validation from the experts.Keywords: learning model, reflection, strategy, reading, writing, development
Procedia PDF Downloads 3665957 The Effect of Computer-Mediated vs. Face-to-Face Instruction on L2 Pragmatics: A Meta-Analysis
Authors: Marziyeh Yousefi, Hossein Nassaji
Abstract:
This paper reports the results of a meta-analysis of studies on the effects of instruction mode on learning second language pragmatics during the last decade (from 2006 to 2016). After establishing related inclusion/ exclusion criteria, 39 published studies were retrieved and included in the present meta-analysis. Studies were later coded for face-to-face and computer-assisted mode of instruction. Statistical procedures were applied to obtain effect sizes. It was found that Computer-Assisted-Language-Learning studies generated larger effects than Face-to-Face instruction.Keywords: meta-analysis, effect size, L2 pragmatics, comprehensive meta-analysis, face-to-face, computer-assisted language learning
Procedia PDF Downloads 2255956 An Analysis of Institutional Audits: Basis for Teaching, Learning and Assessment Framework and Principles
Authors: Nabil El Kadhi, Minerva M. Bunagan
Abstract:
The dynamism in education, particularly in the area of teaching, learning and assessment has caused Higher Education Institutions (HEIs) worldwide to seek for ways to continuously improve their educational processes. HEIs use outcomes of institutional audits, assessments and accreditations, for improvement. In this study, the published institutional audit reports of HEIs in the Sultanate of Oman were analyzed to produce features of good practice; identify challenges along Teaching, Learning Assessment (TLA); and propose a framework that puts major emphasis in having a quality-assured TLA, including a set of principles that can be used as basis in succeeding an institutional visit. The TLA framework, which shows the TLA components, characteristics of the components, related expectation, including implementation tool/ strategy and pitfalls can be used by HEIs to have an adequate understanding of the scope of audit and be able to satisfy institutional audit requirements. The scope of this study can be widened by exploring the other requirements of the Institutional Audits in the Sultanate of Oman, particularly the area on Governance and Management and Student Support Services.Keywords: accreditation, audit, teaching, learning and assessment, quality assurance
Procedia PDF Downloads 3075955 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process
Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria
Abstract:
Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms
Procedia PDF Downloads 1115954 A Framework for Internet Education: Personalised Approach
Authors: Zoe Wong
Abstract:
The purpose of this paper is to develop a framework for internet education. This framework uses the personalized learning approach for everyone who can freely develop their qualifications & careers. The key components of the framework includes students, teachers, assessments and infrastructure. It allows remove the challenges and limitations of the current educational system and allows learners' to cope with progressing learning materials.Keywords: internet education, personalized approach, information technology, framework
Procedia PDF Downloads 3635953 Mathematics Anxiety among Secondary Level Students in Nepal: Classroom Environment Perspective
Authors: Krishna Chandra Paudel
Abstract:
This paper explores the association between the perceived classroom environment and mathematics learning and test anxiety among secondary level students in Nepal. Categorizing the students in three dominant variables- gender, ethnicity and previous schooling, and selecting sample students with respect to higher mathematics anxiety from five heterogeneous classes, the research explores disparities in student's mathematics cognition and reveals nexus between classroom environment and mathematics learning and test anxiety. This research incorporates social learning theory and social development theory as interpretive tool for analyzing themes through qualitative data. Focussing on the interviews with highly mathematics learning anxious students, the study sheds light on how mathematics anxiety among the targeted students is interlinked with multiple factors. The research basically exposes the students’ lack of mathematical passion, their association with other students and participation in classroom learning, asymmetrical content and their lack of preparedness for the tests as caustic factors behind such anxieties. The study further reveals that students’ lack of foundational knowledge and complexity of mathematical content have jointly contributed to mathematics anxiety. Admitting learning as a reciprocal experience, the study points out that the students’ gender, ethnicity and disparities in previous schooling in the context of Nepal has very insignificant impact on students’ mathematics anxiety. It finally recommends that the students who get trapped into the vicious cycle of mathematics anxiety require positive and supportive classroom environment along with inspiring comments/compliments and symmetrical course contents.Keywords: anxiety, asymmetry, cognition, habitus, pedagogy, preparedness
Procedia PDF Downloads 1455952 Online Classroom Instruction and Collaborative Learning: Problems and Prospects Among Undergraduate Students of Obafemi Awolowo University, Ile-Ife, Nigeria
Authors: Bello Theodora O., Animola Odunayo V., Owoade Johnson T.
Abstract:
With the advent of Covid-19, online classroom instruction became a very important mode of instruction delivery during which learners were engaged in both collaborative and online interactive learning process, but along with it are challenges as well as its deliverables. This study therefore investigated the various online platform used by the students for learning among fresh undergraduate students of Obafemi Awolowo University, Ile-Ife, Osun Sate. It also assessed the student’s perception towards online learning in the university and examined the influence of collaborative learning among the students. Lastly, it examined the problems that are associated with collaborative online learning instruction in the university. These were with a view to providing empirical information on problems and prospects of online classroom instruction among fresh undergraduate physical science students of Obafemi Awolowo University, Ile-Ife. The study employed a descriptive survey research technique. The population comprised all the fresh undergraduates in physical science departments of Obafemi Awolowo University, Ile-Ife. The sample consisted two hundred freshmen in physical science departments of Obafemi Awolowo University, Ile-Ife, who were selected using simple random techniques. During the selection, a questionnaire was used to collect data from the respondents. The data were analyzed using appropriate descriptive of frequency, simple percentage, and mean. Results showed that Google Meet 149(74.5%), Telegram 120(60.0%), and Google Classroom 143(71.5%), are the prominent online classroom instruction used by the students in Obafemi Awolowo University, Ile-Ife. The results also showed that the freshmen’s perception towards online classroom instruction in Obafemi Awolowo University, Ile-Ife is low with cluster mean of 2.97. It further revealed that collaborative learning enhances the learning ability of below average learners more than that of the above average and average students (73.6%). Finally, the result showed that they are affirmative of the problems associated with online classroom instruction in Obafemi Awolowo University, Ile-Ife with cluster mean of 3.01. The result concluded that most Online platform used by the fresher’s students in Obafemi Awolowo University, Ile-Ife are Google Meet, Telegram and Google Classroom. The students have negatives perception towards online classroom instruction and the students are affirmative of the problems associated with online classroom instruction among physical science freshmen in Obafemi Awolowo University, Ile-Ife.Keywords: online, instruction, freshmen, physical science, collaborative
Procedia PDF Downloads 725951 EduEasy: Smart Learning Assistant System
Authors: A. Karunasena, P. Bandara, J. A. T. P. Jayasuriya, P. D. Gallage, J. M. S. D. Jayasundara, L. A. P. Y. P. Nuwanjaya
Abstract:
Usage of smart learning concepts has increased rapidly all over the world recently as better teaching and learning methods. Most educational institutes such as universities are experimenting those concepts with their students. Smart learning concepts are especially useful for students to learn better in large classes. In large classes, the lecture method is the most popular method of teaching. In the lecture method, the lecturer presents the content mostly using lecture slides, and the students make their own notes based on the content presented. However, some students may find difficulties with the above method due to various issues such as speed in delivery. The purpose of this research is to assist students in large classes in the following content. The research proposes a solution with four components, namely note-taker, slide matcher, reference finder, and question presenter, which are helpful for the students to obtain a summarized version of the lecture note, easily navigate to the content and find resources, and revise content using questions.Keywords: automatic summarization, extractive text summarization, speech recognition library, sentence extraction, automatic web search, automatic question generator, sentence scoring, the term weight
Procedia PDF Downloads 1515950 Exploring Acceptance of Artificial Intelligence Software Solution Amongst Healthcare Personnel: A Case in a Private Medical Centre
Authors: Sandra So, Mohd Roslan Ismail, Safurah Jaafar
Abstract:
With the rapid proliferation of data in healthcare has provided an opportune platform creation of Artificial Intelligence (AI). AI has brought a paradigm shift for healthcare professionals, promising improvement in delivery and quality. This study aims to determine the perception of healthcare personnel on perceived ease of use, perceived usefulness, and subjective norm toward attitude for artificial intelligence acceptance. A cross-sectional single institutional study of employees’ perception of adopting AI in the hospital was conducted. The survey was conducted using a questionnaire adapted from Technology Acceptance Model and a four-point Likert scale was used. There were 96 or 75.5% of the total population responded. This study has shown the significant relationship and the importance of ease of use, perceived usefulness, and subjective norm to the acceptance of AI. In the study results, it concluded that the determining factor to the strong acceptance of AI in their practices is mostly those respondents with the most interaction with the patients and clinical management.Keywords: artificial intelligence, machine learning, perceived ease of use, perceived usefulness, subjective norm
Procedia PDF Downloads 2315949 The Effect of Articial Intelligence on Physical Education Analysis and Sports Science
Authors: Peter Adly Hamdy Fahmy
Abstract:
The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics.Keywords: approach competencies, physical, education, teachers employment, graduate, physical education and sport sciences, SWOT analysis character education, sport season, game performance, sport competence
Procedia PDF Downloads 635948 A Protocol for Usability of Teaching to Students with Learning Difficulties at University: An Italian Research
Authors: Tamara Zappaterra
Abstract:
The Learning Difficulties have an evolutionary nature. The international research has focused its analysis on the characteristics of Learning Difficulties in childhood, but we are still far from a thorough understanding of the nature of such disorders in adolescence and adulthood. Such issues become even more urgent in the university context. Spelling, meaning, and appropriate use of the specific vocabulary of the various disciplines represent an additional challenge for the dyslexic student. This paper explores the characteristics of Learning Difficulties in adulthood and the impact with the university teaching. It presents the results of an interdisciplinary project (educational, medical and engineering area) at University of Florence. The purpose of project is to design of a protocol for usability of teaching and individual study at university level. The project, after a first reconnaissance of user needs that have been reached with the participation of the very same protagonists, is at the stage of guidelines drafting for inclusion and education, to be used by teachers, students and administrative staff. The methodologies used are a questionnaire built on purpose and a series of focus groups with users. For collecting data during the focus groups it was decided to use a method typical of the Quality Function Deployment, a tool originally used for quality management, whose versatility makes it easy to use in a number of different context. The paper presents furthermore the findings of the project, the most significant elements of the guidelines for teaching, i.e. the section for teachers, whose aim is to implement a Learning Difficulties-friendly teaching, even at the university level, in compliance with italian Law 170/2010. The Guidelines for the didactic and inclusion of Learning Difficulties students of the University of Florence are articulated around a global and systemic plan of action, meant to accompany and protect the students during their study career, even before enrolling at the University, with different declination: the logistical, relational, educational, and didactic levels have been considered. These guidelines in Italy received the endorsement of the CNUDD. It is a systemic intervention plan for Learning Difficulties students, which roused and keeps rousing the interest of all the university system, with a radical consideration on academic teaching. Since while we try to provide the best Learning Difficulties-friendly didactic in compliance with the rules, no one can be exempted from a wider consideration on the nature and the quality of university teaching offered to all students.Keywords: didactic tools, learning difficulties, special and inclusive education, university teaching
Procedia PDF Downloads 2845947 MapReduce Logistic Regression Algorithms with RHadoop
Authors: Byung Ho Jung, Dong Hoon Lim
Abstract:
Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.Keywords: big data, logistic regression, MapReduce, RHadoop
Procedia PDF Downloads 2865946 Contribution for Rural Development Trough Training in Organic Farming
Authors: Raquel P. F. Guiné, Daniela V. T. A. Costa, Paula M. R. Correia, Moisés Castro, Luis T. Guerra, Cristina A. Costa
Abstract:
The aim of this work was to characterize a potential target group of people interested in participating into a training program in organic farming in the context of mobile-learning. The information sought addressed in particular, but not exclusively, possible contents, formats and forms of evaluation that will contribute to define the course objectives and curriculum, as well as to ensure that the course meets the needs of the learners and their preferences. The sample was selected among different European countries. The questionnaires were delivered electronically for answering online and in the end 135 consented valid questionnaires were obtained. The results allowed characterizing the target group and identifying their training needs and preferences towards m-learning formats, giving valuable tools to design the training offer.Keywords: mobile-learning, organic farming, rural development, survey
Procedia PDF Downloads 5085945 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines
Authors: Kamyar Tolouei, Ehsan Moosavi
Abstract:
In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization
Procedia PDF Downloads 112