Search results for: ML techniques
4071 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers
Authors: Oumaima Lahmar
Abstract:
This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.Keywords: finance literature, textual analysis, topic modeling, perplexity
Procedia PDF Downloads 1694070 Transformer Design Optimization Using Artificial Intelligence Techniques
Authors: Zakir Husain
Abstract:
Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)
Procedia PDF Downloads 5814069 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves
Authors: Reza Abbasi, Ahmad Hamidi Benam
Abstract:
Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm
Procedia PDF Downloads 2304068 Material Parameter Identification of Modified AbdelKarim-Ohno Model
Authors: Martin Cermak, Tomas Karasek, Jaroslav Rojicek
Abstract:
The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.Keywords: genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting
Procedia PDF Downloads 4514067 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, error pointing, M-ary pulse position modulation, symbol error rate
Procedia PDF Downloads 2844066 Enhancing Code Security with AI-Powered Vulnerability Detection
Authors: Zzibu Mark Brian
Abstract:
As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.Keywords: AI, machine language, cord security, machine leaning
Procedia PDF Downloads 354065 Development of Low Noise Savonius Wind Turbines
Authors: Sanghyeon Kim, Cheolung Cheong
Abstract:
Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB.Keywords: aerodynamic noise, Savonius wind turbine, vertical-axis wind turbine
Procedia PDF Downloads 4574064 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-doped with Bismuth and Zinc
Authors: B.Benalioua, I.Benyamina, A.Bentouami, B.Boury
Abstract:
The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, Zn co-doped TiO2 treated at 670°C for 2 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi-Zn-TiO2 (670°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-Zn-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 70 minutes, whereas with the P25-TiO2 discoloration is achieved after 120 minutes.Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping
Procedia PDF Downloads 3084063 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-Doped with Sulfur and Nitrogen
Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury
Abstract:
The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the S, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material S-N-TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the S-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of S-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic S-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping
Procedia PDF Downloads 3604062 Cochlear Implants and the Emerging Therapies for Managing Hearing Loss
Authors: Hesham Kozou
Abstract:
Sensorineural hearing loss (SNHL) poses a significant challenge due to limited access to the inner ear for therapies. Emerging treatments such as regenerative, genetic, and pharmacotherapies offer hope for addressing this condition. This study aims to highlight the potential of cochlear implants and emerging therapies in managing sensorineural hearing loss by improving access to the inner ear. The study is conducted through a review of relevant literature and research articles in the field of cochlear implants and emerging therapies for hearing loss. It outlines how advancements in cochlear implant technologies, electrodes, and surgical techniques can facilitate the delivery of therapies to the inner ear, potentially revolutionizing the treatment of sensorineural hearing loss. The study underscores the potential of cochlear implants and emerging therapies in revolutionizing the treatment landscape for sensorineural hearing loss, emphasizing the feasibility of curing this condition by leveraging technological advancements.Keywords: therapies for hearing loss management, future of CI as a cochlear delivery channel, regenerative, genetic and pharmacotherapeutic management of hearing loss
Procedia PDF Downloads 474061 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems
Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran
Abstract:
Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model
Procedia PDF Downloads 5144060 Performance Comparison of AODV and Soft AODV Routing Protocol
Authors: Abhishek, Seema Devi, Jyoti Ohri
Abstract:
A mobile ad hoc network (MANET) represents a system of wireless mobile nodes that can self-organize freely and dynamically into arbitrary and temporary network topology. Unlike a wired network, wireless network interface has limited transmission range. Routing is the task of forwarding data packets from source to a given destination. Ad-hoc On Demand Distance Vector (AODV) routing protocol creates a path for a destination only when it required. This paper describes the implementation of AODV routing protocol using MATLAB-based Truetime simulator. In MANET's node movements are not fixed while they are random in nature. Hence intelligent techniques i.e. fuzzy and ANFIS are used to optimize the transmission range. In this paper, we compared the transmission range of AODV, fuzzy AODV and ANFIS AODV. For soft computing AODV, we have taken transmitted power and received threshold as input and transmission range as output. ANFIS gives better results as compared to fuzzy AODV.Keywords: ANFIS, AODV, fuzzy, MANET, reactive routing protocol, routing protocol, truetime
Procedia PDF Downloads 4974059 Probing Neuron Mechanics with a Micropipette Force Sensor
Authors: Madeleine Anthonisen, M. Hussain Sangji, G. Monserratt Lopez-Ayon, Margaret Magdesian, Peter Grutter
Abstract:
Advances in micromanipulation techniques and real-time particle tracking with nanometer resolution have enabled biological force measurements at scales relevant to neuron mechanics. An approach to precisely control and maneuver neurite-tethered polystyrene beads is presented. Analogous to an Atomic Force Microscope (AFM), this multi-purpose platform is a force sensor with imaging acquisition and manipulation capabilities. A mechanical probe composed of a micropipette with its tip fixed to a functionalized bead is used to incite the formation of a neurite in a sample of rat hippocampal neurons while simultaneously measuring the tension in said neurite as the sample is pulled away from the beaded tip. With optical imaging methods, a force resolution of 12 pN is achieved. Moreover, the advantages of this technique over alternatives such as AFM, namely ease of manipulation which ultimately allows higher throughput investigation of the mechanical properties of neurons, is demonstrated.Keywords: axonal growth, axonal guidance, force probe, pipette micromanipulation, neurite tension, neuron mechanics
Procedia PDF Downloads 3654058 Design and Manufacture Detection System for Patient's Unwanted Movements during Radiology and CT Scan
Authors: Anita Yaghobi, Homayoun Ebrahimian
Abstract:
One of the important tools that can help orthopedic doctors for diagnose diseases is imaging scan. Imaging techniques can help physicians in see different parts of the body, including the bones, muscles, tendons, nerves, and cartilage. During CT scan, a patient must be in the same position from the start to the end of radiation treatment. Patient movements are usually monitored by the technologists through the closed circuit television (CCTV) during scan. If the patient makes a small movement, it is difficult to be noticed by them. In the present work, a simple patient movement monitoring device is fabricated to monitor the patient movement. It uses an electronic sensing device. It continuously monitors the patient’s position while the CT scan is in process. The device has been retrospectively tested on 51 patients whose movement and distance were measured. The results show that 25 patients moved 1 cm to 2.5 cm from their initial position during the CT scan. Hence, the device can potentially be used to control and monitor patient movement during CT scan and Radiography. In addition, an audible alarm situated at the control panel of the control room is provided with this device to alert the technologists. It is an inexpensive, compact device which can be used in any CT scan machine.Keywords: CT scan, radiology, X Ray, unwanted movement
Procedia PDF Downloads 4574057 RASPE: Risk Advisory Smart System for Pipeline Projects in Egypt
Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim
Abstract:
A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. This paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.Keywords: expert system, knowledge management, pipeline projects, risk mismanagement
Procedia PDF Downloads 3094056 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 2854055 Graphical User Interface for Presting Matlab Work for Reduction of Chromatic Disperion Using Digital Signal Processing for Optical Communication
Authors: Muhammad Faiz Liew Abdullah, Bhagwan Das, Nor Shahida, Abdul Fattah Chandio
Abstract:
This study presents the designed features of Graphical User Interface (GUI) for chromatic dispersion (CD) reduction using digital signal processing (DSP) techniques. GUI is specially designed for windows platform. The obtained simulation results from matlab are presented via this GUI. After importing results from matlab in GUI, It will present your work on any windows7 and onwards versions platforms without matlab software. First part of the GUI contains the research methodology block diagram and in the second part, output for each stage is shown in separate reserved area for the result display. Each stage of methodology has the captions to display the results. This GUI will be very helpful during presentations instead of making slides this GUI will present all your work easily in the absence of other software’s such as Matlab, Labview, MS PowerPoint. GUI is designed using C programming in MS Visio Studio.Keywords: Matlab simulation results, C programming, MS VISIO studio, chromatic dispersion
Procedia PDF Downloads 4604054 Fully Autonomous Vertical Farm to Increase Crop Production
Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek
Abstract:
New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.Keywords: automation, vertical farming, robot, artificial intelligence, vision, control
Procedia PDF Downloads 384053 A Pole Radius Varying Notch Filter with Transient Suppression for Electrocardiogram
Authors: Ramesh Rajagopalan, Adam Dahlstrom
Abstract:
Noise removal techniques play a vital role in the performance of electrocardiographic (ECG) signal processing systems. ECG signals can be corrupted by various kinds of noise such as baseline wander noise, electromyographic interference, and power-line interference. One of the significant challenges in ECG signal processing is the degradation caused by additive 50 or 60 Hz power-line interference. This work investigates the removal of power line interference and suppression of transient response for filtering noise corrupted ECG signals. We demonstrate the effectiveness of Infinite Impulse Response (IIR) notch filter with time varying pole radius for improving the transient behavior. The temporary change in the pole radius of the filter diminishes the transient behavior. Simulation results show that the proposed IIR filter with time varying pole radius outperforms traditional IIR notch filters in terms of mean square error and transient suppression.Keywords: notch filter, ECG, transient, pole radius
Procedia PDF Downloads 3754052 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 1204051 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection
Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz
Abstract:
Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide
Procedia PDF Downloads 1684050 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste
Authors: Suneeta Kumari, Abanti Sahoo
Abstract:
Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan
Procedia PDF Downloads 3194049 Biological Treatment of Tannery Wastewater Using Pseudomonas Strains
Authors: A. Benhadji, R. Maachi
Abstract:
Environmental protection has become a major economic development issues. Indeed, the environment has become both market growth factor and element of competition. It is now an integral part of all industrial strategies. Ecosystem protection is based on the reduction of the pollution load in the treatment of liquid waste. The physicochemical techniques are commonly used which a transfer of pollution is generally found. Alternative to physicochemical methods is the use of microorganisms for cleaning up the waste waters. The objective of this research is the evaluation of the effects of exogenous added Pseudomonas strains on pollutants biodegradation. The influence of the critical parameters such as inoculums concentration and duration treatment are studied. The results show that Pseudomonas putida is found to give a maximum reduction in chemical organic demand (COD) in 4 days of incubation. However, toward to protect biological pollution of environment, the treatment is achieved by electro coagulation process using aluminium electrodes. The results indicate that this process allows disinfecting the water and improving the electro coagulated sludge quality.Keywords: tannery, pseudomonas, biological treatment, electrocoagulation process, sludge quality
Procedia PDF Downloads 3664048 Investigating Geopolymerization Process of Aluminosilicates and its Impact on the Compressive Strength of the Produced Geopolymers
Authors: Heba Fouad, Tarek M. Madkour, Safwan A. Khedr
Abstract:
This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced Geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which corresponds to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.Keywords: calcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement
Procedia PDF Downloads 1674047 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer
Authors: Yilei Song, Linlin Tian, Ning Zhao
Abstract:
Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake
Procedia PDF Downloads 1714046 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data
Procedia PDF Downloads 4524045 Threshold Concepts in TESOL: A Thematic Analysis of Disciplinary Guiding Principles
Authors: Neil Morgan
Abstract:
The notion of Threshold Concepts has offered a fertile new perspective on the transformative effects of mastery of particular concepts on student understanding of subject matter and their developing identities as inductees into disciplinary discourse communities. Only by successfully traversing key knowledge thresholds, it is claimed, can neophytes gain access to the more sophisticated understandings of subject matter possessed by mature members of a discipline. This paper uses thematic analysis of disciplinary guiding principles to identify nine candidate Threshold Concepts that appear to underpin effective TESOL practice. The relationship between these candidate TESOL Threshold Concepts, TESOL principles, and TESOL instructional techniques appears to be amenable to a schematic representation based on superordinate categories of TESOL practitioner concern and, as such, offers an alternative to the view of Threshold Concepts as a privileged subset of disciplinary core concepts. The paper concludes by exploring the potential of a Threshold Concepts framework to productively inform TESOL initial teacher education (ITE) and in-service education and training (INSET).Keywords: TESOL, threshold concepts, TESOL principles, TESOL ITE/INSET, community of practice
Procedia PDF Downloads 1394044 Analyzing the Social, Cultural and Economic Impacts of Indigenous Tourism on the Indigenous Communities: Case Study of the Nubian Community in Egypt
Authors: M. Makary
Abstract:
Indigenous tourism is nowadays one of the fastest growing sections of the tourism industry. Nevertheless, it does not yet receive attention on the agenda of public tourism policies in Egypt; however, there are various tourism initiatives in indigenous areas throughout the country mainly in the Nubia region, which located in Upper Egypt, where most of Egypt's indigenous Nubians are concentrated. Considering indigenous tourism can lead to both positive and negative impacts on the indigenous communities the main aim of this study is to analyze the socio-cultural and economic impacts of the indigenous tourism on the indigenous communities in Egypt: the case study of Nubians. Qualitative and quantitative approaches of data collection were designed and applied in conducting this study. Semi-structured interviews, focus groups, and the observations are the main preliminary data collection techniques used in this study while, the secondary data were sourced from articles, statistics, dissertations, and websites. The research concludes that indigenous tourism offers a strong motivation to save the identity of the indigenous communities and to foster their economic development. However, it also has negative impacts on their society.Keywords: indigenous tourism, sustainable tourism, Indigenous communities, Nubians
Procedia PDF Downloads 2444043 Creative Thinking through Mindful Practices: A Business Class Case Study
Authors: Malavika Sundararajan
Abstract:
This study introduces the use of mindfulness techniques in the classroom to make individuals aware of how the creative thinking process works, resulting in more constructive learning and application. Case observation method was utilized within a classroom setting in a graduate class in the Business School. It entailed, briefing the student participants about the use of a template called the dots and depths map, and having them complete it for themselves, compare it to their team members and reflect on the outputs. Finally, they were debriefed about the use of the template and its value to their learning and creative application process. The major finding is the increase in awareness levels of the participants following the use of the template, leading to a subsequent pursuit of diverse knowledge and acquisition of relevant information and not jumping to solutions directly, which increased their overall creative outputs for the given assignment. The significant value of this study is that it can be applied to any classroom on any subject as a powerful mindfulness tool which increases creative problem solving through constructive knowledge building.Keywords: connecting dots, mindful awareness, constructive knowledge building, learning creatively
Procedia PDF Downloads 1474042 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet
Authors: Azene Zenebe
Abstract:
Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science
Procedia PDF Downloads 152