Search results for: specific energy consumption
16851 Feasibility of Two Positive-Energy Schools in a Hot-Humid Tropical Climate: A Methodological Approach
Authors: Shashwat, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg
Abstract:
Achieving zero-energy targets in existing buildings is known to be a difficult task, hence targets are addressed at new buildings almost exclusively. Although these ultra-efficient case-studies remain essential to develop future technologies and drive the concepts of Zero-energy, the immediate need to cut the consumption of the existing building stock remains unaddressed. This work aims to present a reliable and straightforward methodology for assessing the potential of energy-efficient upgrading in existing buildings. Public Singaporean school buildings, characterized by low energy use intensity and large roof areas, were identified as potential objects for conversion to highly-efficient buildings with a positive energy balance. A first study phase included the development of a detailed energy model for two case studies (a primary and a secondary school), based on the architectural drawings provided, site-visits and calibrated using measured end-use power consumption of different spaces. The energy model was used to demonstrate compliances or predict energy consumption of proposed changes in the two buildings. As complete energy monitoring is difficult and substantially time-consuming, short-term energy data was collected in the schools by taking spot measurements of power, voltage, and current for all the blocks of school. The figures revealed that the bulk of the consumption is attributed in decreasing order of magnitude to air-conditioning, plug loads, and lighting. In a second study-phase, a number of energy-efficient technologies and strategies were evaluated through energy-modeling to identify the alternatives giving the highest energy saving potential, achieving a reduction in energy use intensity down to 19.71 kWh/m²/y and 28.46 kWh/m²/y for the primary and the secondary schools respectively. This exercise of field evaluation and computer simulation of energy saving potential aims at a preliminary assessment of the positive-energy feasibility enabling future implementation of the technologies on the buildings studied, in anticipation of a broader and more widespread adoption in Singaporean schools.Keywords: energy simulation, school building, tropical climate, zero energy buildings, positive energy
Procedia PDF Downloads 15016850 Environment Problems of Energy Exploitation and Utilization in Nigeria
Authors: Aliyu Mohammed Lawal
Abstract:
The problems placed on the environment as a result of energy generation and usage in Nigeria is: potential damage to the environment health by CO, CO2, SOx, and NOx, effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of CO2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.Keywords: effluent gas, emissions, NOx, SOx
Procedia PDF Downloads 38216849 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States
Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi
Abstract:
The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.Keywords: economic growth, energy demand, income, real GDP, urbanization, VECM
Procedia PDF Downloads 31316848 Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex
Authors: Li Zhu, Binghua Wang, Yong Sun
Abstract:
China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.Keywords: agritourism complex, energy planning, energy demand simulation, hierarchical structure model
Procedia PDF Downloads 19416847 Input Energy Requirements and Performance of Different Soil Tillage Systems on Yield of Maize Crop
Authors: Shafique Qadir Memon, Muhammad Safar Mirjat, Abdul Quadir Mughal, Nadeem Amjad
Abstract:
The aims of this study were to determine direct input energy and indirect energy in maize production, to evaluate the inputs energy consumption and outputs energy gained for maize production in Islamabad, Pakistan for spring 2013. Results showed that grain yield was maximum under deep tillage as compared to conventional and zero tillage. Total energy input/output were maximum in deep tillage as compared to conventional tillage while lowest in zero tillage, net energy gain were found maximum under deep tillage.Keywords: tillage, energy, grain yield, net energy gain
Procedia PDF Downloads 46016846 Adsorption Cooling Using Hybrid Energy Resources
Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux
Abstract:
HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources
Procedia PDF Downloads 36116845 Living Wall Systems: An Approach for Reducing Energy Consumption in Curtain Wall Façades
Authors: Salma Maher, Ahmed Elseragy, Sally Eldeeb
Abstract:
Nowadays, Urbanism and climate change lead to the rapid growth in energy consumption and the increase of using air-conditioning for cooling. In a hot climate area, there is a need for a new sustainable alternative that is more convenient for an existing situation. The Building envelope controls the heat transfer between the outside and inside the building. While the building façade is the most critical part, types of façade material play a vital role in influences of the energy demand for heating and cooling due to exposure to direct solar radiation throughout the day. Since the beginning of the twentieth century, the use of curtain walls in office buildings façades started to increase rapidly, which lead to more cooling loads in energy consumption. Integrating the living wall system in urban areas as a sustainable renovation and energy-saving method for the built environment will reduce the energy demand of buildings and will also provide environmental benefits. Also, it will balance the urban ecology and enhance urban life quality. The results show that the living wall systems reduce the internal temperature up to 4.0 °C. This research carries on an analytical study by highlighting the different types of living wall systems and verifying their thermal performance, energy-saving, and life potential on the building. These assessing criteria include the reason for using the Living wall systems in the building façade as well as the effect it has upon the surrounding environment. Finally, the paper ends with concluding the effect of using living wall systems on building. And, it suggests a system as long-lasting, and energy-efficient solution to be applied in curtain wall façades in a hot climate area.Keywords: living wall systems, energy consumption, curtain walls, energy-saving, sustainability, urban life quality
Procedia PDF Downloads 14116844 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan
Authors: Muhammad Afzal, Muhammad Sajjad
Abstract:
Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.Keywords: climate change, economic growth, energy, environment
Procedia PDF Downloads 16416843 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach
Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma
Abstract:
Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.Keywords: clustering, cluster-head, mini-group, stability period
Procedia PDF Downloads 35816842 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency
Authors: Valeriya Tyo, Serikbolat Yessengabulov
Abstract:
Regions with extreme climate conditions such as Astana city require energy saving measures to increase the energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of the key factors to be considered. The architectural form of a building has the impact on space heating and cooling energy use, however, the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.Keywords: building geometry, energy efficiency, heat gain, heat loss
Procedia PDF Downloads 49916841 Design and Analysis of Wireless Charging Lane for Light Rail Transit
Authors: Watcharet Kongwarakom, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong
Abstract:
This paper presents a design and analysis of wireless charging lane system (WCLS) for light rail transit (LRT) by considering the performance of wireless charging, traffic conditions and energy consumption drawn by the LRT system. The dynamic of the vehicle movement in terms of the vehicle speed profile during running on the WCLS, a dwell time during stopping at the station for taking the WCLS and the capacity of the WCLS in each section are taken into account to alignment design of the WCLS. This paper proposes a case study of the design of the WCLS into 2 sub-cases including continuous and discontinuous WCLS with the same distance of WCLS in total. The energy consumption by the LRT through the WCLS with the different designs of the WCLS is compared to find out the better configuration of those two cases by considering the best performance of the power transfer between the LRT and the WCLS.Keywords: Light rail transit, Wireless charging lane, Energy consumption, Power transfer
Procedia PDF Downloads 15416840 Technical and Practical Aspects of Sizing a Autonomous PV System
Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba
Abstract:
The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.Keywords: solar panel, solar radiation, inverter, optimization
Procedia PDF Downloads 60916839 Energy Management Method in DC Microgrid Based on the Equivalent Hydrogen Consumption Minimum Strategy
Authors: Ying Han, Weirong Chen, Qi Li
Abstract:
An energy management method based on equivalent hydrogen consumption minimum strategy is proposed in this paper aiming at the direct-current (DC) microgrid consisting of photovoltaic cells, fuel cells, energy storage devices, converters and DC loads. The rational allocation of fuel cells and battery devices is achieved by adopting equivalent minimum hydrogen consumption strategy with the full use of power generated by photovoltaic cells. Considering the balance of the battery’s state of charge (SOC), the optimal power of the battery under different SOC conditions is obtained and the reference output power of the fuel cell is calculated. And then a droop control method based on time-varying droop coefficient is proposed to realize the automatic charge and discharge control of the battery, balance the system power and maintain the bus voltage. The proposed control strategy is verified by RT-LAB hardware-in-the-loop simulation platform. The simulation results show that the designed control algorithm can realize the rational allocation of DC micro-grid energy and improve the stability of system.Keywords: DC microgrid, equivalent minimum hydrogen consumption strategy, energy management, time-varying droop coefficient, droop control
Procedia PDF Downloads 30316838 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System
Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva
Abstract:
Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).Keywords: energy storage, power distribution system, solar generator, voltage level
Procedia PDF Downloads 14116837 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates
Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung
Abstract:
This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump
Procedia PDF Downloads 5516836 Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney
Authors: Claire Far, Sara Wilkinson, Deborah Ascher Barnstone
Abstract:
Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed.Keywords: thermal comfort, energy consumption, residential dwellings, sustainable design principles, thermal retrofit
Procedia PDF Downloads 26916835 Energy Audit: A Case Study of a Hot Rolling Mill in Steel Industry
Authors: Arvind Dhingra, Tejinder Singh Saggu
Abstract:
As the energy demands rise and the pollution levels grow, it becomes imperative for us to save energy in all the fields in which it is used. The industrial sector is the major commercial energy consuming sector in India, where electrical energy is the most common and widely used type of energy. As the demand and price of energy are increasing day by day, therefore, the subject of energy conservation is a concern for most energy users particularly industry. Judicious use of energy becomes imperative for third world developing country being presence of energy crisis. This paper provides some measure for energy saving that can be commonly recommended for a rolling unit of steel industry. A case of hot rolling unit in JSL Stainless Ltd., Hisar for energy conservation is given. Overall improvement in energy consumption in light of the stated recommendation is illustrated along with the proposed utilization of the techniques and their applications. Energy conservation in conventional motor with replacement or use of star delta star converter, reduction in cable losses, replacement of filament of LED lamps, replacement of conventional transformer with cast resin dry type transformer and provision of energy management system for energy conservation and per unit production cost reduction are elaborated in this paper.Keywords: energy audit, energy conservation, energy efficient motors
Procedia PDF Downloads 53316834 The Role of Heat Pumps in the Decarbonization of European Regions
Authors: Domenico M. Mongelli, Michele De Carli, Laura Carnieletto, Filippo Busato
Abstract:
Europe's dependence on imported fossil fuels has been particularly highlighted by the Russian invasion of Ukraine. Limiting this dependency with a massive replacement of fossil fuel boilers with heat pumps for building heating is the goal of this work. Therefore, with the aim of diversifying energy sources and evaluating the potential use of heat pump technologies for residential buildings with a view to decarbonization, the quantitative reduction in the consumption of fossil fuels was investigated in all regions of Europe through the use of heat pumps. First, a general overview of energy consumption in buildings in Europe has been assessed. The consumption of buildings has been addressed to the different uses (heating, cooling, DHW, etc.) as well as the different sources (natural gas, oil, biomass, etc.). The analysis has been done in order to provide a baseline at the European level on the current consumptions and future consumptions, with a particular interest in the future increase of cooling. A database was therefore created on the distribution of residential energy consumption linked to air conditioning among the various energy carriers (electricity, waste heat, gas, solid fossil fuels, liquid fossil fuels, and renewable sources) for each region in Europe. Subsequently, the energy profiles of various European cities representative of the different climates are analyzed in order to evaluate, in each European climatic region, which energy coverage can be provided by heat pumps in replacement of natural gas and solid and liquid fossil fuels for air conditioning of the buildings, also carrying out the environmental and economic assessments for this energy transition operation. This work aims to make an innovative contribution to the evaluation of the potential for introducing heat pump technology for decarbonization in the air conditioning of buildings in all climates of the different European regions.Keywords: heat pumps, heating, decarbonization, energy policies
Procedia PDF Downloads 13016833 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters
Authors: Dylan Santos De Pinho, Nabil Ouerhani
Abstract:
Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization
Procedia PDF Downloads 14816832 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process
Authors: Hen Friman
Abstract:
Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.Keywords: renewable energy, solar energy, innovative, wastewater treatment
Procedia PDF Downloads 11016831 Investigation and Analysis of Residential Building Energy End-Use Profile in Hot and Humid Area with Reference to Zhuhai City in China
Authors: Qingqing Feng, S. Thomas Ng, Frank Xu
Abstract:
Energy consumption in domestic sector has been increasing rapidly in China all along these years. Confronted with environmental challenges, the international society has made a concerted effort by setting the Paris Agreement, the Sustainable Development Goals, and the New Urban Agenda. Thus it’s very important for China to put forward reasonable countermeasures to boost building energy conservation which necessitates looking into the actuality of residential energy end-use profile and its influence factors. In this study, questionnaire surveys have been conducted in Zhuhai city in China, a typical city in hot summer warm winter climate zone. The data solicited mainly include the occupancy schedule, building’s information, residents’ information, household energy uses, the type, quantity and use patterns of appliances and occupants’ satisfaction. Over 200 valid samples have been collected through face-to-face interviews. Descriptive analysis, clustering analysis, correlation analysis and sensitivity analysis were then conducted on the dataset to understand the energy end-use profile. The findings identify: 1) several typical clusters of occupancy patterns and appliances utilization patterns; 2) the top three sensitive factors influencing energy consumption; 3) the correlations between satisfaction and energy consumption. For China with many different climates zones, it’s difficult to find a silver bullet on energy conservation. The aim of this paper is to provide a theoretical basis for multi-stakeholders including policy makers, residents, and academic communities to formulate reasonable energy saving blueprints for hot and humid urban residential buildings in China.Keywords: residential building, energy end-use profile, questionnaire survey, sustainability
Procedia PDF Downloads 13016830 Determination of the Thermophysical Characteristics of the Composite Material Clay Cement Paper
Authors: A. Ouargui, N. Belouaggadia, M. Ezzine
Abstract:
In Morocco, the building sector is largely responsible for the evolution of energy consumption. The control of energy in this sector remains a major issue despite the rise of renewable energies. The design of an environmentally friendly building requires mastery and knowledge of energy and bioclimatic aspects. This implies taking into consideration of all the elements making up the building and the way in which energy exchanges take place between these elements. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. The aim of this work is to provide some solutions to reduce energy consumption while maintaining thermal comfort in the building. The objective of our work is to present an experimental study on the characterization of local materials used in the thermal insulation of buildings. These are paper recycling stabilized with cement and clay. The thermal conductivity of these materials, which were constituted based on sand, clay, cement; water, as well as treated paper, was determined by the guarded-hot-plate method. It involves the design of two materials that will subsequently be subjected to thermal and mechanical tests to determine their thermophysical properties. The results show that the thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. Measurements of mechanical properties such as flexural strength have shown that the enrichment of the studied material with paper makes it possible to reduce the flexural strength by 20% while optimizing the conductivity.Keywords: building, composite material, insulation, thermal conductivity, paper residue
Procedia PDF Downloads 12716829 Energy-Efficient Internet of Things Communications: A Comparative Study of Long-Term Evolution for Machines and Narrowband Internet of Things Technologies
Authors: Nassim Labdaoui, Fabienne Nouvel, Stéphane Dutertre
Abstract:
The Internet of Things (IoT) is emerging as a crucial communication technology for the future. Many solutions have been proposed, and among them, licensed operators have put forward LTE-M and NB-IoT. However, implementing these technologies requires a good understanding of the device energy requirements, which can vary depending on the coverage conditions. In this paper, we investigate the power consumption of LTE-M and NB-IoT devices using Ublox SARA-R422S modules based on relevant standards from two French operators. The measurements were conducted under different coverage conditions, and we also present an empirical consumption model based on the different states of the radio modem as per the RRC protocol specifications. Our findings indicate that these technologies can achieve a 5 years operational battery life under certain conditions. Moreover, we conclude that the size of transmitted data does not have a significant impact on the total power consumption of the device under favorable coverage conditions. However, it can quickly influence the battery life of the device under harsh coverage conditions. Overall, this paper offers insights into the power consumption of LTE-M and NBIoT devices and provides useful information for those considering the use of these technologies.Keywords: internet of things, LTE-M, NB-IoT, MQTT, cellular IoT, power consumption
Procedia PDF Downloads 14316828 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction
Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani
Abstract:
Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse
Procedia PDF Downloads 8916827 Drying Kinetics, Energy Requirement, Bioactive Composition, and Mathematical Modeling of Allium Cepa Slices
Authors: Felix U. Asoiro, Meshack I. Simeon, Chinenye E. Azuka, Harami Solomon, Chukwuemeka J. Ohagwu
Abstract:
The drying kinetics, specific energy consumed (SEC), effective moisture diffusivity (EMD), flavonoid, phenolic, and vitamin C contents of onion slices dried under convective oven drying (COD) were compared with microwave drying (MD). Drying was performed with onion slice thicknesses of 2, 4, 6, and 8 mm; air drying temperatures of 60, 80, and 100°C for COD, and microwave power of 450 W for MD. A decrease in slice thickness and an increase in drying air temperature led to a drop in the drying time. As thickness increased from 2 – 8 mm, EMD rose from 1.1-4.35 x 10⁻⁸ at 60°C, 1.1-5.6 x 10⁻⁸ at 80°C, and 1.25-6.12 x 10⁻⁸ at 100°C with MD treatments yielding the highest mean value (6.65 x 10⁻⁸ m² s⁻¹) at 8 mm. Maximum SEC for onion slices in COD was 238.27 kWh/kg H₂O (2 mm thickness), and the minimum was 39.4 kWh/kg H₂O (8 mm thickness) whereas maximum during MD was 25.33 kWh/kg H₂O (8 mm thickness) and minimum, 18.7 kWh/kg H₂O (2 mm thickness). MD treatment gave a significant (p 0.05) increase in the flavonoid (39.42 – 64.4%), phenolic (38.0 – 46.84%), and vitamin C (3.7 – 4.23 mg 100 g⁻¹) contents, while COD treatment at 60°C and 100°C had positive effects on only vitamin C and phenolic contents, respectively. In comparison, the Weibull model gave the overall best fit (highest R²=0.999; lowest SSE=0.0002, RSME=0.0123, and χ²= 0.0004) when drying 2 mm onion slices at 100°C.Keywords: allium cepa, drying kinetics, specific energy consumption, flavonoid, vitamin C, microwave oven drying
Procedia PDF Downloads 13716826 Effects of Thermal Properties of Aggregate Materials on Energy Consumption and Ghg Emissions of Transportation Infrastructure Assets Construction: Case Study for Japan
Authors: Ali Jamshidi, Kiyofumi Kurumisawa, Toyoharu Nawa
Abstract:
Transportation infrastructure assets can be considered as backbone of transportation system. They are routinely developed and or maintained which can be used effectively for movement of passengers, commodities and providing vital services. However, the infrastructure assets construction, maintenance and rehabilitation significantly depend on non-renewable natural resources, such as carbon-based energy carriers and aggregate materials. In this study, effects of thermal properties of aggregate materials were characterized for production of hot-mix asphalt in Japan, as a case study. The results indicated that incorporation of the aggregate with lower required heat energy significantly reduces fuel consumption greenhouse gas emission, irrespective of physical property of aggregate. The results also clearly showed that as 75% high-energy limestone is replaced with low-energy limestone in producing an asphalt mixture at 180 °C, 97,879 Japanese households would be energized per annum using the saved energy without any modification in the current asphalt mixing plants.Keywords: zero energy infrastructure, sustainable development, greenhouse gas emission, asphalt pavement
Procedia PDF Downloads 24416825 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water
Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta
Abstract:
The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute
Procedia PDF Downloads 11816824 A Comparative Study of the Impact of Membership in International Climate Change Treaties and the Environmental Kuznets Curve (EKC) in Line with Sustainable Development Theories
Authors: Mojtaba Taheri, Saied Reza Ameli
Abstract:
In this research, we have calculated the effect of membership in international climate change treaties for 20 developed countries based on the human development index (HDI) and compared this effect with the process of pollutant reduction in the Environmental Kuznets Curve (EKC) theory. For this purpose, the data related to The real GDP per capita with 2010 constant prices is selected from the World Development Indicators (WDI) database. Ecological Footprint (ECOFP) is the amount of biologically productive land needed to meet human needs and absorb carbon dioxide emissions. It is measured in global hectares (gha), and the data retrieved from the Global Ecological Footprint (2021) database will be used, and we will proceed by examining step by step and performing several series of targeted statistical regressions. We will examine the effects of different control variables, including Energy Consumption Structure (ECS) will be counted as the share of fossil fuel consumption in total energy consumption and will be extracted from The United States Energy Information Administration (EIA) (2021) database. Energy Production (EP) refers to the total production of primary energy by all energy-producing enterprises in one country at a specific time. It is a comprehensive indicator that shows the capacity of energy production in the country, and the data for its 2021 version, like the Energy Consumption Structure, is obtained from (EIA). Financial development (FND) is defined as the ratio of private credit to GDP, and to some extent based on the stock market value, also as a ratio to GDP, and is taken from the (WDI) 2021 version. Trade Openness (TRD) is the sum of exports and imports of goods and services measured as a share of GDP, and we use the (WDI) data (2021) version. Urbanization (URB) is defined as the share of the urban population in the total population, and for this data, we used the (WDI) data source (2021) version. The descriptive statistics of all the investigated variables are presented in the results section. Related to the theories of sustainable development, Environmental Kuznets Curve (EKC) is more significant in the period of study. In this research, we use more than fourteen targeted statistical regressions to purify the net effects of each of the approaches and examine the results.Keywords: climate change, globalization, environmental economics, sustainable development, international climate treaty
Procedia PDF Downloads 7216823 Wakala Buildings of Mamluk Era in Cairo, Egypt and Its Rating According to Rating Criteria of Leadership in Energy and Environmental Design V4
Authors: M. Fathy, I. Maarouf, S. El-Sayary
Abstract:
Our buildings are responsible for around 50% of energy consumption and most of this consumption because of spaces design, low heat isolation building material and occupant presence and behavior in buildings beside non-efficient architectural treatments. It has been shown to have large impact on heating, cooling and ventilation demand, energy consumption of lighting and appliances, and building controls. This paper aims to focus on passive treatments in Wakala Buildings in Cairo and how far it meets the LEED Criteria as the LEED – Leadership in Energy and Environmental Design – considered the widest spread rating system in the world. By studying Wakala buildings in Cairo, there are a lot of environmental potentials in it in the field of passive treatments and energy efficiency that could be found in examples by surveying and analyzing Wakala buildings. Besides the environmental treatments through the natural materials and façade architectural treatments, there is a measuring phase to declare the efficiency of the Wakala building through temperature decline between outdoor and indoor the Wakala building. Also, measuring how far the indoor conditions matched the thermal comfort for occupants. After measuring the Wakala buildings, it is the role of applying the criteria of LEED rating system to find out how fare Wakala buildings meet the LEED rating system criteria. After all, the building technologies used in Wakala buildings in the field of passive design and caused that energy efficiency would be clear and what is needed for Wakala buildings to have a LEED Certification.Keywords: energy awareness, historical commercial buildings, LEED, Wakala buildings
Procedia PDF Downloads 20316822 A Geospatial Analysis of Residential Conservation-Attitude, Intention and Behavior
Authors: Prami Sengupta, Randall A. Cantrell, Tracy Johns
Abstract:
A typical US household consumes more energy than households in other countries and is directly responsible for a considerable proportion of the atmospheric concentration of the greenhouse gases. This makes U.S. household a vital target group for energy conservation studies. Positive household behavior is central to residential energy conservation. However, for individuals to conserve energy they must not only know how to conserve energy but be also willing to do so. That is, a positive attitude towards residential conservation and an intention to conserve energy are two of the most important psychological determinants for energy conservation behavior. Most social science studies, to date, have studied the relationships between attitude, intention, and behavior by building upon socio-psychological theories of behavior. However, these frameworks, including the widely used Theory of Planned Behavior and Social Cognitive Theory, lack a spatial component. That is, these studies fail to capture the impact of the geographical locations of homeowners’ residences on their residential energy consumption and conservation practices. Therefore, the purpose of this study is to explore geospatial relationships between homeowners’ residential energy conservation-attitudes, conservation-intentions, and consumption behavior. The study analyzes residential conservation-attitudes and conservation-intentions of homeowners across 63 counties in Florida and compares it with quantifiable measures of residential energy consumption. Empirical findings revealed that the spatial distribution of high and/or low values of homeowners’ mean-score values of conservation-attitudes and conservation-intentions are more spatially clustered than would be expected if the underlying spatial processes were random. On the contrary, the spatial distribution of high and/or low values of households’ carbon footprints was found to be more spatially dispersed than assumed if the underlying spatial process were random. The study also examined the influence of potential spatial variables, such as urban or rural setting and presence of educational institutions and/or extension program, on the conservation-attitudes, intentions, and behaviors of homeowners.Keywords: conservation-attitude, conservation-intention, geospatial analysis, residential energy consumption, spatial autocorrelation
Procedia PDF Downloads 193