Search results for: sandfish flesh powder
756 High Toughening Effects of Polybenzoxazine Filled with Ultrafine Fully Vulcanized Powder Natural Rubber Grafted with Varied Monomers
Authors: A. Pattulee, I. Lawan, N. Boonnao, R. Gholami, P. Rimdusit, S. Rimdusit
Abstract:
Varied types and content of ultrafine vulcanized powdered natural rubbers (UFPNR) as toughening fillers of polybenzoxazine composite are investigated in this work. Four types of UFPNR were prepared by graft polymerization of acrylonitrile monomer (AN), styrene monomer (ST), styrene-acrylonitrile copolymer (ST/AN), and styrene-methyl methacrylate copolymer (ST/MMA) onto deproteinized natural rubber (DPNR). The solid UFPNR powders with different types of grafting were finally obtained by electron beam vulcanization and a spray-drying technique. Additionally, effects of various UFPNR contents (0, 5, 10, 15, 20, and 25 wt%) on toughness of polybenzoxazine composites were studied. It was observed that the UFPNR grafted with the styrene-methyl methacrylate copolymer (UFPNR-g-(PS-co-PMMA)) exhibited the most effective toughening agent for polybenzoxazine, whereas the rubber powder content of 25 wt% was found to be the optimal filler loading in enhancing the toughness of the resulting composite. The experimental results revealed an increase of 86% in toughness and 56% in impact strength at the above UFPNR-g- (PS-co-PMMA powdered rubber content. Interestingly, the utilization of the UFPNR-g-(PS-co-PMMA as toughening agent was found to increase thermal stability (degradation temperature at 5wt.% (Td5) and glass transition temperature (Tg) of the composite i.e. an increase of 8°C and 6 °C has been observed for the Td5 and Tg, respectively.Keywords: natural rubber, ultrafine fully vulcanized powder rubber, polybenzoxazine, polymer composite, toughening
Procedia PDF Downloads 7755 High-Frequency Induction Heat Sintering of Al/SiC/GNS Nanocomposites and Their Tribological Properties
Authors: Mohammad Islam, Iftikhar Ahmad, Hany S. Abdo, Yasir Khalid
Abstract:
High-frequency induction heat sintering (HFIHS) is a fast, efficient powder consolidation technique. In this work, aluminum (Al) powder was mixed with silicon carbide (SiC) and/or graphene nanosheets (GNS) in different proportions and compacted using HFIHS process to produce dense nanocomposites. The nanostructures dispersion was assessed via electron microscopy using both SEM and TEM. Tribological behavior of the nanocomposites was investigated at different loads to determine wear rate and coefficient of friction. The scratch profiles were examined under the microscope to correlate wear properties with the microstructure. While the addition of SiC nanoparticles enhances microhardness values, GNS incorporation promotes dry lubricity with strikingly different wear scratch morphologies. Such Al/SiC/GNS material compositions can be explored for use in automotive brake pad and thermal management applications.Keywords: aluminum nanocomposites, silicon carbide, graphene nanosheets, tribology
Procedia PDF Downloads 312754 Influence of the Substitution of C for Mg and Ni on the Microstructure and Hydrogen Storage Characteristics of Mg2Ni Alloys
Authors: Sajad Haghanifar, Seyed-Farshid Kashani Bozorg
Abstract:
Nano-crystalline Mg2Ni-based powder was produced by mechanical alloying technique using binary and ternary powder mixtures with stoichiometric compositions of Mg2Ni, Mg1.9C0.1Ni and Mg2C0.1Ni0.9. The structures and morphologies of the milled products were studied by XRD, SEM and HRTEM. Their electrochemical hydrogen storage characteristics were investigated in 6 M KOH solution. X-Ray diffraction, scanning and transmission electron microscopy of the milled products showed the formation of Mg2Ni-based nano-crystallites after 5, 15 and 30 h of milling using the initial powder mixtures of Mg1.9C0.1Ni, Mg2Ni and Mg2C0.1Ni0.9, respectively. It was found that partial substitution of C for Mg has beneficial effect on the formation kinetic of nano-crystalline Mg2Ni. Contrary to this, partial substitution of C for Ni was resulted in retardation of formation kinetic of nano-crystalline Mg2Ni. In addition, the negative electrode made from Mg1.9C0.1Ni ternary milled product after 30 hour of milling exhibited the highest initial discharge capacity and longest discharge life. Thus, partial substitution of C for Mg is beneficial to electrode properties of the Mg2Ni-based crystallites. The relation between the discharge capacity and cycling number of mechanically alloyed products was proposed on the basis of the fact that the degradation of discharge capacity was mainly caused by the oxidation of magnesium and nickel. The experimental data fitted the deduced equation well.Keywords: Mg2Ni, hydrogen absorbing materials, electrochemical properties, nano-crystalline, amorphous, mechanical alloying, carbon
Procedia PDF Downloads 434753 Study of the Tribological Behavior of a Pin on Disc Type of Contact
Authors: S. Djebali, S. Larbi, A. Bilek
Abstract:
The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.Keywords: bronze, friction coefficient, graphite, mass loss, polyester, steel, wear rate
Procedia PDF Downloads 345752 The Corrosion Resistance of P/M Alumix 431D Compacts
Authors: J. Kazior, A. Szewczyk-Nykiel, T. Pieczonka, M. Laska
Abstract:
Aluminium alloys are an important class of engineering materials for structural applications. This is due to the fact that these alloys have many interesting properties, namely, low density, high ratio of strength to density, good thermal and electrical conductivity, good corrosion resistance as well as extensive capabilities for shaping processes. In case of classical PM technology a particular attention should be paid to the selection of appropriate parameters of compacting and sintering processes and to keeping them. The latter need arises from the high sensitivity of aluminium based alloy powders on any fluctuation of technological parameters, in particular those related to the temperature-time profile and gas flow. Only then the desired sintered compacts with residual porosity may be produced. Except high mechanical properties, the other profitable properties of almost fully dense sintered components could be expected. Among them is corrosion resistance, rarely investigated on PM aluminium alloys. Thus, in the current study the Alumix 431/D commercial, press-ready grade powder was used for this purpose. Sintered compacts made of it in different conditions (isothermal sintering temperature, gas flow rate) were subjected to corrosion experiments in 0,1 M and 0,5 M NaCl solutions. The potentiodynamic curves were used to establish parameters characterising the corrosion resistance of sintered Alumix 431/D powder, namely, the corrosion potential, the corrosion current density, the polarization resistance, the breakdown potential. The highest value of polarization resistance, the lowest value of corrosion current density and the most positive corrosion potential was obtained for Alumix431/D powder sintered at 600°C and for highest protective gas flow rate.Keywords: aluminium alloys, sintering, corrosion resistance, industry
Procedia PDF Downloads 346751 Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying
Authors: Hyeongdo Jeong, Jong Kook Lee
Abstract:
Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %.Keywords: zirconia, solid content, granulation, spray drying
Procedia PDF Downloads 216750 Investigation of Cascade Loop Heat Pipes
Authors: Nandy Putra, Atrialdipa Duanovsah, Kristofer Haliansyah
Abstract:
The aim of this research is to design a LHP with low thermal resistance and low condenser temperature. A Self-designed cascade LHP was tested by using biomaterial, sintered copper powder, and aluminum screen mesh as the wick. Using pure water as the working fluid for the first level of the LHP and 96% alcohol as the working fluid for the second level of LHP, the experiments were run with 10W, 20W, and 30W heat input. Experimental result shows that the usage of biomaterial as wick could reduce more temperature at evaporator than by using sintered copper powder and screen mesh up to 22.63% and 37.41% respectively. The lowest thermal resistance occurred during the usage of biomaterial as wick of heat pipe, which is 2.06 oC/W. The usage of cascade system could be applied to LHP to reduce the temperature at condenser and reduced thermal resistance up to 17.6%.Keywords: biomaterial, cascade loop heat pipe, screen mesh, sintered Cu
Procedia PDF Downloads 264749 Mechanism of Dual Ferroic Properties Formation in Substituted M-Type Hexaferrites
Authors: A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishin, V. A. Turchenko
Abstract:
It has been shown that BaFe12O19 is a perspective room-temperature multiferroic material. A large spontaneous polarization was observed for the BaFe12O19 ceramics revealing a clear ferroelectric hysteresis loop. The maximum polarization was estimated to be approximately 11.8 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe12O19. The magnetic field induced electric polarization has been also observed in the doped BaFe12-x-δScxMδO19 (δ=0.05) at 10 K and in the BaScxFe12−xO19 and SrScxFe12−xO19 (x = 1.3–1.7) M-type hexaferrites. The investigated BaFe12-xDxO19 (x=0.1, D-Al3+, In3+) samples have been obtained by two-step “topotactic” reactions. The powder neutron investigations of the samples were performed by neutron time of flight method at High Resolution Fourier Diffractometer.Keywords: substituted hexaferrites, ferrimagnetics, ferroelectrics, neutron powder diffraction, crystal and magnetic structures
Procedia PDF Downloads 257748 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles
Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego
Abstract:
Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.Keywords: aluminum matrix composites, intermetallics, spark plasma sintering, nanocrystalline
Procedia PDF Downloads 452747 Mechanistic Studies of Compacted and Sintered Rock Salt
Authors: Claudia H. Swanson, Jens Günster
Abstract:
This research addresses the densification via compaction and sintering of naturally occurring rock salt which was motivated by the fact that in a saline environment rock salt is thermodynamically stable and does show a mechanical behavior compatible to the surrounding host material. The sintering of rock salt powder compacts was systematically investigated using temperature and pressure as variables for the sinter process. The behavior of rock salt showed segregations of anhydrite, CaSO4 - the major impurity found in rock salt, to the grain boundaries between individual sodium chloride crystals. Powder compacts treated with lower pressures lost those anhydrite segregates over time while high pressure treated compacts remained with anhydrite segregates. The density reached in this study is 2.008 g cm-3 corresponding to a density of 92.5 % of the theoretical value. This high density is making the sintering a promising technique for rock salt as applications in underground appropriate environment.Keywords: rock salt, sinter, anhydrite, nuclear safety
Procedia PDF Downloads 489746 Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius
Authors: J. E. Oti, J. M. Kinuthia, R. Robinson, P. Davies
Abstract:
In this study, The Compressive strength of concretes made with Ground Granulated Blast furnace Slag (GGBS), pulverised Fuel Ash (PFA), rice Husk Ash (RHA) and Waste Glass Powder (WGP) after they were exposed 7800C (exposure duration of around 60 minutes) and then allowed to cool down gradually in the furnace for about 280 minutes at water binder ratio of 0.50 was investigated. GGBS, PFA, RHA and WGP were used to replace up to 20% Portland cement in the control concrete. Test for the determination of workability, compressive strength and tensile splitting strength of the concretes were carried out and the results were compared with control concrete. The test results showed that the compressive strength decreased by an average of around 30% after the concretes were exposed to the heating and cooling scenario.Keywords: concrete, heating, cooling, pulverised fuel ash, rice husk ash, waste glass powder, GGBS, workability
Procedia PDF Downloads 410745 Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste
Authors: V. J. Pillewan, D. N. Raut, K. N. Patil, D. K. Shinde
Abstract:
Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework.Keywords: grinding waste, powder injection molding (PIM), carbon nanotubes (CNTs), matrix composites (MMCs)
Procedia PDF Downloads 307744 Destroying the Body for the Salvation of the Soul: A Modern Theological Approach
Authors: Angelos Mavropoulos
Abstract:
Apostle Paul repeatedly mentioned the bodily sufferings that he voluntarily went through for Christ, as his body was in chains for the ‘mystery of Christ’ (Col 4:3), while on his flesh he gladly carried the ‘thorn’ and all his pains and weaknesses, which prevent him from being proud (2 Cor 12:7). In his view, God’s power ‘is made perfect in weakness’ and when we are physically weak, this is when we are spiritually strong (2 Cor 12:9-10). In addition, we all bear the death of Jesus in our bodies so that His life can be ‘revealed in our mortal body’ (2 Cor 4:10-11), and if we indeed share in His sufferings, we will share in His glory as well (Rom 8:17). Based on these passages, several Christian writers projected bodily suffering, pain, death, and martyrdom, in general, as the means to a noble Christian life and the way to attain God. Even more, Christian tradition is full of instances of voluntary self-harm, mortification of the flesh, and body mutilation for the sake of the soul by several pious men and women, as an imitation of Christ’s earthly suffering. It is a fact, therefore, that, for Christianity, he or she who not only endures but even inflicts earthly pains for God is highly appreciated and will be rewarded in the afterlife. Nevertheless, more recently, Gaudium et Spes and Veritatis Splendor decisively and totally overturned the Catholic Church’s view on the matter. The former characterised the practices that violate ‘the integrity of the human person, such as mutilation, torments inflicted on body or mind’ as ‘infamies’ (Gaudium et Spes, 27), while the latter, after confirming that there are some human acts that are ‘intrinsically evil’, that is, they are always wrong, regardless of ‘the ulterior intentions of the one acting and the circumstances’, included in this category, among others, ‘whatever violates the integrity of the human person, such as mutilation, physical and mental torture and attempts to coerce the spirit.’ ‘All these and the like’, the encyclical concludes, ‘are a disgrace… and are a negation of the honour due to the Creator’ (Veritatis Splendor, 80). For the Catholic Church, therefore, willful bodily sufferings and mutilations infringe human integrity and are intrinsically evil acts, while intentional harm, based on the principle that ‘evil may not be done for the sake of good’, is always unreasonable. On the other hand, many saints who engaged in these practices are still honoured for their ascetic and noble life, while, even today, similar practices are found, such as the well-known Good Friday self-flagellation and nailing to the cross, performed in San Fernando, Philippines. So, the viewpoint of modern Theology about these practices and the question of whether Christians should hurt their body for the salvation of their soul is the question that this paper will attempt to answer.Keywords: human body, human soul, torture, pain, salvation
Procedia PDF Downloads 91743 Development of Extruded Prawn Snack Using Prawn Flavor Powder from Prawn Head Waste
Authors: S. K. Sharma, P. Kumar, Pratibha Singh
Abstract:
Consumption of SNACK is growing its popularity every day in India and a broad range of these items are available in the market. The end user interest in ready-to-eat snack foods is constantly growing mainly due to their ease, ample accessibility, appearance, taste and texture. Food extrusion has been practiced for over fifty years. Its role was initially limited to mixing and forming cereal products. Although thermoplastic extrusion has been successful for starch products, extrusion of proteins has achieved only limited success. In this study, value-added extruded prawn product was prepared with prawn flavor powder and corn flour using a twin-screw extruder. Prawn flavor concentrates prepared from fresh prawn head (Solenocera indica). To prepare flavor concentrate prawn head washed with potable water and blended with 200ml 3% salt solution per 250gm head weight to make the slurry, which was further put in muslin cloth and boiled with salt and starch solution for 10 minutes, cooled to room temperature and filtered, starch added to the filtrate and made into powder in an electrically drier at 43-450c. The mixture was passed through the twin-screw extruder (co-rotating twin screw extruder - basic technology Pvt. Ltd., Kolkata) which was operated at a particular speed of rotation, die diameter, temperature, moisture, and fish powder concentration. Many trial runs were conducted to set up the process variables. The different extrudes produced after each trail were examined for the quality and characteristics. The effect of temperature, moisture, screw speed, protein, fat, ash and thiobarbituric acid (TBA) number and expansion ratio were studied. In all the four trials, moisture, temperature, speed and die diameter used was 20%, 100°C, 350 rpm and 4 mm, respectively. The ratio of prawn powder and cornstarch used in different trials ranged between 2:98 and 10:90. The storage characteristics of the final product were studied using three different types of packaging under nitrogen flushing, i.e. a- 12-pm polyester, 12-pm metalized polyester, 60-11m polyethylene (metalized polyester a), b- 12-11m metalized polyester, 37.5-11m polyethylene (metalized polyester b), c- 12-11m polyethylene, 9-11m aluminium foil, 37.5-11m polyethylene (aluminium foil). The organoleptic analysis was carried out on a 9-point hedonic scale. The study revealed that the fried product packed in aluminum foil under nitrogen flushing would remain acceptable for more than three months.Keywords: extruded product, prawn flavor, twin-screw extruder, storage characteristics
Procedia PDF Downloads 140742 Biobased Sustainable Films from the Algerian Opuntia Ficus-Indica Cladodes Powder: Effect of Plasticizer Content
Authors: Nadia Chougui, Nawal Makhloufi, Farouk Rezgui, Elias Benramdane, Carmen S. R. Freire, Carla Vilela, Armando J. D. Silvestre
Abstract:
Native to Mexico, Opuntia ficus-indica was introduced in southern Spain, and thereafter, it was spread throughout the Mediterranean Basin by the Spanish conquerors in the 16th and 17th centuries. O. ficus-indica is a tropical and subtropical plant able to grow in arid and semi-arid regions, such as the Mediterranean and Central America regions. The culture of Opuntia covers about 200,000 ha in North Africa. This tree is used against soil erosion and desertification for fruit production and is encouraged to promote the livestock sector. It has recently received ever-increasing attention from researchers worldwide for the multivalent pharmaceutical and cosmetical potential of its different compartments (fruits, seeds, cladodes). The present study investigated the elaboration by casting method and characterization of new biodegradable films composed of cladodes powder (CP) of the plant raw material mentioned above, and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the films was evaluated at four different contents (30, 40, 50 and 60 wt.%). The films present UV-blocking properties, thermal stability as well as moderate mechanical performance and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young’s modulus, tensile strength and contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials.Keywords: Opuntia ficus-indica cladodes powder, agar, biobased films, effect of plasticizer, sustainable packaging
Procedia PDF Downloads 75741 Cold Spray High Entropy Alloy Coating Surface Microstructural Characterization and Mechanical Testing
Authors: Raffaella Sesana, Nazanin Sheibanian, Luca Corsaro, Sedat Özbilen, Rocco Lupoi, Francesco Artusio
Abstract:
High Entropy Alloy (HEA) coatings of Al0.1-0.5CoCrCuFeNi and MnCoCrCuFeNi on Mg substrates were prepared from mechanically alloyed HEA powder feedstocks and at three different Cold Spray (CS) process gas (N2) temperatures (650, 750 and 850°C). Mechanically alloyed and cold-sprayed HEA coatings were characterized by macro photography, OM, SEM+EDS study, micro-hardness testing, roughness, and porosity measurements. As a result of mechanical alloying (MA), harder particles are deformed and fractured. The particles in the Cu-rich region were coarser and more globular than those in the A1 phase, which is relatively soft and ductile. In addition to the A1 particles, there were some separate Cu-rich regions. Due to the brittle nature of the powder and the acicular shape, Mn-HEA powder exhibited a different trend with smaller particle sizes. It is observed that MA results in a loose structure characterized by many gaps, cracks, signs of plastic deformation, and small particles attached to the surface of the particle. Considering the experimental results obtained, it is not possible to conclude that the chemical composition of the high entropy alloy influences the roughness of the coating. It has been observed that the deposited volume increases with temperature only in the case of Al0.1 and Mg-based HEA, while for the rest of the Al-based HEA, there are no noticeable changes. There is a direct correlation between micro-hardness and the chemical composition of a coating: the micro-hardness of a coating increases as the percentage of aluminum increases in the sample. Compared to the substrate, the coating has a much higher hardness, and the hardness measured at the interface is intermediate.Keywords: characterisation, cold spraying, HEA coatings, SEM+EDS
Procedia PDF Downloads 64740 Contact Toxicity Effects of Different Formulations of Artemisia Absinthium Extracts on Rose Aphid
Authors: Maryam Atapour
Abstract:
Chemical pesticides, which are widely used in agriculture, cause problems such as soil and water pollution, reducing biodiversity and creating pest resistance. These problems have led to increased attention to alternative and more sustainable methods such as natural-based pesticides. Herbal pesticides have been developed based on essential oils or extracts from different parts of plants, such as leaves, roots, and flowers. Herbal pesticides are compatible with the environment and can be used in integrated pest management programs. Despite the many benefits, herbal pesticides, especially essential oil-based compounds, have low durability in the environment, and their production costs are high, so the use of herbal extracts with appropriate formulations is more justified in all aspects. In the current study and based on the results of previous studies, aqueous and 70% ethanolic extract of Artemisia absinthium L. was prepared by the percolation method and formulated as an emulsion and water-soluble powder. To produce powder formulation, 20% maltodextrin was used with the spray-dryer method. Different concentrations of these compounds were sprayed on bushes infected with rose aphid Macrosiphum rosae (L.). Sampling was done randomly and the percentage of aphids’ mortality was checked. The results showed that the use of different concentrations of ethanolic extracts created a significant difference in the mortality rate of aphids, while water-soluble powder formulation caused less mortality. The current results showed that the extract of this plant has practical usability to control aphids, and with the appropriate formulation, it can be used as a good alternative to chemical pesticides.Keywords: contact toxicity, formulation, extract, aphid, Artemisia absinthium.
Procedia PDF Downloads 36739 Green Synthesis Approach for Renewable Textile Coating and Their Mechanical and Thermal Properties
Authors: Heba Gamal Abd Elhaleem Elsayed, Nour F Attia
Abstract:
The extensive use of textile and textile based materials in various applications including industrial applications are increasing regularly due to their interesting properties which require rapid development in their functions to be adapted to these applications [1-3]. Herein, green, new and renewable smart coating was developed for furniture textile fabrics. Facile and single step method was used for synthesis of green coating based on mandarin peel and chitosan. As, the mandarin peel as fruit waste material was dried, grinded and directly dispersed in chitosan solution producing new green coating composite and then coated on textile fabrics. The mass loadings of green mandarin peel powder was varied on 20-70 wt% and optimized. Thermal stability of coated textile fabrics was enhanced and char yield was improved compared to uncoated one. The charring effect of mandarin peel powder coated samples was significantly enhanced anticipating good flame retardancy effect. The tensile strength of the coated textile fabrics was improved achieved 35% improvement compared to uncoated sample. The interaction between the renewable coating and textile was evaluated. The morphology of uncoated and coated textile fabrics was studied using microscopic technique. Additionally, based on thermal properties of mandarin peel powder it could be promising flame retardant for textile fabrics. This study open new avenues for finishing textile fabrics with enhanced thermal, flame retardancy and mechanical properties with cost-effective and renewable green and effective coatingKeywords: flame retardant , Thermal Properties, Textile Coating , Renewable Textile
Procedia PDF Downloads 141738 Microstructure and Sintering of Boron-Alloyed Martensitic Stainless Steel
Authors: Ming-Wei Wu, Yu-Jin Tsai, Ching-Huai Chang
Abstract:
Liquid phase sintering (LPS) is a versatile technique for achieving effective densification of powder metallurgy (PM) steels and other materials. The aim of this study was to examine the influences of 0.6 wt% boron on the microstructure and LPS behavior of boron-alloyed 410 martensitic stainless steel. The results showed that adding 0.6 wt% boron can obviously promote the LPS due to a eutectic reaction and increase the sintered density of 410 stainless steel. The density was much increased by 1.06 g/cm³ after 1225ºC sintering. Increasing the sintering temperature from 1225ºC to 1275ºC did not obviously improve the sintered density. After sintering at 1225ºC~1275ºC, the matrix was fully martensitic, and intragranular borides were extensively found due to the solidification of eutectic liquid. The microstructure after LPS consisted of the martensitic matrix and (Fe, Cr)2B boride, as identified by electron backscatter diffraction (EBSD) and electron probe micro-analysis (EPMA).Keywords: powder metallurgy, liquid phase sintering, stainless steel, martensite, boron, microstructure
Procedia PDF Downloads 258737 Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange
Authors: T. Ul Rehman, S. Agnello, F. M. Gelardi, M. M. Calvino, G. Lazzara, G. Buscarino, M. Cannas
Abstract:
Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices.Keywords: Fe³⁺ cation exchange, luminescent metal-organic frameworks (LMOFs), MIL-53(Al), solid-state analysis
Procedia PDF Downloads 66736 Effect of Non-Fat Solid Ratio on Bloom Formation in Untempered Chocolate
Authors: Huanhuan Zhao, Bryony J. James
Abstract:
The relationship between the non-fat solid ratio and bloom formation in untempered chocolate was investigated using two types of chocolate: model chocolate made of varying cocoa powder ratios (46, 49.5 and 53%) and cocoa butter, and commercial Lindt chocolate with varying cocoa content (70, 85 and 90%). X-ray diffraction and colour measurement techniques were used to examine the polymorphism of cocoa butter and the surface whiteness index (WI), respectively. The polymorphic transformation of cocoa butter was highly correlated with the changes of WI during 30 days of storage since it led to the redistribution of fat within the chocolate matrix and resulted in a bloomed surface. The change in WI indicated a similar bloom rate in the chocolates, but the model chocolates with a higher cocoa powder ratio had more pronounced total bloom. This is due to a higher ratio of non-fat solid particles on the surface resulting in microscopic changes in morphology. The ratio of non-fat solids is an important factor in determining the extent of bloom but not the bloom rate.Keywords: untempered chocolate, microstructure of bloom, polymorphic transformation, surface whiteness
Procedia PDF Downloads 346735 Development of Agomelatine Loaded Proliposomal Powders for Improved Intestinal Permeation: Effect of Surface Charge
Authors: Rajasekhar Reddy Poonuru, Anusha Parnem
Abstract:
Purpose: To formulate proliposome powder of agomelatine, an antipsychotic drug, and to evaluate physicochemical, in vitro characters and effect of surface charge on ex vivo intestinal permeation. Methods: Film deposition technique was employed to develop proliposomal powders of agomelatin with varying molar ratios of lipid Hydro Soy PC L-α-phosphatidylcholine (HSPC) and cholesterol with fixed sum of drug. With the aim to derive free flowing and stable proliposome powder, fluid retention potential of various carriers was examined. Liposome formation and number of vesicles formed for per mm3 up on hydration, vesicle size, and entrapment efficiency was assessed to deduce an optimized formulation. Sodium cholate added to optimized formulation to induce surface charge on formed vesicles. Solid-state characterization (FTIR, DSC, and XRD) was performed with the intention to assess native crystalline and chemical behavior of drug. The in vitro dissolution test of optimized formulation along with pure drug was evaluated to estimate dissolution efficiency (DE) and relative dissolution rate (RDR). Effective permeability co-efficient (Peff(rat)) in rat and enhancement ratio (ER) of drug from formulation and pure drug dispersion were calculated from ex vivo permeation studies in rat ileum. Results: Proliposomal powder formulated with equimolar ratio of HSPC and cholesterol ensued in higher no. of vesicles (3.95) with 90% drug entrapment up on hydration. Neusilin UFL2 was elected as carrier because of its high fluid retention potential (4.5) and good flow properties. Proliposome powder exhibited augmentation in DE (60.3 ±3.34) and RDR (21.2±01.02) of agomelation over pure drug. Solid state characterization studies demonstrated the transformation of native crystalline form of drug to amorphous and/or molecular state, which was in correlation with results obtained from in vitro dissolution test. The elevated Peff(rat) of 46.5×10-4 cm/sec and ER of 2.65 of drug from charge induced proliposome formulation with respect to pure drug dispersion was assessed from ex vivo intestinal permeation studies executed in ileum of wistar rats. Conclusion: Improved physicochemical characters and ex vivo intestinal permeation of drug from charge induced proliposome powder with Neusilin UFL2 unravels the potentiality of this system in enhancing oral delivery of agomelatin.Keywords: agomelatin, proliposome, sodium cholate, neusilin
Procedia PDF Downloads 136734 Mechanochemical Behaviour of Aluminium–Boron Oxide–Melamine Ternary System
Authors: Ismail Seckin Cardakli, Mustafa Engin Kocadagistan, Ersin Arslan
Abstract:
In this study, mechanochemical behaviour of aluminium - boron oxide - melamine ternary system was investigated by high energy ball milling. According to the reaction Al + B₂O₃ = Al₂O₃ + B, stochiometric amount of aluminium and boron oxide with melamine up to ten percent of total weight was used in the experiments. The powder characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) after leaching of product by 1M HCl acid. Results show that mechanically induced self-sustaining reaction (MSR) between aluminium and boron oxide takes place after four hours high energy ball milling. Al₂O₃/h-BN composite powder is obtained as the product of aluminium - boron oxide - melamine ternary system.Keywords: high energy ball milling, hexagonal boron nitride, mechanically induced self-sustaining reaction, melamine
Procedia PDF Downloads 147733 Eco-Efficient Self-Compacting Concrete for Sustainable Building
Authors: Valeria Corinaldesi
Abstract:
In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building
Procedia PDF Downloads 84732 Macroscopic Support Structure Design for the Tool-Free Support Removal of Laser Powder Bed Fusion-Manufactured Parts Made of AlSi10Mg
Authors: Tobias Schmithuesen, Johannes Henrich Schleifenbaum
Abstract:
The additive manufacturing process laser powder bed fusion offers many advantages over conventional manufacturing processes. For example, almost any complex part can be produced, such as topologically optimized lightweight parts, which would be inconceivable with conventional manufacturing processes. A major challenge posed by the LPBF process, however, is, in most cases, the need to use and remove support structures on critically inclined part surfaces (α < 45 ° regarding substrate plate). These are mainly used for dimensionally accurate mapping of part contours and to reduce distortion by absorbing process-related internal stresses. Furthermore, they serve to transfer the process heat to the substrate plate and are, therefore, indispensable for the LPBF process. A major challenge for the economical use of the LPBF process in industrial process chains is currently still the high manual effort involved in removing support structures. According to the state of the art (SoA), the parts are usually treated by simple hand tools (e.g., pliers, chisels) or by machining (e.g., milling, turning). New automatable approaches are the removal of support structures by means of wet chemical ablation and thermal deburring. According to the state of the art, the support structures are essentially adapted to the LPBF process and not to potential post-processing steps. The aim of this study is the determination of support structure designs that are adapted to the mentioned post-processing approaches. In the first step, the essential boundary conditions for complete removal by means of the respective approaches are identified. Afterward, a representative demonstrator part with various macroscopic support structure designs will be LPBF-manufactured and tested with regard to a complete powder and support removability. Finally, based on the results, potentially suitable support structure designs for the respective approaches will be derived. The investigations are carried out on the example of the aluminum alloy AlSi10Mg.Keywords: additive manufacturing, laser powder bed fusion, laser beam melting, selective laser melting, post processing, tool-free, wet chemical ablation, thermal deburring, aluminum alloy, AlSi10Mg
Procedia PDF Downloads 91731 Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure
Authors: Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, Philomela Komninou
Abstract:
A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation.Keywords: chromium-rich tannery residues, glass-ceramic materials, mechanical properties, microstructure
Procedia PDF Downloads 341730 The Use of Food Industry Bio-Products for Sustainable Lactic Acid Bacteria Encapsulation
Authors: Paulina Zavistanaviciute, Vita Krungleviciute, Elena Bartkiene
Abstract:
Lactic acid bacteria (LAB) are microbial supplements that increase the nutritional, therapeutic, and safety value of food and feed. Often LAB strains are incubated in an expensive commercially available de Man-Rogosa-Sharpe (MRS) medium; the cultures are centrifuged, and the cells are washing with sterile water. Potato juice and apple juice industry bio-products are industrial wastes which may constitute a source of digestible nutrients for microorganisms. Due to their low cost and good chemical composition, potato juice and apple juice production bio- products could have a potential application in LAB encapsulation. In this study, pure LAB (P. acidilactici and P. pentosaceus) were multiplied in a crushed potato juice and apple juice industry bio-products medium. Before using, bio-products were sterilized and filtered. No additives were added to mass, except apple juice industry bioproducts were diluted with sterile water (1/5; v/v). The tap of sterilised mass, and LAB cell suspension (5 mL), containing of 8.9 log10 colony-forming units (cfu) per mL of the P. acidilactici and P. pentosaceus was used to multiply the LAB for 72 h. The final colony number in the potato juice and apple juice bio- products substrate was on average 9.60 log10 cfu/g. In order to stabilize the LAB, several methods of dehydration have been tested: lyophilisation (MilrockKieffer Lane, Kingston, USA) and dehydration in spray drying system (SD-06, Keison, Great Britain). Into the spray drying system multiplied LAB in a crushed potato juice and apple juice bio-products medium was injected in peristaltic way (inlet temperature +60 °C, inlet air temperature +150° C, outgoing air temperature +80 °C, air flow 200 m3/h). After lyophilisation (-48 °C) and spray drying (+150 °C) the viable cell concentration in the fermented potato juice powder was 9.18 ± 0.09 log10 cfu/g and 9.04 ± 0.07 log10 cfu/g, respectively, and in apple mass powder 8.03 ± 0.04 log10 cfu/g and 7.03 ± 0.03 log10 cfu/g, respectively. Results indicated that during the storage (after 12 months) at room temperature (22 +/- 2 ºC) LAB count in dehydrated products was 5.18 log10 cfu/g and 7.00 log10 cfu/g (in spray dried and lyophilized potato juice powder, respectively), and 3.05 log10 cfu/g and 4.10 log10 cfu/g (in spray dried and lyophilized apple juice industry bio-products powder, respectively). According to obtained results, potato juice could be used as alternative substrate for P. acidilactici and P. pentosaceus cultivation, and by drying received powders can be used in food/feed industry as the LAB starters. Therefore, apple juice industry by- products before spray drying and lyophilisation should be modified (i. e. by using different starches) in order to improve its encapsulation.Keywords: bio-products, encapsulation, lactic acid bacteria, sustainability
Procedia PDF Downloads 276729 The Effect of Filter Cake Powder on Soil Stability Enhancement in Active Sand Dunes, In the Long and Short Term
Authors: Irit Rutman Halili, Tehila Zvulun, Natali Elgabsi, Revaya Cohen, Shlomo Sarig
Abstract:
Active sand dunes (ASD) may cause significant damage to field crops and livelihood, and therefore, it is necessary to find a treatment that would enhance ADS soil stability. Biological soil crusts (biocrusts) contain microorganisms on the soil surface. Metabolic polysaccharides secreted by biocrust cyanobacteria glue the soil particles into aggregates, thereby stabilizing the soil surface. Filter cake powder (FCP) is a waste by-product in the final stages of the production of sugar from sugarcane, and its disposal causes significant environmental pollution. FCP contains high concentrations of polysaccharides and has recently been shown to be soil stability enhancing agent in ASD. It has been reported that adding FCP to the ASD soil surface by dispersal significantly increases the level of penetration resistance of soil biocrust (PRSB) nine weeks after a single treatment. However, it was not known whether a similar effect could be obtained by administering the FCP in liquid form by means of spraying. It has now been found that spraying a water solution of FCP onto the ASD soil surface significantly increased the level of penetration resistance of soil biocrust (PRSB) three weeks after a single treatment. These results suggest that FCP spraying can be used as a short-term soil stability-enhancing agent for ASD, while administration by dispersal might be more efficient over the long term. Finally, an additional benefit of using FCP as a soil stabilizer, either by dispersal or by spraying, is the reduction in environmental pollution that would otherwise result from the disposal of FCP solid waste.Keywords: active sand dunes, filter cake powder, biological soil crusts, penetration resistance of soil biocrust
Procedia PDF Downloads 164728 The Effect of Arbutin Powder and Arctostaphylos uvaursi Aqueous Leaf Extract on Synthesis of Melanin by Madurella mycetomatis
Authors: Amina Omer, Ikram Elsiddig
Abstract:
Arctostaphylos uvaursi is a plant of the family Ericaceae, it’s used in skin care products mostly for its depigmenting action, due to the presence of hydroquinones that are well known inhibitors of tyrosinase, an enzyme involved in melanin biosynthesis in humans. The main hydroquinone found within the A. uvaursi is arbutin, which is found with varying percentage within the plant depending on the season, and area from which the plant is harvested. An in vitro experiment has shown that the arbutin found within the bearberry leaf extract inhibited the biosynthesis of melanin in human melanoma cells and in three-dimensional human skin model. Madurella mycetomatis is filamentous fungus that causes the fungal form of mycetoma known as eumycetoma, with existing anti-fungals and surgery, only 35% of people living eumycetoma are treated, M. mycetomatis has been found to shield itself against the antifungal therapy through the production of melanin decreasing the effectiveness of the therapy, therefore there is a need for a new and more effective therapy. The aim of the study was to investigate and compare the effect of arbutin powder and aqueous extract of A. uvaursi containing arbutin on the biosynthesis of melanin by M. mycetomatis. The experiment was carried out by culturing M. mycetomatis on minimal media composed of 2% agar, 15 mM glucose, 10 mM MgSO4, 29.4 mM KH2PO4, 13 mM glycin and 80mg/l gentamicin, the media was supplied with different concentration of arbutin solution (5, 25 50,and 75mg) and aqueous extract of A. uvaursi to contain arbutin with concentrations (5, 25 50,and 75mg), the plates were incubated for two month and the result was observed by the naked eye. The results revealed that the arbutin powder had an inhibitory effect on melanin synthesis by M. mycetomatis that correlated with its established inhibitory effect on melanin synthesis in humans. The inhibitory effect of arbutin on melanin synthesis by M. mycetomatis was found to be dose dependent. A. uvaursi aqueous leaf extract containing arbutin was also found to decrease melanin production by M. mycetomatis, however plates containing high concentrations of aqueous extract couldn’t be assessed for its melanin inhibitory effect due to the high content of carbohydrates in the extract that promoted the growth of fungi Asperigullus niger rendering the plates unsuitable for visual inspection. In conclusion inhibition of melanin synthesis was observed on the arbutin powder as well as the aqueous extract containing arbutin. A. uvaursi is known to exhibit anti-inflammatory activity, which can aid in wound healing that is beneficial in the chronic inflammation caused by M. mycetomatis.Keywords: arbutin, arctostaphylos, Madurella, melanin
Procedia PDF Downloads 170727 Health Risks Evaluation of Heavy Metals in Sea Food from Persian Gulf
Authors: Mohsen Ehsanpour, Maryam Ehsanpour, Majid Afkhami, Fatemeh Afkhami
Abstract:
Heavy metals are increasingly being released into natural waters from geological and anthropogenic sources. The distribution of several heavy metals (Cd, Pb) was investigated in muscle, liver in six different fish species seasonally collected in Persian Gulf (autumn 2009-summer 2010). The concentrations of all metals were lower in flesh than those recorded in liver due to their physiological roles. The THQ index for fish was calculated. Estimation of target hazard quotients calculations for the contaminated fish consumption was calculated to evaluate the effect of pollution on health. Total metal THQs values (Pb and Cd) for adults were 0.05 and 0.04 in Bushehr and Bandar-Genaveh, respectively, and for children they were 0.08 and 0.05 in Bandar-Abbas and Bandar-Lengeh, respectively.Keywords: Persian Gulf, heavy metals, health risks, THQ index
Procedia PDF Downloads 716